
1.   What is an algorithm? What are the characteristics of a good algorithm? Explain 
with example of GCD of two numbers. 
 
An algorithm is a sequence of unambiguous instructions for solving a problem. 
i.e., for obtaining a required output for any legitimate input in a finite amount of 
time. 
Characteristics of Algorithms:  

i) Finiteness:  
An algorithm must terminate after a finite number of steps and further each step 
must be executable in finite amount of time or it terminates (in finite number of 
steps) on all allowed inputs  

ii) Definiteness (no ambiguity):  
Each step of an algorithm must be precisely defined; the action to be carried out 
must be rigorously and unambiguously specified for each case. For example: an 
instruction such as y=sqrt(x) may be ambiguous since there are two square roots 
of a number and the step does not specify which one.  

iii) Inputs:  
An algorithm has zero or more but only finite, number of inputs.  

iv) Output:  
An algorithm has one or more outputs. The requirement of at least one output is 
obviously essential, because, otherwise we cannot know the answer/ solution 
provided by the algorithm. The outputs have specific relation to the inputs, 
where the relation is defined by the algorithm.  

v) Effectiveness:  
An algorithm should be effective. This means that each of the operation to be 
performed in an algorithm must be sufficiently basic that it can, in principle, be 
done exactly and in a finite length of time, by person using pencil and paper. 
Effectiveness also indicates correctness, i.e. the algorithm actually achieves its 
purpose and does what it is supposed to do.  
Example:  
Below is given the psuedocode of the algorithm to find the GCD of two numbers  

 
 
Considering the above algorithm, it is finite. Though we do not offer a proof here, 
it can be seen that the pair of m and n after every step decreases. If we start with 
m and n as positive numbers then eventually the value of n has to reduce and 
become 0 thus guaranteeing termination and thus finiteness.  
Definiteness – Every step in this algorithm is well specified and has no ambiguity  
Inputs / Ouput – The algorithm has two inputs and one output – gcd.  



Effectiveness – Each step is presented in sufficient detail and the result is a 
correct computation of GCD.  
 

2.   Describe the various asymptotic notations with a neat diagrams and examples. 
 
Different Notations 

1. Big oh Notation 
2. Omega Notation 
3. Theta  Notation 

 
1. Big oh (O) Notation : A function t(n) is said to be in O[g(n)], t(n)  ∈ O[g(n)] 

, if t(n) is bounded above by some constant multiple of g(n) for all large n  
ie.., there exist some positive constant c and some non negative integer no 
such that t(n) ≤ cg(n) for all n≥no.  

            Eg. t(n)=100n+5  express in O notation 
                           100n+5   < = 100n + n       for all n>=5  
                                           < =  101 (n2)  
                          Let g(n)= n2    ;   n0=5   ; c = 101 
         i.e     100n+5    <=101 n2 
                              t(n) <= c* g(n)   for all n>=5 
There fore  ,         t(n) ∈ O(n2) 
 

 
2. Omega(Ω) -Notation:  

Definition: A function  t(n) is said to be in Ω[g(n)], denoted   t(n)  ∈ Ω[g(n)] , if t(n) 
is bounded below by some positive constant multiple of g(n) for all large n, ie., 
there exist some positive constant c and some non negative integer n0  such that  
              t(n) ≥ cg(n) for all n ≥ n0.  
For example: 
              t(n) = n3  ∈ Ω(n2),  
               n3 ≥ n2   for all     n ≥ n0. 
   we can select, g(n)= n3  ,  c=1  and   n0=0  
                         t(n)  ∈ Ω(n2),  



                              
 

3. Theta (θ) - Notation:  
Definition: A function t(n) is said to be in θ [g(n)], denoted t(n) ∈ θ (g(n)), if t(n) is 
bounded both above and below by some positive constant multiples of g(n) for 
all large n ,  ie., if there exist some positive constant c1 and c2 and some 
nonnegative integer n0 such that c2g(n) ≤ t(n) ≤ c1g(n) for all   n ≥ n0. 
For example 1:  
             t(n)=100n+5  express in θ notation 
                 100n <= 100n+5  <= 105n    for all n>=1 
             c1=100;     c2=105;  g(n) = n;   
            Therefore ,           t(n) ∈ θ (n) 
 

