
Internal Assessment Test 1 – March 2019

Sub: Cloud Computing and its Applications
Sub

Code:
15CS742 Branch: CSE

Date: 12/10/19 Duration: 90 mins Max Marks: 50
Sem /

Sec: VII A/B/C OBE

Answer any FIVE FULL Questions
MARKS CO RBT

1 (a) Discuss six major categories of currently available configuration for EC2 instances Answer:
1. Standard instances. This class offers a set of configurations that are suitable for most

applications. EC2 provides three different categories of increasing computing power,
storage, and memory.

2. Micro instances. This class is suitable for those applications that consume a limited
amount of computing power and memory and occasionally need bursts in CPU cycles
to process surges in the workload. Micro instances can be used for small Web
applications with limited traffic.

3. High-memory instances. This class targets applications that need to process huge
workloads and require large amounts of memory. Three-tier Web applications
characterized by high traffic are the target profile. Three categories of increasing
memory and CPU are available, with memory proportionally larger than computing
power.

4. High-CPU instances. This class targets compute-intensive applications. Two
configurations are available where computing power proportionally increases more
than memory.

5. Cluster Compute instances. This class is used to provide virtual cluster services.
Instances in this category are characterized by high CPU compute power and large
memory and an extremely high I/O and network performance, which makes it suitable
for HPC applications.

6. Cluster GPU instances. This class provides instances featuring graphic processing
units (GPUs) and high compute power, large memory, and extremely high I/O and
network performance. This class is particularly suited for cluster applications that
perform heavy graphic computations, such as rendering clusters. Since GPU can be
used for general-purpose computing, users of such instances can benefit from
additional computing power, which makes this class suitable for HPC applications.

[06] CO3 L2

1(b) Describe Amazon simple DB
Answer:
Amazon SimpleDB is a lightweight, highly scalable, and flexible data
storage solution for applications that do not require a fully relational model
for their data. SimpleDB provides support for semistructured data, the
model for which is based on the concept of domains, items, and attributes.
With respect to the relational model, this model provides fewer constraints
on the structure of data entries, thus obtaining improved performance in
querying large quantities of data. As happens for Amazon RDS, this service
frees AWS users from performing configuration, management, and high-
availability design for their data stores.

SimpleDB uses domains as top-level elements to organize a data store. These domains are
roughly comparable to tables in the relational model. Unlike tables, they allow items not to
have all the same column structure; each item is therefore represented as a collection of
attributes expressed in the form of a key-value pair. Each domain can grow up to 10 GB of
data, and by default a single user can allocate a maximum of 250 domains. Clients can create,
delete, modify, and make snapshots of domains. They can insert, modify, delete, and query
items and attributes. Batch insertion and deletion are also supported. The capability of querying
data is one of the most relevant functions of the model, and the select clause supports the
following test operators: =, != ,< ,> ,<= ,>= , like, not like, between, is null, is not null, and
every(). Here is a simple example on how to query data:

select * from domain_name where every(attribute_name) = ‘value’
Moreover, the select operator can extend its query beyond the boundaries of a single domain,
thus allowing users to query effectively a large amount of data
To efficiently provide AWS users with a scalable and fault-tolerant service, SimpleDB
implements a relaxed constraint model, which leads to eventually consistent data. The adverb
eventually denotes the fact that multiple accesses on the same data might not read the same
value in the very short term, but they will eventually converge over time. This is because
SimpleDB does not lock all the copies of the data during an update, which is propagated in the

[04] CO3 L2

background. Therefore, there is a transient period of time in which different clients can access
different copies of the same data that have different values. This approach is very scalable with
minor drawbacks, and it is also reasonable, since the application scenario for SimpleDB is
mostly characterized by querying and indexing operations on data. Alternatively, it is possible
to change the default behavior and ensure
that all the readers are blocked during an update.

2(a) Summarize Access Control Policies (ACP) and permissions with respect to Amazon
S3
Answer:
Amazon S3 allows controlling the access to buckets and objects by means of Access
Control Policies (ACPs). An ACP is a set of grant permissions that are attached to a
resource expressed by means of an XML configuration file. A policy allows defining
up to 100 access rules, each of them granting one of the available permissions to a
grantee. Currently, five different permissions can be used:

 READ allows the grantee to retrieve an object and its metadata and to list the content
of a bucket as well as getting its metadata.

 WRITE allows the grantee to add an object to a bucket as well as modify and remove
it.

 READ_ACP allows the grantee to read the ACP of a resource.
 WRITE_ACP allows the grantee to modify the ACP of a resource
 FULL_CONTROL grants all of the preceding permissions

Grantees can be either single users or groups. Users can be identified by their canonical IDs or
the email addresses they provided when they signed up for S3. For groups, only three options
are available: all users, authenticated users, and log delivery users.
ACPs provide a set of powerful rules to control S3 users’ access to resources, but they do not
exhibit fine grain in the case of non-authenticated users, who cannot be differentiated and are
considered as a group. To provide a finer grain in this scenario, S3 allows defining signed
URIs, which grant access to a resource for a limited amount of time to all the requests that can
provide a temporary access token.
Advanced features
Besides the management of buckets, objects, and ACPs, S3 offers other additional features that
can be helpful. These features are server access logging and integration with the BitTorrent
file-sharing network.
Server access logging allows bucket owners to obtain detailed information about the request
made for the bucket and all the objects it contains. By default, this feature is turned off; it can
be activated by issuing a PUT request to the bucket URI followed by ?logging. The request
should include an XML file specifying the target bucket in which to save the logging files and
the file name prefix. A GET request to the same URI allows the user to retrieve the existing
logging configuration for the bucket.
The second feature of interest is represented by the capability of exposing S3 objects to the
BitTorrent network, thus allowing files stored in S3 to be downloaded using the BitTorrent
protocol. This is done by appending ?torrent to the URI of the S3 object. To actually download
the object, its ACP must grant read permission to everyone

[06] CO2 L2

2(b) Discuss the variations and extensions of MapReduce
Answer:

[04] CO3 L2

3(a) Explain various types of NoSQL systems with examples. How NoSQL helps in data
intensive computing in distributed systems?
Answer:

3(b) Demonstrate the role of cloud technologies in social networking
Answer:
Social networking applications have grown considerably in the last few years to
become the most active sites on the Web. To sustain their traffic and serve millions
of users seamlessly, services such as Twitter and Facebook have leveraged
cloud computing technologies. The possibility of continuously adding capacity
while systems are running is the most attractive feature for social
networks, which constantly increase their user base.
Facebook
Facebook is probably the most evident and interesting environment in social
networking. With more than 800 million users, it has become one of the largest
Websites in the world. To sustain this incredible growth, it has been fundamental that
Facebook be capable of continuously adding capacity and developing new scalable

