3

15EC63

h Semester B.E. Degree Examination, Aug./Sept. 2020 **VLSI** Design

Max. Marks: 80 ote: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1	a.	Explain the ideal I.V characteristics of nMOS transistor. Derive the equation for IDS in three				
		region	i) cut off region	ii) non-saturated region	iii) saturation region.	(10 Marks)
		Explain the nMOS fabrication with neat diagram.				(06 Marks)
				OP		

- Explain the CMOS inverter transfer characteristics highlighting the regions of operations of 2 (06 Marks) the MOS transistor.
 - Describe with heat sketches the fabrication of P-well CMOS inverter. (06 Marks) b.
 - Compare CMOS and bipolar technology.

(04 Marks)

Module-2

- (08 Marks)
- Draw the circuit schematic and stick diagram of CMOS 2 input NAND gate. Explain briefly λ-based design rules for wire and transistor (nMOS, PMOS, CMOS).
 - (08 Marks)

- Explain with diagram rise time model and fall time model of CMOS inverter. (06 Marks)
 - Explain briefly the circuit of inverting and non-inverting super buffer. (06 Marks) b.
 - Explain delay unit τ.

(04 Marks)

- Module-3 What are the most commonly used scaling models? Provide scaling factor for : 5
 - i) Power dissipasen per gate
- ii) Current density
- iii) Channel resistance Ron
 - iv) Parasitic capacitance C_x. (06 Marks)
- b. What are the general considerations to be followed in designing a sub system? (05 Marks)
- Explain the design steps for 4-bit adder.

(05 Marks)

- OR Design regularity. (04 Marks)
 - Design 4 bit ALU to implement addition subtraction, EX-OR, EX-NOR and AND operation. (12 Marks)

Module-4

- Discuss the architectural issue related to sub system design. (06 Marks)
 - Explain briefly a parity generator with block diagram and stick diagram.
 - Give the comparison of SSRAM and antifuse FPGA. (04 Marks)

- Explain with schematic view of flash based FPGA. (05 Marks) 8 a.
 - Explain briefly switch logic implementing of a four way multiplexer. (07 Marks)
 - What are the advantages of FPGA?

Explain the three transistor dynamic RAM – cell.

(04 Marks)

(06 Marks)

- Module-5
- CMRIT LIBRARY (08 Marks)
- Explain briefly nMOS Pseudo static memory cell. BANGALORE - 560 037 (08 Marks)

- Explain briefly logic verification principle. (08 Marks)
 - Write a short note on: i) Built In Self Test (BIST) ii) Scan Design Technology. (08 Marks)