                 `  
 
Describe various Basic Efficiency classes 
 Sol: The time complexity of a large number of algorithms fall into only a few 
classes. These classes are listed in Table in increasing order of their orders of 
growth. Although normally we would expect an algorithm belonging to a lower 
efficiency class to perform better than an algorithm belonging to higher efficiency 
classes, theoretically it is possible for this to be reversed. For example if we 
consider two algorithms with orders (1.001)n and n1000. Then for lot of values of 
n (1.001)n would perform better but it is rare for an algorithm to have such time 
complexities.  

Class   Name   Comments  

 1   Constant   Constant time algorithm execute number of steps independent of 
input size/values. E.g. finding sum of two numbers.  

 logn   Logarithmic   Algorithms in this category are very ef 
ficient e.g. binary search.  

 n   Linear   Algorithms that scan a list of size n, eg., sequential search, finding 
the max/min element in an array etc.  



 nlogn   nlogn   Many divide & conquer algorithms including mergersort quicksort 
fall into this class.  

 n2   Quadratic   Characterizes with two embedded loops, mostly sorting and 
matrix operations. E.g. adding two square matrices, bubble sort.  

 n3   Cubic   Efficiency of algorithms with three embedded loops. For example : 
matrix multiplication , Floyd Warshall’s algorithms  

 2n   Exponential   Algorithms that generate all subsets of an n-element set .  

 n!   factorial   Algorithms that generate all permutations of an n-element set e.g. 
Travelling Salesman problems  

 
             Plot of function Values 
 

3.  Write the algorithm for the Towers of Hanoi problem. Explain the solution with 3 
disks. Solve the recurrence relation M(n) = 2 M(n-1) +1 for all n > 1,  
M(1) = 1.  
 
In Towers of Hanoi problem, we have n disks of different sizes that can slide onto 
any of three pegs. Initially, all the disks are on the first peg in order of size, the 
largest on the bottom and the smallest on top. The goal is to move all the disks to 
the third peg, using the second one as an auxiliary, if necessary. We can move 
only one disk at a time, and it is forbidden to place a larger disk on top of a 
smaller one. 
 To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), we first move 
recursively n − 1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), then move 
the largest disk directly from peg 1 to peg 3, and, finally, move recursively n − 1 
disks from peg 2 to peg 3 (using peg 1 as auxiliary). Of course, if n = 1, we simply 
move the single disk directly from the source peg to the destination peg. 
Algorithm Towers (n,L,M,R) 
//Input  : No. of Disks n, three pegs L, M  & R 
//Output : the steps to move from L to  R 
Begin 
    If( n=1) 



         Print( “ Move disk from L to R”) 
   Else  
       Towers( n-1,L,R,M) 
        Print( “ Move nth  disk from L to R”) 
      Towers( n-1,M,L,R) 
End 
Analysis 
Let us apply the general plan outlined above to the Tower of Hanoi problem. 
The number of disks n is the obvious choice for the input’s size indicator, and so 
is 
moving one disk as the algorithm’s basic operation. Clearly, the number of 
moves 
M(n) depends on n only, and we get the following recurrence equation for it: 
M(n) = M(n − 1) + 1+ M(n − 1) for n > 1. 
With the obvious initial condition M(1) = 1, we have the following recurrence 
relation for the number of moves M(n): 
                    M(n) = 2M(n − 1) + 1 for n > 1, (2.3) 
                    M(1) = 1. 
We solve this recurrence by the same method of backward substitutions: 
                     M(n) = 2M(n − 1) + 1 sub. M(n − 1) = 2M(n − 2) + 1 
                              = 2[2M(n − 2) + 1]+ 1= 22M(n − 2) + 2 + 1 sub. M(n − 2) = 2M(n − 
3) + 1 
                             = 22[2M(n − 3) + 1]+ 2 + 1= 23M(n − 3) + 22 + 2 + 1. 
The pattern of the first three sums on the left suggests that the next one will be 
24M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get 
M(n) = 2iM(n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM(n − i) + 2i − 1. 
Since the initial condition is specified for n = 1, which is achieved for i = n − 1, we 
get the following formula for the solution to recurrence (2.3): 
M(n) = 2n−1M(n − (n − 1)) + 2n−1 − 1 
= 2n−1M(1) + 2n−1 − 1= 2n−1 + 2n−1 − 1= 2n − 1. 
 