[04] CO4 L3

technologies and software systems while maintaining high performance to ensure a
smooth user experience.
 Currently, the social network is backed by two data centers that have been built and
optimized to reduce costs and impact on the environment. On top of this highly
efficient infrastructure, built and designed out of inexpensive hardware, a completely
customized stack of opportunely modified and refined open-source technologies
constitutes the back-end of the largest social network. Taken all together, these
technologies constitute a powerful platform for developing cloud applications.
This platform primarily supports Facebook itself and offers APIs to integrate
third-party applications with Facebook’s core infrastructure to deliver additional
services such as social games and quizzes created by others.
 The reference stack serving Facebook is based on LAMP (Linux, Apache ,
MySQL, and PHP). This collection of technologies is accompanied by a
collection of other services developed in-house. These services are developed in a
variety of languages and implement specific functionalities such as search, news
feeds, notifications, and others. While serving page requests, the social graph of
the user is composed. The social graph identifies a collection of interlinked
information that is of relevance for a given user. Most of the user data are served by
querying a distributed cluster of MySQL instances, which mostly contain key-
value pairs. These data are then cached for faster retrieval. The rest of the
relevant information is then composed together using the services mentioned
before. These services are located closer to the data and developed in
languages that provide better performance than PHP.
 The development of services is facilitated by a set of internally developed
tools. One of the core elements is Thrift. This is a collection of abstractions
(and language bindings) that allow cross-language development. Thrift allows
services developed in different languages to communicate and exchange data.
Bindings for Thrift in different languages take care of data serialization
and deserialization, communication, and client and server boilerplate code. This
simplifies the work of the developers, who can quickly prototype services and
leverage existing ones. Other relevant services and tools are Scribe, which
aggregates streaming log feeds, and applications for alerting and monitoring.

4(a) Describe the usage of cloud computing in remote ECG monitoring
Answer:
Healthcare is a domain in which computer technology has found several and
diverse applications: from supporting the business functions to assisting scientists in
developing solutions to cure diseases.
An important application is the use of cloud technologies to support doctors in
providing more effective diagnostic processes. In particular, here we discuss
electrocardiogram (ECG) data analysis on the cloud.
ECG is the electrical manifestation of the contractile activity of the heart’s
myocardium. This activity produces a specific waveform that is repeated over time
and that represents the heartbeat. The analysis of the shape of the ECG waveform is
used to identify arrhythmias and is the most common way to detect heart disease.
Cloud computing technologies allow the remote monitoring of a patient’s
heartbeat data, data analysis in minimal time, and the notification of first-aid
personnel and doctors should these data reveal potentially dangerous conditions.
This way a patient at risk can be constantly monitored without going to a hospital
for ECG analysis. At the same time, doctors and first-aid personnel can instantly be
notified of cases that require their attention.
Wearable computing devices equipped with ECG sensors constantly monitor the
patient’s heartbeat. Such information is transmitted to the patient’s mobile device,
which will eventually forward it to the cloud-hosted Web service for analysis. The
Web service forms the front-end of a platform that is entirely hosted in the cloud
and that leverages the three layers of the cloud computing stack: SaaS, PaaS, and
IaaS. The Web service constitute the SaaS application that will store ECG data in the
Amazon S3 service and issue a processing request to the scalable cloud platform. The
runtime platform is composed of a dynamically sizable number of instances running
the workflow engine and Aneka. The number of workflow engine instances is
controlled according to the number of requests in the queue of each instance,
while Aneka controls the number of EC2 instances used to execute the single tasks
defined by the workflow engine for a single ECG processing job. Each of these jobs

[05] CO4 L2

consists of a set of operations involving the extraction of the waveform from the
heartbeat data and the comparison of the waveform with a reference waveform to
detect anomalies. If anomalies are found, doctors and first-aid personnel can
be notified to act on a specific patient.
 Even though remote ECG monitoring does not necessarily require cloud
technologies, cloud computing introduces opportunities that would be otherwise
hardly achievable. The first advantage is the elasticity of the cloud infrastructure
that can grow and shrink according to the requests served. As a result, doctors
and hospitals do not have to invest in large computing infrastructures
designed after capacity planning, thus making more effective use of budgets. The
second advantage is ubiquity. Cloud computing technologies have now
become easily accessible and promise to deliver systems with minimum or no
downtime. Computing systems hosted in the cloud are accessible from any Internet
device through simple interfaces (such as SOAP and REST-based Web ser-
vices). This makes these systems not only ubiquitous, but they can also be
easily integrated with other systems maintained on the hospital’s premises. Finally,
cost savings constitute another reason for the use of cloud technology in healthcare.
Cloud services are priced on a pay-per-use basis and with volume prices for large
numbers of service requests. These two models provide a set of flexible options that
can be used to price the service, thus actually charging costs based on effective use
rather than capital costs.

4(b) Demonstrate the relevance of cloud computing in Biology with practical examples
Answer:
Applications in biology often require high computing capabilities and often operate on
large datasets that cause extensive I/O operations. Because of these requirements,
biology applications have often made extensive use of supercomputing and cluster
computing infrastructures. Similar capabilities can be leveraged on demand using
cloud computing technologies in a more dynamic fashion, thus opening new
opportunities for bioinformatics applications.
Protein Structure Prediction
 Protein structure prediction is a computationally intensive task that is fundamental
to different types of research in the life sciences. Among these is the design of
new drugs for the treatment of diseases. The geometric structure of a protein cannot
be directly inferred from the sequence of genes that compose its structure, but it is the
result of complex computations aimed at identifying the structure that minimizes the
required energy. This task requires the investigation of a space with a massive
number of states, consequently creating a large number of computations for each of
these states. The computational power required for protein structure prediction
can now be acquired on demand, without owning a cluster or navigating the
bureaucracy to get access to parallel and distributed computing facilities. Cloud
computing grants access to such capacity on a
pay-per-use basis.
 One project that investigates the use of cloud technologies for protein
structure prediction is Jeeva-an integrated Web portal that enables scientists to
offload the prediction task to a computing cloud based on Aneka. The prediction
task uses machine learning techniques (support vector machines) for determining the
secondary structure of proteins. These techniques translate the problem into one of
pattern recognition, where a sequence has to be classified into one of three
possible classes (E, H, and C). A popular implementation based on support vector
machines divides the pattern recognition problem into three phases: initialization,
classification, and a final phase . Even though these three phases have to be executed
in sequence, it is possible to take advantage of parallel execution in the classification
phase, where multiple classifiers are executed concurrently. This creates the
opportunity to sensibly reduce the computational time of the prediction. The
prediction algorithm is then translated into a task graph that is submitted to Aneka.
Once the task is completed, the middleware makes the results available for
visualization through the portal.
 The advantage of using cloud technologies (i.e., Aneka as scalable cloud
middleware) versus conventional grid infrastructures is the capability to leverage
a scalable computing infrastructure that can be grown and shrunk on demand.
This concept is distinctive of cloud technologies and constitutes a strategic
advantage when applications are offered and delivered as a service.
Gene expression data analysis for cancer diagnosis

