CRCS SCHEME

USN		1 mts of	18EVE31		
Third Semester M.Tech. Degree Examination, Jan./Feb. 2021					
		CAD of Digital Systems			
Tim	Time: 3 hrs. Max. Marks: 100				
	N	ote: Answer any FIVE full questions, choosing ONE full question from each mo	dule.		
		Module-1			
1	a.	Explain different design domains to describe the VLSI design process.	(08 Marks)		
	b.	Explain verification methods of checking the correctness of an integrated circuit.	(06 Marks)		
	c.	Discuss the structural and logic design used in VLSI design.	(06 Marks)		
		OR			
2	a.	Explain the pseudo-code description of Dijkstra's shortest path algorithm.	(06 Marks)		
	b.	Discuss two types of computational complexity.	(06 Marks)		
	c.	Explain P, NP and NPC classes of decision problems in the field of complexity th			
			(08 Marks)		
		Module-2			
3	a.	Write a pseudo-code of an algorithm for an exhaustive search by means of back tr	(06 Marks)		
	b.	Write a pseudo-code description of local search.	(06 Marks)		
	c.	Describe tabu search method with a pseudo-code description.	(08 Marks)		
		OR			
4	a.	Explain pseudo-code description of search by genetic algorithm.	(08 Marks)		
	b.	Explain minimum-distance design rules on a Lambda Grid.	(06 Marks)		
	c.	Explain an algorithm which is an alternative to the Liao-Wong algorithm with ps	seudo-code.		
14			(06 Marks)		
	•				
		Module-3			
5	a.	Explain data structures definitions for circuit representation.	(06 Marks)		
	b.	Explain with neat figures, the types of placement problems.	(06 Marks)		
	c.	Explain constructive placement approaches using figures.	(08 Marks)		
		OR			
6	a.	Discuss the Kernighan-Lin partitioning algorithm.	(06 Marks)		
	b.	Explain the various optimization problems related to floor planning.	(06 Marks)		
	c.	Explain the method for floor plan sizing and formulate the sizing algorithm for s			
		plans.	(08 Marks)		
		CMRIT LIBRARY			
-		Module-4 Module-4 Module-4 Module-4	(0/ 3/ 1)		
7	a.	Discuss the various parameters which defines the different routing problems.	(06 Marks)		
	b.	Explain global routing and standard cell layout.	(06 Marks) (08 Marks)		
$r_{\rm c}$	c.	Explain channel routing and channel routing models.	(no marks)		

OR

8	a.	Explain Signal Modeling and Gate Modeling.	(06 Marks)
	Ъ.	Write a pseudo-code of a switch-level simulation algorithm.	(06 Marks)
	c.	Explain the static and dynamic partitioning of a CMOS network into unidirect	ctional sub-
		circuits.	(08 Marks)
		Module-5	
9	a.	Explain ROBDD principles, implementation and construction.	(10 Marks)
	b.	Explain two aspects of two level logic synthesis.	(10 Marks)
		OR CMRIT LIBRARY BANGALORE - 560 037	
	Ч,		
10	a.	Explain ASAP scheduling with advantages and disadvantages.	(06 Marks)
	b.	Explain various sub problems of assignment problem.	(06 Marks)
	c.	Explain in detail assignment by clique partitioning.	(08 Marks)