4.   
 
 Explain the methods to analyze non-recursive algorithms with examples. 
 
General Plan for Analyzing Efficiency of Nonrecursive Algorithms  
1. Decide on a parameter (or parameters) indicating an input's size.  
2. Identify the algorithm's basic operation. (As a rule, it is located in its 
innermost  
loop.)  
3. Check whether the number of times the basic operation is executed depends 
only  
on the size of an input. If it also depends on some additional property, the 
worst-  
case, average-case, and, if necessary, best-case efficiencies have to be  
investigated separately.  
4. Set up a sum expressing the number of times the algorithm's basic operation is  
executed.  



5. Using standard formulas and rules of sum manipulation either find a closed-
form formula for the count or, at the very least, establish its order of growth. 
 

For example Consider the element uniqueness problem: check whether all 
the elements in a given array are distinct. This problem can be solved by the 
following straightforward algorithm.  
 

ALGORITHM UniqueElements(A[0..n - 1])  
//Checks whether all the elements in a given array are distinct  
//Input: An array A[0..n - 1]  
//Output: Returns "true" if all the elements in A are distinct  
// and "false" otherwise.  
for i «— 0 to n — 2 do  

     for j' <- i
: 
+ 1 to n - 1 do  

          if A[i] = A[j]  
                 return false  
return true  
 

Since the innermost loop contains a single operation (the comparison of two 
elements), we should consider it as the algorithm's basic operation. There are 
two kinds of worst-case inputs (inputs for which the algorithm does not exit the 
loop prematurely): arrays with no equal elements and arrays in which the last 
two elements are the only pair of equal elements. For such inputs, one 
comparison is made for each repetition of the innermost loop, i.e., for each value 
of the loop's variable j between its limits i + 1 and n - 1; and this is repeated for 
each value of the outer loop, i.e., for each value of the loop's variable i between 
its limits 0 and n - 2. Accordingly, we get: 

 

 
 

5.   Write an algorithm for Quick sort. Explain with an example and derive the time 
complexity. 
 
Algorithm Partition(A[l..r]) 

p← A[l]; i ← l; j ← r + 1  

repeat  

        repeat i ← i + 1 until A[i] ≥ p  

        repeat j ← j − 1 until A[j ] ≤ p  

        swap(A[i], A[j ])  

until i ≥ j  



swap(A[i], A[j ]) //undo last swap when i ≥ j  

swap(A[l], A[j ])  

return j 

 
Algorithm Quicksort(A[l..r])  

//Sorts a subarray by quicksort  

//Input: Subarray of array A[0..n − 1], defined by its left and right  

// indices l and r  

//Output: Subarray A[l..r] sorted in nondecreasing order  

if l<r 

         s ←Partition(A[l..r]) //s is a split position  

         Quicksort(A[l..s − 1])  

         Quicksort(A[s + 1..r]) 

 

 

 
 
Let us assume we have an unsorted list of n numbers that partition from the middle 
every time. So, if we form a recursion tree, at each level, there will be n 
comparisons. Number of levels in the tree will be equal to the number of times n 
can be divided by 2 till the result is 1. Let us say n can be divided by 2 k times.  
So, n/2k = 1 
K=log2n [log (base 2) n]     



So, if there are log n levels and in each level there are n comparisons, the time taken 
is O(nlogn). This is the best-case time complexity of quicksort. 
 
