

Online Internal Assesment Test - II

Sub:	SIGNALS AND SYSTEMS							Code:		18EE54		
Date:	02/11/2020	Duration:	90 mins	Max Marks:	50	Sem:	5th	Bran	nch:	EEI	Ε	
	Answer Any FIVE FULL Questions											
										ks OBE CO RBT		
1	If $h(t) = e^{-2t}u(t)$ and x response and $x(t)$ is			. .	t) given	h(t) is	the in	npulse	10	CO3	L3	
	The impulse response $h(t) = e^{-2 t }$. Evaluate the system 2								10	CO4	L2	
3	Obtain direct form-1 a. y[n]+ ¹ / ₄ y[n-1] b. y[n]+0.5y[n-1	$-\frac{3}{4}y[n-2]=x[$	[n] + x[n-1]	[]	r the fo	llowing	5		10	CO4	L2	
	Find the natural residifference equation. given y[-1]=1, y[-2]	y[n]+1.5y[n-	-1]+0.5y[ete resp	oonse o	f the	given	10	CO4	L3	
	Find the natural residifference equation. $\ddot{y}(t) + 5\dot{y}(t) + 6y$						f the	given	10	CO4	L3	
	Consider an input $x(n) = u(n)$; $0 < \alpha < 1.6$				given l	oy x(n)=	=α ⁿ u(1	n) and	10	CO3	L3	
	Compute the convolu $x_1[n] = ($ Also verify the result	1, 2, 3),	$\alpha_2[n] = (2)$	2, 1, 4)	and x_2	n], give	n belo	ow.	10	CO3	L3	

IAT-2

No overlapping ylt)=0

$$y(t) = \int_{e^{-t}}^{e^{-t}} dt = \int_{e^{-t}}^{e^{-t}} \left[1 - e^{-t} + 2\right]$$

$$= \int_{e^{-t}}^{e^{-t}} dt = \int_{e^{-t}}^{e^{-t}} \left[1 - e^{-t} + 2\right]$$

$$= \int_{e^{-t}}^{e^{-t}} dt = \int_{e^{-t}}^{e^{-t}} \left[1 - e^{-t} + 2\right]$$

S:
$$\int |w| dt = \int_{-\infty}^{\infty} e^{2t} dt \int_{0}^{\infty} e^{2t} dt = 1$$

4
$$y[n] + 1.5y[n-1] + 0.5y[n-2] = x[n]$$

$$y[-1] = 1$$
 $y[-2] = 0$ $z[n] = 2^nu[n]$

$$y^{[n]} = \frac{8}{3} [2]^{2} u[n]$$

$$\frac{1}{\sqrt{2}} \left[\frac{3}{2} \right] = \left[\frac{3}{2} + \frac{1}{3} \left[\frac{5}{2} \right]^{3} + \frac{8}{3} \left(\frac{2}{2} \right)^{3} \right] u[n]$$

$$y[n] = y^n[n] + y^f[n] = [-1(0.5)^n + 8 2^n]u[n]$$

(3)
$$j(t) + sy(t) + b y(t) = ae^{t}u(t)$$
 $y(b) = 0$
 $y'(b) = 1$
 $s^{2} + ss + b = 0$ $K_{1} + k_{2} = 0$
 $-3k_{1} - 2k_{2} = 1$
 $y'(t) = -e^{st} + e^{2t}$ $y'(t) = e^{st}$
 $y'(t) = e^{st} + e^{2t}$
 $y'(t) = e^{st} + e^{2t}$
 $y'(t) = e^{st} + e^{2t}$

(a)
$$= \chi'u[n] \quad h[n] = u[n]$$

$$y[n] = \chi[n] + h[n] = \sum_{k=-\infty}^{\infty} \chi[k] h[n-k]$$

$$= \underbrace{\underbrace{\underbrace{\underbrace{x}}_{u}(u)}_{x}u(n-k)}_{x=-\infty}$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$

$$\underbrace{\underbrace{x}_{u}(u)}_{x=-\infty}u(n-k)$$