[05] CO4 L3

Gene expression profiling is the measurement of the expression levels of
thousands of genes at once. It is used to understand the biological processes that are
triggered by medical treatment at a cellular level. Together with protein structure
prediction, this activity is a fundamental component of drug design, since it allows
scientists to identify the effects of a specific treatment.
 Another important application of gene expression profiling is cancer diagnosis
and treatment. Cancer is a disease characterized by uncontrolled cell growth
and proliferation. This behavior occurs because genes regulating the cell
growth mutate. This means that all the cancerous cells contain mutated genes. In
this context, gene expression profiling is utilized to provide a more accurate
classification of tumors. The classification of gene expression data samples into
distinct classes is a challenging task. The dimensionality of typical gene
expression datasets ranges from several thousands to over tens of thousands of
genes. However, only small sample sizes are typically available for analysis.
 This problem is often approached with learning classifiers, which
generate a population of condition-action rules that guide the classification
process. Among these, the eXtended Classifier System (XCS) has been successfully
utilized for classifying large datasets in the bioinformatics and computer science
domains. However, the effectiveness of XCS, when confronted with high dimensional
datasets (such as microarray gene expression data sets), has not been explored
in detail.
A variation of this algorithm, CoXCS, has proven to be effective in these conditions.
CoXCS divides the entire search space into subdomains and employs the standard
XCS algorithm in each of these subdomains. Such a process is computationally
intensive but can be easily parallelized because the classifications problems on the
subdomains can be solved concurrently. Cloud-CoXCS is a cloud-based
implementation of CoXCS that leverages Aneka to solve the classification
problems in parallel and compose their outcomes. The algorithm is controlled
by strategies, which define the way the outcomes are composed together and
whether the process needs to be iterated.
Because of the dynamic nature of XCS, the number of required compute resources to
execute it can vary over time. Therefore, the use of scalable middleware such as
Aneka offers a distinctive advantage.

5(a) With a neat diagram, explain Google App Engine platform architecture

AppEngine is a platform for developing scalable applications accessible through the
Web (see Figure). The platform is logically divided into four major components:
infrastructure, the runtime environment, the underlying storage, and the set of scalable
services that can be used to develop applications.
Infrastructure
AppEngine hosts Web applications, and its primary function is to serve users requests
efficiently. To do so, AppEngine’s infrastructure takes advantage of many servers
available within Google datacenters. For each HTTP request, AppEngine locates the
servers hosting the application that processes the request, evaluates their load, and, if
necessary, allocates additional resources (i.e., servers) or redirects the request to an
existing server. The particular design of applications, which does not expect any state
information to be implicitly maintained between requests to the same application,

10 CO2 L2

simplifies the work of the infrastructure, which can redirect each of the requests to any
of the servers hosting the target application or even allocate a new one.
Runtime environment
The runtime environment represents the execution context of applications hosted
on AppEngine. With reference to the AppEngine infrastructure code, which is always
active and running, the runtime comes into existence when the request handler
starts executing and terminates once the handler has completed.
Sandboxing
One of the major responsibilities of the runtime environment is to provide the
application environment with an isolated and protected context in which it can execute
without causing a threat to the server and without being influenced by other
applications. In other words, it provides applications with a sandbox.
 Currently, AppEngine supports applications that are developed only with managed
or interpreted languages, which by design require a runtime for translating their code
into executable instructions. Therefore, sandboxing is achieved by means of
modified runtimes for applications that disable some of the common features
normally available with their default implementations. If an application tries to
perform any operation that is considered potentially harmful, an exception is
thrown and the execution is interrupted. Some of the operations that are not allowed in
the sandbox include writing to the server’s file system; accessing computer
through network besides using Mail, UrlFetch, and XMPP ; executing code
outside the scope of a request, a queued task, and a cron job; and processing a request
for more than 30 seconds.
Supported runtimes
Currently, it is possible to develop AppEngine applications using three different
languages and related technologies: Java, Python, and Go.
 AppEngine currently supports Java 6, and developers can use the common tools for
Web application development in Java, such as the Java Server Pages (JSP), and the
applications interact with the environment by using the Java Servlet standard.
Furthermore, access to AppEngine services is provided by means of Java libraries that
expose specific interfaces of provider-specific implementations of a given
abstraction layer. Developers can create applications with the AppEngine Java
SDK, which allows developing applications with either Java 5 or Java 6 and
by using any Java library that does not exceed the restrictions imposed by the
sandbox.
 Support for Python is provided by an optimized Python 2.5.2 interpreter. As with
Java, the runtime environment supports the Python standard library, but some of
the modules that implement potentially harmful operations have been removed, and
attempts to import such modules or to call specific methods generate exceptions. To
support application development, AppEngine offers a rich set of libraries connecting
applications to AppEngine services. In addition, developers can use a
specific Python Web application framework, called webapp, simplifying the
development of Web applications.
 The Go runtime environment allows applications developed with the Go
programming language to be hosted and executed in AppEngine. Currently
the release of Go that is supported by AppEngine is r58.1. The SDK includes the
compiler and the standard libraries for developing applications in Go and interfacing
it with AppEngine services. As with the Python environment, some of the
functionalities have been removed or generate a runtime exception. In addition,
developers can include third-party libraries in their applications as long as they are
implemented in pure Go.

9.2.1.3 Storage
AppEngine provides various types of storage, which operate differently depending on
the volatility
of the data. There are three different levels of storage: in memory-cache, storage for
semistructured
data, and long-term storage for static data. In this section, we describe
DataStore and the use of
static file servers. We cover MemCache in the application services section.

Static file servers
Web applications are composed of dynamic and static data. Dynamic data are a result
of the logic

of the application and the interaction with the user. Static data often are mostly
constituted of the
components that define the graphical layout of the application (CSS files,
plain HTML files,
JavaScript files, images, icons, and sound files) or data files. These files can be hosted
on static file
servers, since they are not frequently modified. Such servers are optimized for
serving static con-
tent, and users can specify how dynamic content should be served when
uploading their applica-
tions to AppEngine.

