15TE655

Sixth Semester B.E. Degree Examination, Aug./Sept. 2020 Image Processing

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- With the help of neat block diagram explain the fundamental steps of digital image processing. (10 Marks)
 - Explain the basic relationships between pixels:
 - i) 4 adjacency
 - ii) 8 adjacency
 - iii) m adjacency.

(06 Marks)

- With the help of neat block diagram explain the components of general purpose image system processing. (08 Marks)
 - What is a digital image? Explain about sampling and quantization of an image. (08 Marks)

Module-2

A histogram has 8 levels of size 64 × 64 as shown in Fig.Q3(a). Draw the histogram of an equalized image.

Fig.Q3(a)

(08 Marks)

- Explain the following intensity transformation function with necessary graphs.
 - i) Image negative
 - ii) Log transformation
 - iii) Power law transformations (Gamma).

(08 Marks)

Explain the basic concept of spatial filtering in image enhancement. 4

(08 Marks)

Explain image sharpening in spatial domain using 2nd order Laplacian mask.

(08 Marks)

Module-3

Explain the following properties of 2DDFT.

CMRIT LIBRARY BANGALORE - 560 037

- i) Translation
- Rotation ii)
- iii) Periodicity iv) Separability.

- (08 Marks)

(08 Marks)

Explain homomorphic filtering in image enhancement. 1 of 2

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

OR

6	a.	Explain the following noise probability density function:	
		i) Gaussian ii) Erlang iii) Rayleigh iv) Exponential.	(08 Marks)
	b.	Explain order statistic filters used in image restoration in the presence of noise.	(08 Marks)
Module-4			
7	a.	Explain 3 principal ways to estimate the degradation function for use in image	restoration.
			(10 Marks)
	b.	Explain inverse filtering approach and its limitation in image restoration.	(06 Marks)
		OR	
8	a.	Write the mask for Robert, Sobel and Prewitt operator.	(06 Marks)
	b.	Write a note on Hit and Miss transformation Erosion and dilation.	(10 Marks)
		Module-5	
9	a.	Explain region based segmentation technique. Explain boundary tracing algorithm. CMRIT LIBRARY EMPLOYE - 560 037	(08 Marks)
	b.	Explain boundary tracing algorithm.	(08 Marks)
		OR	
10	a.	Explain how chain codes can be used for boundary representation.	(06 Marks)
	b.	Explain minimum perimeter polygon approach for boundary representation.	(06 Marks)
	c.	Write a note on signatures.	(04 Marks)