17MAT31

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Engineering Mathematics – III

Time: 3 hrs.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Find the Fourier series to represent the periodic function $f(x) = x x^2$ from $x = -\pi$ to (08 Marks)
 - b. The following table gives the variations of periodic current over a period.

The lone	11 1119 00	TOTO DE				- 100	
t sec	0	T	T	T	2T	5T	T
	14	6	3	2	3	6	
A amp.	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Expand A as a Fourier series upto first harmonic. Obtain the amplitude of the first harmonic.
(06 Marks)

c. Find the half range cosine series for the function $f(x) = (x-1)^2$ in 0 < x < 1. (06 Marks)

OR

2 a. Find the Fourier series of $f(x) = 2x - x^2$ in (0, 3).

(08 Marks)

b. Obtain the constant term and the coefficients of the first sine and cosine terms in the Fourier series expansion of y as given in the following table:

(06 Marks)

x:	0	1	2	3	4	5	6
y:	9	18	24	28	26	20	9

c. Obtain the half-range sine series for the function,

CMRIT LIBRARY BANGALORE - 560 037

$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$
 (06 Marks)

Module-2

3 a. Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, & |x| \le a \\ 0, & |x| > a \end{cases}$. Hence deduce that

$$\int_{0}^{\infty} \frac{\left(\sin x - x \cos x\right)}{x^3} \cos \frac{x}{2} dx = \frac{3\pi}{16}.$$
 (08 Marks)

- b. Find the Z-transform of,
 - (i) $\cos n\theta$ and (ii) $\cosh n\theta$

(06 Marks)

c. Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = 0 = y_1$, using z-transforms technique. (06 Marks)

OR

Find the Fourier cosine transform of e-ax. Hence evaluate (08 Marks)

Find the Z-transform of,

(i)
$$(n+1)^2$$

(ii)
$$\sin(3n + 5)$$

(06 Marks)

Find the inverse Z-transform of

(06 Marks)

Module-3

Find the two regression lines and hence the correlation coefficient between x and y from the (08 Marks)

X	1	2	3	4	5	6	7	8	9	10
y	10	12	16	28	28	36	41	49	40	50

Fit a second degree parabola to the following data:

(06 Marks)

3

Using Newton-Raphson method find the root of $x \sin x + \cos x = 0$ near $x = \pi$ corrected to (06 Marks) 4 decimal places.

OR

Two variables x and y have the regression lines 3x + 2y = 26 and 6x + y = 31. Find the mean values of x and y and the correlation coefficient between them. (08 Marks)

b. Fit a curve of the form, $y = ae^{bx}$ to the following data:

(06 Marks)

X:	5	15	20	30	35	40
y:	10	14	25	40	50	62

Using Regula-Falsi method find the root of $xe^x = \cos x$ in the interval (0, 1) carrying out (06 Marks) four iterations.

Module-4

Using Newton's forward and backward interpolation formulae, find f(1) and (10) from the (08 Marks) following table:

3 f(x) | 4.8 | 8.4 | 14.5 | 23.6 | 36.2 52.8 73.9

b. Given that f(5) = 150, f(7) = 392, f(11) = 1452, f(13) = 2366, f(17) = 5202. Using Newton's (06 Marks) divided difference formulae find f(9).

rule evaluate $\int e^{-x^2} dx$ by taking seven ordinates. Using Simpson's

(06 Marks)

OR

Using Newton's Backward difference interpolation formula find f(105) from, (08 Marks) 8 95 100 85 90 80

f(x) | 5026 | 5674 | 6362 | 7088 | 7854

If f(1) = -3, f(3) = 9, f(4) = 30, f(6) = 132 find Lagrange's interpolation polynomial that (06 Marks) takes the same value as f(x) at the given point.

c. Evaluate $\int_{0}^{3.2} \log_e x dx$ by Simpson's $\frac{3}{8}$ rule with h = 0.1.

(06 Marks)

- Verify Green's theorem for $\oint (xy + y^2)dx + x^2dy$ where C is bounded by y = x and $y = x^2$. (08 Marks)
 - Using Gauss divergence theorem evaluate $\iint \vec{F} \cdot \hat{n} ds$,

where $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ over the rectangular parallel piped $0 \le x \le a$, $0 \le y \le b$ and $0 \le z \le c$. (06 Marks)

With usual notations derive Euler's equation, $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. (06 Marks)

- a. If $\vec{F} = (5xy 6x^2)\hat{i} + (2y 4x)\hat{i}$, evaluate $\oint \vec{F} \cdot d\vec{r}$ along the curve C in the xy-plane, $y = x^3$ (08 Marks)
 - from (1, 1) to (2, 8). Find the extremals of the functional with y(0) = 0 and y(1) = 1. b.

(06 Marks) (06 Marks)

Show that Geodesics on a plane arc straight lines.

. . .