DataStore
DataStore is a service that allows developers to store semistructured data. The service
is designed to scale and optimized to quickly access data. DataStore can be considered
as a large object database in which to store objects that can be retrieved by a specified
key. Both the type of the key and the structure of the object can vary.
 With respect to the traditional Web applications backed by a relational
database, DataStore imposes less constraint on the regularity of the data but, at
the same time, does not implement some of the features of the relational model
(such as reference constraints and join operations). These design decisions
originated from a careful analysis of data usage patterns for Web applica-
tions and were taken in order to obtain a more scalable and efficient data
store. The underlying infrastructure of DataStore is based on Bigtable, a
redundant, distributed, and semistructured data store that organizes data in the form
of tables.
 DataStore provides high-level abstractions that simplify interaction with
Bigtable. Developers define their data in terms of entity and properties , and
these are persisted and maintained by the service into tables in Bigtable. An entity
constitutes the level of granularity for the storage, and it identifies a collection of
properties that define the data it stores. Properties are defined according to one of the
several primitive types supported by the service. Each entity is associated with
a key, which is either provided by the user or created automatically by AppEngine.
An entity is associated with a named kind that AppEngine uses to optimize its
retrieval from Bigtable. Although entities and properties seem to be similar to rows
and tables in SQL, there are a few differences that have to be taken into account.
Entities of the same kind might not have the same properties, and proper-
ties of the same name might contain values of different types. Moreover, properties
can store different versions of the same values. Finally, keys are immutable
elements and, once created, they cannot be changed.
 DataStore also provides facilities for creating indexes on data and to update data
within the context of a transaction. Indexes are used to support and speed up queries.
A query can return zero or more objects of the same kind or simply the
corresponding keys. It is possible to query the data store by specifying either the
key or conditions on the values of the properties. Returned result sets can be sorted
by key value or properties value. Even though the queries are quite similar to
SQLqueries, their implementation is substantially different. DataStore has
been designed to be extremely fast in returning result sets; to do so it needs to
know in advance all the possible queries that can be done for a given kind, because it
stores for each of them a separate index. The indexes are provided by the user while
uploading the application to AppEngine and can be automatically defined by the
development server. When the developer tests the application, the server
monitors all the different types of queries made against the simulated data store
and creates an index for them. The structure of the indexes is saved in a
configuration file and can be further changed by the developer before uploading
the application. The use of precomputed indexes makes the query execution
time-independent from the size of the stored data but only influenced by the size of the
result set.
 The implementation of transaction is limited in order to keep the store
scalable and fast. AppEngine ensures that the update of a single entity is
performed atomically. Multiple operations on the same entity can be performed within
the context of a transaction. It is also possible to update multiple entities atomically.
This is only possible if these entities belong to the same entity group. The entity group
to which an entity belongs is specified at the time of entity creation and cannot be

changed later. With regard to concurrency, AppEngine uses an optimistic
concurrency control: If one user tries to update an entity that is already being
updated, the control returns and the operation fails. Retrieving an entity never incurs
into exceptions.

Application services
Applications hosted on AppEngine take the most from the services made available
through the runtime environment. These services simplify most of the common
operations that are performed in Web applications: access to data, account
management, integration of external resources, messaging and communication, image
manipulation, and asynchronous computation.
UrlFetch
Web 2.0 has introduced the concept of composite Web applications. Different
resources are put together and organized as meshes within a single Web page.
Meshes are fragments of HTML generated in different ways. They can be directly
obtained from a remote server or rendered from an XML document retrieved from a
Web service, or they can be rendered by the browser as the result of an embedded and
remote component. A common characteristic of all these examples is the fact that the
resource is not local to the server and often not even in the same
administrative domain. Therefore, it is fundamental for Web applications to be able to
retrieve remote resources.
 The sandbox environment does not allow applications to open arbitrary
connections through sockets, but it does provide developers with the capability of
retrieving a remote resource through HTTP/HTTPS by means of the UrlFetch
service. Applications can make synchronous and asynchronous Web requests and
integrate the resources obtained in this way into the normal request handling
cycle of the application. One of the interesting features of UrlFetch is the
ability to set deadlines for requests so that they can be completed (or aborted)
within a given time. Moreover, the ability to perform such requests
asynchronously allows the applications to continue with their logic while the
resource is retrieved in the background. UrlFetch is not only used to integrate
meshes into a Web page but also to leverage remote Web services in accordance with
the SOA reference model for distributed application

6(a) List storage services provided by Microsoft Azure?
Answer:

[06] CO3 L1

2 (a) Describe MPI program structure with a neat diagram
Answer:

Message Passing Interface (MPI) is a specification for developing parallel programs that
communicate by exchanging messages. Compared to other models of task computing, MPI
introduces the constraint of communication that involves MPI tasks that need to run at the
same time. MPI has originated as an attempt to create common ground from the several
distributed shared memory and message-passing infrastructures available for
distributed computing. Nowadays, MPI has become a de facto standard for
developing portable and efficient message passing HPC applications. Interface
specifications have been defined and implemented for C/C11 and Fortran.

To create an MPI application it is necessary to define the code for the MPI process
that will be executed in parallel. This program has, in general, the structure
described in Figure below. The section of code that is executed in parallel is clearly
identified by two operations that set up the MPI environment and shut it down,
respectively. In the code section defined within these two operations, it is possible
to use all the MPI functions to send or receive messages in either asynchronous or
synchronous mode.

[05] CO2 L1

2(b) Illustrate developing parameter sweep application on Aneka
Answer:
Aneka integrates support for parameter-sweeping applications on top of the task
model by means of a collection of client components that allow developers to
quickly prototype applications through either programming APIs or graphical user
interfaces (GUIs). The set of abstractions and tools supporting the development of
parameter sweep applications constitutes the Parameter Sweep Model (PSM).
The PSM is organized into several namespaces under the common root Aneka.PSM.
More precisely:

 Aneka.PSM.Core (Aneka.PSM.Core.dll) contains the base classes for
defining a template task and the client components managing the generation
of tasks, given the set of parameters.

 Aneka.PSM.Workbench (Aneka.PSM.Workbench.exe) and
Aneka.PSM.Wizard (Aneka.PSM. Wizard.dll) contain the user interface
support for designing and monitoring parameter sweep applications. Mostly
they contain the classes and components required by the Design Explorer,
which is the main GUI for developing parameter sweep applications.

 Aneka.PSM.Console (Aneka.PSM.Console.exe) contains the components
and classes supporting the execution of parameter sweep applications in
console mode. These namespaces define the support for developing and
controlling parameter sweep applications on top of Aneka.

[05] CO1 L2

3 (a) Differentiate Aneka threads with Common threads
Answer:
To efficiently run on a distributed infrastructure, Aneka threads have certain
limitations compared to local threads. These limitations relate to the communication
and synchronization strategies that are normally used in multithreaded applications.

Distinction based on Interface compatibility
The Aneka.Threading.AnekaThread class exposes almost the same interface as the
System.Threading.Thread class with the exception of a few operations that are not
supported. The reference namespace that defines all the types referring to the
support for threading is Aneka.Threading rather than System.Threading.

The basic control operations for local threads such as Start and Abort have a direct
mapping, whereas operations that involve the temporary interruption of the thread
execution have not been supported. The reasons for such a design decision are
twofold. First, the use of the Suspend/Resume operations is generally a deprecated
practice, even for local threads, since Suspend abruptly interrupts the execution state
of the thread. Second, thread suspension in a distributed environment leads to an
ineffective use of the infrastructure, where resources are shared among different
tenants and applications. This is also the reason that the Sleep operation is not
supported. Therefore, there is no need to support the Interrupt operation, which
forcibly resumes the thread from a waiting or a sleeping state. To support
synchronization among threads, a corresponding implementation of the Join
operation has been provided.

