

Second Semester B.E. Degree Examination, Aug./Sept.2020 **Engineering Mathematics - II**

Time: 3 hrs

Max. Marks: 100

Note: Answer any FIVE full questions, selecting ONE full question from each module.

Module-1

1 a. Solve
$$(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$$
. (06 Marks)

b. Solve
$$y'' - 4y' + 4y = e^x$$
. (07 Marks)

c. Solve
$$\frac{d^2y}{dx^2} + y = \tan x$$
 by the method of variation of parameters. (07 Marks)

2 a. Solve
$$(D^2 - 2D + 5)y = (\sin x)$$
. (06 Marks)

b. Solve
$$y'' + 2y' + y = 2x + x^2$$
. (07 Marks)

c. Solve by the method of undeterminant coefficient
$$(D^2 + 1)y = x^2$$
. (07 Marks)

Module-2

3 a. Solve
$$\frac{dx}{dt} + 2y = -\sin t$$
, $\frac{dy}{dt} - 2x = \cos t$. (07 Marks)
b. Solve $(1+x)^2 y'' + (1+x)y' + y = \sin 2[\log(1+x)]$. (07 Marks)

b. Solve
$$(1+x)^2y'' + (1+x)y' + y = \sin 2[\log(1+x)]$$
. (07 Marks)

c. Solve
$$y\left(\frac{dy}{dx}\right)^2 + (x-y)\frac{dy}{dx} - x = 0$$
. (06 Marks)

4 a. Solve
$$x^3y''' + 3x^2y'' + xy' + 8y = 65\cos(\log x)$$
. (07 Marks)

b. Obtain the general solution of
$$x^2p^4 + 2xp - y = 0$$
. (07 Marks)

c. Show that the equation
$$xp^2 + px - py + 1 - y = 0$$
 is Clairaut's equation. Hence obtain the general solution. (06 Marks)

Module-3

- a. Form the partial differential equation by eliminating the arbitrary functions ϕ and Ψ from the 5 relation $Z = \phi(x + ay) + \psi(x - ay)$. (06 Marks)
 - Derive one dimensional heat equation. (07 Marks)

c. Evaluate
$$\int_{0}^{a} \int_{0}^{x+y+z} dx dy dz$$
. CMRIT LIBRARY BANGALORE - 560 037 (07 Marks)

6 a. Solve the partial differential equation
$$\frac{\partial^2 u}{\partial x^2} = x + y$$
 by direct integration. (06 Marks)

c. Evaluate
$$\iint_R (x^2 + y^2) dxdy$$
 where R is the region bounded by the lines y= 0, y = x and x = 1. (07 Marks)

Module-4

- Using multiple integrals, find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (06 Marks)
 - Prove that $\beta(m,n) = \frac{|\overline{m}| |\overline{n}|}{|\overline{m+n}|}$ (07 Marks)
 - Express the vector $\vec{F} = 2y \hat{i} z \hat{j} + 3x \hat{k}$ in cylindrical coordinates. (07 Marks)
- Find the area bounded between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ using double integration. 8 (06 Marks)
 - Show that $\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} \ d\theta = \pi$. Using Beta and Gamma functions. (07 Marks) b.
 - Prove that the cylindrical coordinate system orthogonal. (07 Marks)

- Find the Laplace transform of (06 Marks)
 - Find the Laplace transform of

$$\begin{cases} 1, & 0 < t \le 1 \\ t, & 1 < t \le 2 \\ t^2, & t > 2 \end{cases}$$
 (07 Marks)

- Using convolution theorem, find the inverse Laplace transform of (07 Marks)
- (06 Marks)
 - Find the inverse Laplace transform of $\frac{s+5}{s^2-6s+13}$. (06 M) Given $f(t) = \begin{cases} E, & 0 < t < \frac{a}{2} \\ -E, & \frac{a}{2} < t < a \end{cases}$ where f(t+a) = f(t), show that $L\{f(t)\} = \frac{E}{S} \tan h \left(\frac{as}{4}\right)$.
 - Solve the differential equation $y'' + 4y' + 3y = e^{-t}$ with y(0) = 1 = y'(0) using Laplace (07 Marks) transforms.