

USN

18ELD/EIE/EVE/ECS/ESP/HCE11

First Semester M.Tech. Degree Examination, Aug./Sept. 2020 Advanced Engineering Mathematics

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Prove that:
 - A non empty subset w of a vector space V is a subspace of V over F iff $a\alpha + b\beta \in w \ \forall \alpha, \beta \in w \ and \ a, b \in F$.
 - ii) The intersection of any two sub spaces of a vector space V over a field F is also a subspace of V. (12 Marks)
 - b. Show that the set $B = \{(1, 1, 0) (1, 0, 1) (0, 1, 1)\}$ is a basis of the vector space $V_3(R)$.

 (08 Marks)

OR

- 2 a. Let V be a vector space of polynomials in x of degree atmost 3 with real co-efficient over the field of real numbers. Define the linear transformation $T: V \to V$ as $T(p) = \frac{dp}{dx}$ Find the matrix representation of T with respect to the following basics
 - i) $p_1 = 1$, $p_2 = x$, $p_3 = x^2$, $p_4 = x^3$
 - ii) $p_1^1 = 2$, $p_2^1 = 2x$, $p_3^1 = x^2$, $p_4^1 = \frac{x^3}{3}$. (12 Marks)
 - b. Prove that a mapping $T: U \to V$ from a vector space U(F) into a vector space V(F) is a linear transformation if $T(C_1\alpha + C_2\beta) = C_1T(\alpha) + C_2T(\beta) + \forall C_1, C_2 \in F, \alpha, \beta \in U$.

 (08 Marks)

Module-2

- 3 a. If $S = \{u_1, u_2, u_3, ---u_p\}$ is an orthogonal set of non zero vectors in \mathbb{R}^n , thin prove that S is linearly independent and hence is a basis for the subspace spanned by S. (08 Marks)
 - b. Apply the Gram Schmidt process to the vector $V_1 = (1, 0, 1)$, $V_2 = (1, 0, -1)$, $V_3 = (0, 3, 4)$ to obtain an orthonormal basis for $V_3(R)$ with standard inner product. (12 Marks)

OR

4 a. Using Given's method, find the eigen values of

$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{pmatrix}.$$

CMRIT LIBRARY BANGALORE - 560 037

(12 Marks)

b. The set $S = \{u_1, u_2, u_3\}$ is an orthogonal basis for where \mathbb{R}^3 where

$$u_1 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, u_3 = \begin{pmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{pmatrix}$$
. Express $y = \begin{pmatrix} 6 \\ 1 \\ -8 \end{pmatrix}$ as a linear combination of the vectors

in S

(08 Marks)

18ELD/EIE/EVE/ECS/ESP/HCE11

Module-3

- (10 Marks) Derive Euler's formula in the form
 - b. Find the extermal of $\int_{x_0}^{1} [y^2 (y^1)^2 2y\sin x] dx$ (10 Marks)

a. Find the external of the functional $I = \int_{0}^{\pi/4} (16y^2)^{-1} dy$ +x2]dx that satisfies the conditions (12 Marks)

b. Find a function y(x) for which $\int [x^2 + (y^1)^2] dx$ is stationary, given that $\int y^2 dx = 2$, y(0) = 0, (08 Marks)

Module-4

Define a probability mass function of a discrete random variable x, which follows the distribution.

Xi	0	1	2	3 4	5	6	# 7
P(x _i)	0	k	2k	2k 3k	k ²	2k ²	$7k^2 + k$

Find:

iii) variance iv) $p(x \ge 6)$ v) $p(1 < x \le 5)$. i) k

(12 Marks)

- The number of breakdowns in a month of a computer is a random variable having a Poisson distribution with mean as 1.8, find the probability this computer will function for a month.
 - Without a breakdown
 - ii) With only one breakdown
 - iii) With atleast one breakdown.

y(0) = 0, $y(\pi/4) = 1$, y'(0) = 2, $y'(\pi/4) = 0$.

(08 Marks)

- In an engineering examination, a student is considered to have failed, secured second class, first class and distinction according as his scores less than 45%, between 45% and 60%, between 60% and 75% and above 75% respectively. In a particular year 10% of the students failed in the examination and 5% of the students got distinction. Find the percentage of students who have got first class and second class. (Given that $\phi(1.28) = 0.4$, $\phi(1.64) = 0.45$, $\phi(0.18) = 0.0714$).
 - b. Define moment generating function of a discrete random variable X. If X assumes the values $\frac{1}{2}$ and $-\frac{1}{2}$ with probability $\frac{1}{2}$ each. Find the moment generating function and the first (08 Marks) four moments about the origin.

18ELD/EIE/EVE/ECS/ESP/HCE11

Module-5

- 9 a. Define a wide-sense stationary process with an example. Show that the process $\{X(t)\} = A \cos \lambda t + B \sin \lambda t$ where A and B are random variables, is wide sense stationary if:
 - i) E(A) = E(B) = 0

ii) $E(A^2) = E(B^2)$

iii) E(AB) = 0.

(12 Marks)

b. Given that the auto correlation function for a stationary ergodic process with no periodic component is

$$R_{xx}(\tau) = 25 + \frac{4}{1 + 6\pi^2}$$

Find the mean and the variance of the process $\{X(t)\}$

(08 Marks)

OR

- 10 a. If $\{X(t)\}$ is a Gaussian process with $\mu(t) = 10$ and $C(t_1, t_2) = 16e^{-|t_1-t_2|}$, find the probability that $X(10) \le 8$ and $|X(10) X(6)| \le 4$. [Given that $\phi(0.5) = 0.1915$ and $\phi(0.7137) = 0.2611$]. (12 Marks)
 - b. Define auto correlation function of the random process:

i) Show that $R(\tau)$ is an even function of τ

ii) Show that $R(\tau)$ is maximum at $\tau = 0$.

(08 Marks)

CMRIT LIBRARY BANGALORE - 560 037