Besides the basic thread control operations, the most relevant properties have been
implemented, such as name, unique identifier, and state. Whereas the name can be
freely assigned, the identifier is generated by Aneka, and it represents a globally
unique identifier (GUID) in its string form rather than an integer. Properties such as
IsBackground, Priority, and IsThreadPoolThread have been provided for interface
compatibility but actually do not have any effect on thread scheduling. Other
properties concerning the state of the thread, such as IsAlive and IsRunning, exhibit
the expected behavior, whereas a slightly different behavior has been implemented
for the ThreadState property that is mapped to the State property. The remaining
methods of the System.Threading.Thread class (.NET 2.0) are not supported.

[10] CO3 L2

Finally, it is important to note differences in thread creation. Local threads
implicitly belong to the hosting process and their range of action is limited by the
process boundaries. To create local threads it is only necessary to provide a pointer
to a method to execute in the form of the ThreadStart or ParameterizedThreadStart
delegates. Aneka threads live in the context of a distributed application, and
multiple distributed applications can be managed within a single process; for this
reason, thread creation also requires the specification of the reference to the
application to which the thread belongs.

Interface compatibility between Aneka threading APIs and the base class library
allow quick porting of most of the local multithreaded applications to Aneka by
simply replacing the class names and modifying the thread constructors.

Distinction based on Thread life cycle

Since Aneka threads live and execute in a distributed environment, their life cycle is
necessarily different from the life cycle of local threads. For this reason, it is not
possible to directly map the state values of a local thread to those exposed by Aneka
threads. Figure below provides a comparative view of the two life cycles.

The white balloons in the figure indicate states that do not have a corresponding
mapping on the other life cycle; the shaded balloons indicate the common states.
Moreover, in local threads most of the state transitions are controlled by the
developer, who actually triggers the state transition by invoking methods on the
thread instance, whereas in Aneka threads, many of the state transitions are
controlled by the middleware. As depicted in Figure, Aneka threads exhibit more
states than local threads because Aneka threads support file staging and they are
scheduled by the middleware, which can queue them for a considerable amount of
time. As Aneka supports the reservation of nodes for execution of thread related to a
specific application, an explicit state indicating execution failure due to missing
reservation credential has been introduced. This occurs when a thread is sent to an
execution node in a time window where only nodes with specific reservation
credentials can be executed.

An Aneka thread is initially found in the Unstarted state. Once the Start() method is
called, the thread transits to the Started state, from which it is possible to move to
the StagingIn state if there are files to upload for its execution or directly to the
Queued state. If there is any error while uploading files, the thread fails and it ends
its execution with the Failed state, which can also be reached for any exception that
occurred while invoking Start().

Another outcome might be the Rejected state that occurs if the thread is started with
an invalid reservation token. This is a final state and implies execution failure due to
lack of rights. Once the thread is in the queue, if there is a free node where to
execute it, the middleware moves all the object data and depending files to the
remote node and starts its execution, thus changing the state into Running. If the
thread generates an exception or does not produce the expected output files, the
execution is considered failed and the final state of the thread is set to Failed. If the
execution is successful, the final state is set to Completed. If there are output files to
retrieve, the thread state is set to StagingOut while files are collected and sent to
their final destination, and then it transits to Completed. At any point, if the
developer stops the execution of the application or directly calls the Abort() method,
the thread is aborted and its final state is set to Aborted.

In most cases, the normal state transition will resemble the one occurring for local
threads: Unstarted-[Started]-[Queued]-Running-Completed/Aborted/Failed

Distinction based on Thread synchronization
The .NET base class libraries provide advanced facilities to support
thread synchronization by the means of monitors, semaphores,
reader-writer locks, and basic synchronization constructs at the
language level. Aneka provides minimal support for thread
synchronization that is limited to the implementation of the join
operation for thread abstraction. Most of the constructs and
classes that are provided by the .NET framework are used to
provide controlled access to shared data from
different threads in order to preserve their integrity. This
requirement is less stringent in a distributed environment, where
there is no shared memory among the thread instances and
therefore it is not necessary. Moreover, the reason for porting a
local multithread application to Aneka threads implicitly involves
the need for a distributed facility in which to execute a large
number of threads, which might not be executing all at the same
time. Providing coordination facilities that introduce
a locking strategy in such an environment might lead to
distributed deadlocks that are hard to detect. Therefore, by design
Aneka threads do not feature any synchronization facility that goes
beyond the simple join operation between executing threads

Distinction based on Thread Priorities
The System.Threading.Thread class supports thread priorities,
where the scheduling priority can be one selected from one of the
values of the ThreadPriority enumeration: Highest, AboveNormal,
Normal, BelowNormal, or Lowest. However, operating systems are
not required to honor the priority of a thread, and the current
version of Aneka does not support thread priorities. For interface
compatibility purposes the Aneka.Threading.Thread class exhibits
a Priority property whose type is ThreadPriority, but its value is
always set to Normal, and changes to it do not produce any effect
on thread scheduling by the Aneka middleware

Distinction based on Type serialization
Aneka threads execute in a distributed environment in which the
object code in the form of libraries and live instances information
are moved over the network. This condition imposes some
limitations that are mostly concerned with the serialization of
types in the .NET framework.

Local threads execute all within the same address space and share
memory; therefore, they do not need objects to be copied or
transferred into a different address space. Aneka threads are
distributed and execute on remote computing nodes, and this
implies that the object code related to the method to be executed
within a thread needs to be transferred over the network. Since
delegates can point to instance methods, the state of the
enclosing instance needs to be transferred and reconstructed on
the remote execution environment. This is a particular feature at
the class level and goes by the term type serialization.

A .NET type is considered serializable if it is possible to convert an
instance of the type into a binary array containing all the
information required to revert it to its original form or into a
possibly different execution context. This property is generally
given for several types defined in the .NET framework by simply
tagging the class definition with the Serializable attribute. If the
class exposes a specific set of characteristics, the framework will
automatically provide facilities to serialize and deserialize
instances of that type. Alternatively, custom serialization can be
implemented for any user-defined type.

Aneka threads execute methods defined in serializable types,
since it is necessary to move the enclosing instance to remote
execution method. In most cases, providing serialization is as easy
as tagging the class definition with the Serializable attribute; in
other cases, it might be necessary to implement the ISerializable
interface and provide appropriate constructors for the type. This is
not a strong limitation, since there are very few cases in which
types cannot be defined as serializable. For example, local threads,
network connections, and streams are not serializable since they
directly access local resources that cannot be implicitly moved
onto a different node.

05 CO1 L1

 4(a) Distinguish between domain and functional decomposition techniques with
illustrative examples
Answer:

Domain Decomposition

Domain decomposition is the process of identifying patterns of functionally repetitive, but
independent, computation on data. This is the most common type of decomposition in the
case of throughput computing, and it relates to the identification of repetitive calculations
required for solving a problem.

When these calculations are identical, only differ from the data they operate on, and can be
executed in any order, the problem is said to be embarrassingly parallel. Embarrassingly
parallel problems constitute the easiest case for parallelization because there is no need to
synchronize different threads that do not share any data. Moreover, coordination and
communication between threads are minimal; this strongly simplifies the code logic and
allows a high computing throughput.

In many cases it is possible to devise a general structure for solving such problems and, in
general, problems that can be parallelized through domain decomposition. The master-slave
model is a quite common organization for these scenarios:

 The system is divided into two major code segments.
 One code segment contains the decomposition and coordination logic.
 Another code segment contains the repetitive computation to perform.
 A master thread executes the first code segment.
 As a result of the master thread execution, as many slave threads as needed are

created to execute the repetitive computation.
 The collection of the results from each of the slave threads and an eventual

composition of the final result are performed by the master thread.
Although the complexity of the repetitive computation strictly depends on the nature of the
problem, the coordination and decomposition logic is often quite simple and involves
identifying the appropriate number of units of work to create. In general, a while or a for
loop is used to express the decomposition logic, and each iteration generates a new unit of
work to be assigned to a slave thread. An optimization, of this process involves the use of
thread pooling to limit the number of threads used to execute repetitive computations.
Several practical problems fall into this category; in the case of embarrassingly parallel
problems, we can mention:

 Geometrical transformation of two (or higher) dimensional data sets
 Independent and repetitive computations over a domain such as Mandelbrot set and

Monte Carlo computations
Even though embarrassingly parallel problems are quite common, they are based on the
strong assumption that at each of the iterations of the decomposition method, it is possible
to isolate an independent unit of work. This is what makes it possible to obtain a high
computing throughput. Such a condition is not met if the values of all the iterations are
dependent on some of the values obtained in the previous iterations. In this case, the
problem is said to be inherently sequential, and it is not possible to directly apply the
methodology described previously. Despite this, it can still be possible to break down the
whole computation into a set of independent units of work, which might have a different
granularity—for example, by grouping into single computation-dependent iterations. Figure
below provides a schematic representation of the decomposition of embarrassingly parallel
and inherently sequential problems

10 CO3 L2

To show how domain decomposition can be applied, it is possible
to create a simple program that performs matrix multiplication
using multiple threads. Matrix multiplication is a binary operation
that takes two matrices and produces another matrix as a result.
This is obtained as a result of the composition of the linear
transformation of the original matrices. There are several
techniques for performing matrix multiplication; among them, the
matrix product is the most popular. Figure below provides an
overview of how a matrix product can be performed.

The matrix product computes each element of the resulting matrix
as a linear combination of the corresponding row and column of
the first and second input matrices, respectively. The formula that
applies for each of the resulting matrix elements is the following:

C ij=∑
k=0

n−1

Aik Bkj

Therefore, two conditions hold in order to perform a matrix
product:

 Input matrices must contain values of a comparable nature

for which the scalar product is defined.
 The number of columns in the first matrix must match the

number of rows of the second matrix.
Given these conditions, the resulting matrix will have the number
of rows of the first matrix and the number of columns of the
second matrix, and each element will be computed as described
by the preceding equation.

It is evident that the repetitive operation is the computation of
each of the elements of the resulting matrix. These are subject to
the same formula, and the computation does not depend on
values that have been obtained by the computation of other
elements of the resulting matrix. Hence, the problem is
embarrassingly parallel, and we can logically organize the
multithreaded program in the following steps:

 Define a function that performs the computation of the
single element of the resulting matrix by implementing the
previous equation.

 Create a double for loop (the first index iterates over the
rows of the first matrix and the second over the columns of
the second matrix) that spawns a thread to compute the
elements of the resulting matrix.

 Join all the threads for completion and compose the resulting
matrix.

Functional Decomposition

Functional decomposition is the process of identifying functionally
distinct but independent computations. The focus here is on the
type of computation rather than on the data manipulated by the
computation. This kind of decomposition is less common and does
not lead to the creation of many threads, since the different
computations that are performed by a single program are limited.

Functional decomposition leads to a natural decomposition of the
problem in separate units of work because it does not involve
partitioning the dataset, but the separation among them is clearly
defined by distinct logic operations. Figure below provides a
pictorial view of how decomposition operates and allows
parallelization.

As described by the schematic in the Figure, problems that are
subject to functional decomposition can also require a composition
phase in which the outcomes of each of the independent units of
work are composed together. In the case of domain
decomposition, this phase often results in an aggregation process.
The way in which results are composed in this case strongly
depends on the type of operations that define the problem.

In the following, we show a very simple example of how a
mathematical problem can be parallelized using functional
decomposition. Suppose, for example, that we need to calculate
the value of the following function for a given value of x:
f (x)=six (x)+cos (x)+ tan (x)

It is apparent that, once the value of x has been set, the three
different operations can be performed independently of each
other. This is an example of functional decomposition because the
entire problem can be separated into three distinct operations. The
program computes the sine, cosine, and tangent functions in three
separate threads and then aggregates the results.

5(a) Explain work flow with practical example
Answer:

Workflow applications are characterized by a collection of tasks that exhibit dependencies
among them. Such dependencies, which are mostly data dependencies (i.e., the output of
one task is a prerequisite of another task), determine the way in which the applications are
scheduled as well as where they are scheduled. Concerns in this case are related to
providing a feasible sequencing of tasks and to optimizing the placement of tasks so that the
movement of data is minimized.

The term workflow has a long tradition in the business community, where the term is used
to describe a composition of services that all together accomplish a business process. As
defined by the Workflow Management Coalition, a workflow is the automation of a
business process, in whole or part, during which documents, information, or tasks are
passed from one participant (a resource; human or machine) to another for action, according
to a set of procedural rules. The concept of workflow as a structured execution of tasks that
have dependencies on each other has demonstrated itself to be useful for expressing many
scientific experiments and gave birth to the idea of scientific workflow. Many scientific
experiments are a combination of problem-solving components, which, connected in a
order, define the specific nature of the experiment. When such experiments exhibit a natural
parallelism and need to execute a large number of operations or deal with huge quantities of
data, it makes sense to execute them on a distributed infrastructure. In the case of scientific
workflows, the process is identified by an application to run, the elements that are passed
among participants are mostly tasks and data, and the participants are mostly computing or
storage nodes. The set of procedural rules is defined by a workflow definition
scheme that guides the scheduling of the application. A scientific workflow generally
involves data management, analysis, simulation, and middleware supporting the execution
of the workflow.

A scientific workflow is generally expressed by a directed acyclic graph (DAG), which
defines the dependencies among tasks or operations. The nodes on the DAG represent the
tasks to be executed in a workflow application; the arcs connecting the nodes identify the
dependencies among tasks and the data paths that connect the tasks. The most common
dependency that is realized through a DAG is data dependency, which means that the
output files of a task (or some of them) constitute the input files of another task. This
dependency is represented as an arc originating from the node that identifies the first task
and terminating in the node that identifies the second task.

Example
The DAG in Figure below describes a sample Montage workflow. Montage is a toolkit for
assembling images into mosaics; it has been specially designed to support astronomers in

[06] CO2 L2

composing the images taken from different telescopes or points of view into a coherent
image. The toolkit provides several applications for manipulating images and composing
them together; some of the applications perform background reprojection, perspective
transformation, and brightness and color correction. The workflow depicted here describes
the general process for composing a mosaic; the labels on the right describe the different
tasks that have to be performed to compose a mosaic. In the case presented in the diagram,
a mosaic is composed of seven images. The entire process can take advantage of a
distributed infrastructure for its execution, since there are several operations that can be
performed in parallel. For each of the image files, the following process has to be
performed: image file transfer, reprojection, calculation of the difference, and common
plane placement. Therefore, each of the images can be processed in parallel for these tasks.
Here is where a distributed infrastructure helps in executing workflows.

There might be another reason for executing workflows on a distributed infrastructure: It
might be convenient to move the computation on a specific node because of data locality
issues. For example, if an operation needs to access specific resources that are only
available on a specific node, that operation cannot be performed elsewhere, whereas the rest
of the operations might not have the same requirements. A scientific experiment might
involve the use of several problem solving components that might require the use of
specific instrumentation; in this case all the tasks that have these constraints need to be
executed where the instrumentation is available, thus creating a distributed execution of a
process that is not parallel in principle.

5(b) Describe two work flow technologies
Answer: Any two from

Kepler is an open-source scientific workflow engine built from the
collaboration of several research projects. The system is based on
the Ptolemy II system, which provides a solid platform for
developing dataflow-oriented workflows. Kepler provides a design
environment based on the concept of actors, which are reusable
and independent blocks of computation such as Web services,
database calls, and the like. The connection between actors is
made with ports. An actor consumes data
from the input ports and writes data/results to the output ports.
The novelty of Kepler is in its ability to separate the flow of data

04 CO1 L1

among components from the coordination logic that is used to
execute workflow. Thus, for the same workflow, Kepler supports
different models, such as synchronous and asynchronous models.
The workflow specification is expressed using a proprietary XML
language.

DAGMan (Directed Acyclic Graph Manager), part of the
Condor project, constitutes an extension to the Condor scheduler
to handle job interdependencies. Condor finds machines for the
execution of programs but does not support the scheduling of jobs
in a specific sequence. Therefore, DAGMan acts as a
metascheduler for Condor by submitting the jobs to the scheduler
in the appropriate order. The input of DAGMan is a simple text file
that contains the information about the jobs, pointers to their job
submission files, and the dependencies among jobs.

Cloudbus Workflow Management System (WfMS) is a
middleware platform built for managing large application
workflows on distributed computing platforms such as grids and
clouds. It comprises software tools that help end users compose,
schedule, execute, and monitor workflow applications through a
Web-based portal. The portal provides the capability of uploading
workflows or defining new ones with a graphical editor. To execute
workflows, WfMS relies on the Gridbus Broker, a grid/cloud
resource broker that supports the execution of applications with
quality-ofservice (QoS) attributes over a heterogeneous distributed
computing infrastructure, including Linux-based clusters, Globus,
and Amazon EC2. WfMS uses a proprietary XML language for the
specification of workflows.

Offspring has a different perspective, which offers a
programming-based approach to developing workflows. Users can
develop strategies and plug them into the environment, which will
execute them by leveraging a specific distribution engine. The
advantage provided by Offspring over other solutions is the ability
to define dynamic workflows. This strategy represents a semi-
structured workflow that can change its behavior at runtime
according to the execution of specific tasks. This allows developers
to dynamically control the dependencies of tasks at runtime rather
than statically defining them. Offspring supports integration with
any distributed computing middleware that can manage a simple
bag-of-tasks application. It provides a native integration with
Aneka and supports a simulated distribution engine for testing
strategies during development. Because Offspring allows the
definition of workflows in the form of plug-ins, it does not use any
XML specification.

6(a) Explain the importance of computation and communication with respect to the
design of parallel and distributed applications.
Answer:

In designing parallel and in general distributed applications, it is very important to
carefully evaluate the communication patterns among the components that have
been identified during problem decomposition. The two decomposition methods
presented in this section and the corresponding sample applications are based on the
assumption that the computations are independent. This means that:

 The input values required by one computation do not depend on the output
values generated by another computation.

06 CO3 L3

 The different units of work generated as a result of the decomposition do not
need to interact (i.e., exchange data) with each other.

These two assumptions strongly simplify the implementation and allow achieving a
high degree of parallelism and a high throughput. Having all the worker threads
independent from each other gives the maximum freedom to the operating system
(or the virtual runtime environment) scheduler in scheduling all the threads. The
need to exchange data among different threads introduces dependencies among
them and ultimately can result in introducing performance bottlenecks. For
example, we did not introduce any queuing technique for threads; but queuing
threads might potentially constitute a problem for the execution of the application if
data need to be exchanged with some threads that are still in the queue. A more
common disadvantage is the fact that while a thread exchanges data with another
one, it uses synchronization strategy that might lead to blocking the execution of
other threads. The more data that need to be exchanged, the more they block threads
for synchronization, thus ultimately impacting the overall throughput. As a general
rule of thumb, it is important to minimize the amount of data that needs to be
exchanged while implementing parallel and distributed applications. The lack of
communication among different threads constitutes the condition leading to the
highest throughput.

6(b) Discuss about POSIX threads
Answer:

Portable Operating System Interface for Unix (POSIX) is a set of standards
related to the application programming interfaces for a portable development of
applications over the Unix operating system flavors. Standard POSIX 1.c (IEEE Std
1003.1c-1995) addresses the implementation of threads and the functionalities that
should be available for application programmers to develop portable multithreaded
applications. The standards address the Unix-based operating systems, but
an implementation of the same specification has been provided for Windows-based
systems.

The POSIX standard defines the following operations: creation of threads with
attributes, termination of a thread, and waiting for thread completion (join
operation). In addition to the logical structure of a thread, other abstractions, such as
semaphores, conditions, reader-writer locks, and others, are introduced in order to
support proper synchronization among threads. The model proposed by POSIX has
been taken as a reference for other implementations that
might provide developers with a different interface but a similar behavior. What is
important to remember from a programming point of view is the following:

 A thread identifies a logical sequence of instructions.
 A thread is mapped to a function that contains the sequence of instructions to

execute.
 A thread can be created, terminated, or joined.
 A thread has a state that determines its current condition, whether it is

executing, stopped, terminated, waiting for I/O, etc.
 The sequence of states that the thread undergoes is partly determined by the

operating system scheduler and partly by the application developers.
 Threads share the memory of the process, and since they are executed

concurrently, they need synchronization structures.
 Different synchronization abstractions are provided to solve different

synchronization problems.
 A default implementation of the POSIX 1.c specification has been provided

for the C language.
All the available functions and data structures are exposed in the pthread.h header
file, which is part of the standard C implementations.

04 CO3 L3

7(a) Describe the different task-based application models
Answer:

There are several models based on the concept of the task as the
fundamental unit for composing distributed applications. What
makes these models different from one another is the way in
which tasks are generated, the relationships they have with each
other, and the presence of dependencies or other conditions—for
example, a specific set of services in the runtime environment—
that must be met. In this section, we quickly review the most
common and popular models based on the concept of the task.

Embarrassingly parallel applications
Embarrassingly parallel applications constitute the most simple
and intuitive category of distributed applications. As we discussed
in Chapter 6, embarrassingly parallel applications constitute a
collection of tasks that are independent from each other and that
can be executed in any order. The tasks might be of the same type
or of different types, and they do not need to communicate among
themselves.

This category of applications is supported by most of the
frameworks for distributed
computing. Since tasks do not need to communicate, there is a lot
of freedom regarding the way they are scheduled. Tasks can be
executed in any order, and there is no specific requirement for
tasks to be executed at the same time. Therefore, scheduling
these applications is simplified and mostly concerned with the
optimal mapping of tasks to available resources. Frameworks and
tools supporting embarrassingly parallel applications are the
Globus Toolkit, BOINC, and Aneka.

There are several problems that can be modeled as
embarrassingly parallel. These include image and video rendering,
evolutionary optimization, and model forecasting. In image and
video rendering the task is represented by the rendering of a pixel
(more likely a portion of the image) or a frame, respectively. For
evolutionary optimization metaheuristics, a task is identified by a
single run of the algorithm with a given parameter set. The same
applies to model forecasting applications. In general, scientific
applications constitute a considerable source of embarrassingly
parallel applications, even though they mostly fall into the more
specific category of parameter sweep applications.

Parameter sweep applications are a specific class of
embarrassingly parallel applications for which the tasks are
identical in their nature and differ only by the specific parameters
used to execute them. Parameter sweep applications are identified
by a template task and a set of parameters. The template task
defines the operations that will be performed on the remote node
for the execution of tasks. The template task is parametric, and
the parameter set identifies the combination of variables whose
assignments specialize the template task into a specific instance.
The combination of parameters, together with their range of
admissible values, identifies the multidimensional domain of the
application, and each point in this domain identifies a task

[06] CO1 L1

instance.

Any distributed computing framework that provides support for
embarrassingly parallel applications can also support the
execution of parameter sweep applications, since the tasks
composing the application can be executed independently of each
other. The only difference is that the tasks that will be executed
are generated by iterating over all the possible and admissible
combinations of parameters. This operation can be performed by
frameworks natively or tools that are part of the distributed
computing middleware. For example, Nimrod/G is natively
designed to support the execution of parameter sweep
applications, and Aneka provides client-based tools for visually
composing a template task, defining parameters, and iterating
over all the possible combinations of such parameters.

A plethora of applications fall into this category. Mostly they come
from the scientific computing domain: evolutionary optimization
algorithms, weather-forecasting models, computational fluid
dynamics applications, Monte Carlo methods, and many others.
For example, in the case of evolutionary algorithms it is possible to
identify the domain of the applications as a combination of the
relevant parameters of the algorithm. For genetic algorithms these
might be the number of individuals of the population used by the
optimizer and the number of generations for which to run the
optimizer.

MPI applications
Message Passing Interface (MPI) is a specification for developing
parallel programs that communicate by exchanging messages.
Compared to earlier models, MPI introduces the constraint of
communication that involves MPI tasks that need to run at the
same time. MPI has originated as an attempt to create common
ground from the several distributed shared memory and message-
passing infrastructures available for distributed computing.
Nowadays, MPI has become a de facto standard for developing
portable and efficient message-passing HPC applications. Interface
specifications have been defined and implemented for C/C11 and
Fortran.

MPI provides developers with a set of routines that:
 Manage the distributed environment where MPI programs

are executed
 Provide facilities for point-to-point communication
 Provide facilities for group communication
 Provide support for data structure definition and memory

allocation
 Provide basic support for synchronization with blocking calls

7(b) What is data- intensive computing? Describe the open challenges in data-intensive
computing
Answer:

Data-intensive computing is concerned with production, manipulation, and analysis
of large-scale data in the range of hundreds of megabytes (MB) to petabytes (PB)
and beyond. The term dataset is commonly used to identify a collection of
information elements that is relevant to one or more applications. Datasets are often

[04] CO3 L2

maintained in repositories, which are infrastructures supporting the storage,
retrieval, and indexing of large amounts of information. To facilitate the
classification and search, relevant bits of information, called metadata, are attached
to datasets.

Data-intensive computations occur in many application domains. Computational
science is one of the most popular ones. People conducting scientific simulations
and experiments are often keen to produce, analyze, and process huge volumes of
data. Hundreds of gigabytes of data are produced every second by telescopes
mapping the sky; the collection of images of the sky easily reaches the scale of
petabytes over a year. Bioinformatics applications mine databases that may end up
containing terabytes of data. Earthquake simulators process a massive amount of
data, which is produced as a result of recording the vibrations of the Earth across the
entire globe.

Data-intensive applications not only deal with huge volumes of data but, very often,
also exhibit compute-intensive properties. Data-intensive applications handle
datasets on the scale of multiple terabytes and petabytes. Datasets are commonly
persisted in several formats and distributed across different locations. Such
applications process data in multistep analytical pipelines, including transformation
and fusion stages. The processing requirements scale almost linearly with the data
size, and they can be easily processed in parallel. They also need efficient
mechanisms for data management, filtering and fusion, and efficient querying and
distribution.

Challenges:

1. Scalable algorithms that can search and process massive datasets
2. New metadata management technologies that can scale to handle complex,

heterogeneous, and distributed data sources
3. Advances in high-performance computing platforms aimed at providing a

better support for accessing in-memory multiterabyte data structures
4. High-performance, highly reliable, petascale distributed file systems
5. Data signature-generation techniques for data reduction and rapid processing
6. New approaches to software mobility for delivering algorithms that are able

to move the computation to where the data are located
7. Specialized hybrid interconnection architectures that provide better support

for filtering multigigabyte datastreams coming from high-speed networks
and scientific instruments

8. Flexible and high-performance software integration techniques that facilitate
the combination of software modules running on different platforms to
quickly form analytical pipelines