Now let us consider we have a sorted list on n numbers as input. Now, the partition 
will always happen from one side of the array. So, the recursion tree will grow only 
on one side for n levels and the number of comparisons will be n in first partition, 
(n-1) in the second and so on till 1 comparison in the last.   
Thus, time taken is: 
n+(n-1)+(n-2)+…+2+1 
=n(n+1)/2 
 =O(n2)    
 
This is the worst case time complexity of quicksort.                                    
 

6.     Explain the various stages of the algorithm design and analysis process with the 
help of a flowchart. 
 

 
Fig : Algorithm Design and Analysis Process 

1. Understanding the problem:  
Before designing algorithm, one should understand the problem correctly. 
This may require the problem to be read multiple times, asking questions if 
required and working out smaller instances of problem by hand.  Any input 
to an algorithm specifies an instance or event of the problem. So, it is very 
important to set the range of inputs so that the algorithm works for all 
legitimate inputs i.e   work correctly under all circumstances.. 
2. Ascertaining the capabilities of a computational Device:  



After understanding the problem, one must think of the machines that execute 
instructions. The machines that are capable of executing the instructions one 
after the other is known as sequential machines and  algorithms which run on 
these machines are known as sequential algorithms 
  Newer machines can run instructions concurrently re known as  parallel 
machines  and algorithms which have written for such machines are called 
parallel algorithms.  
If we are dealing with the small problems, we need not worry about the time 
and memory requirements. But some complex problems which involve 
processing large amounts of data in real time are required to know about the 
time and memory requirements where the program is to be executed on the 
machine. 
3. Choosing between exact and approximate problem solving:  

The algorithms which solves the problem and gives the exact solution is 
known as Exact  Algorithm and one which gives approximate results is 
known as Approximation Algorithms. 

     There are two situations in which we may have to go for approximate 
solution:  

i)  If the quantity to be computed cannot be calculated exactly. For 
example finding square roots, solving non linear equations etc.  

ii)  Complex algorithms may have solutions which take an 
unreasonably long amount of time if solved exactly. In such a case 
we may opt for going for a fast but approximate solution.  

4. Deciding on data structures:  
Algorithms use different data structures for their implementation. Some 
use simple ones but some other may require complex ones. But, Data 
structures play a vital role in designing and analyzing the algorithms.  

5. Algorithm Design Techniques:  
   An algorithm design technique is a general approach to solving problems    

algorithmically that is applicable to a variety of problems from different 
areas of   

computing. These techniques will provide guidance in designing 
algorithms for   

new problems. Various design methods for algorithms exist, some of 
which are –  

divide and conquer, dynamic programming, greedy algorithms etc.  
6. Methods of specifying an Algorithm:  

Algorithm can be specified using natural language and  psuedocode. Due 
to the  inherent ambiguity of the natural language, the most prevelant 
method of specifying an algorithm is using psuedocode. 

7.  Proving an Algorithm’s correctness:  
Correctness has to be proved for every algorithm. To prove that the algorithm 
gives  the required result for every legitimate input in a finite amount of time. 
For some algorithms, a proof of correctness is quite easy; for others it can be 
quite complex. Mathematical Induction is normally used for proving 
algorithm correctness.  



8. Analyzing an algorithm:  
Any Algorithm must be analysed for its efficiency time and space . Time 
efficiency indicates how fast the algorithm runs; space efficiency indicates 
how much extra memory the algorithm needs. Another desirable 
characteristic is simplicity. A code which is simple reduces the effort in 
understanding and writing it and thus leads to less chances of error. Another 
desirable characteristic is generality. An algorithm can be general if it 
addresses a more general form of the problem for which the algorithm is to be 
designed and is able to handle all legitimate inputs.  
9. Coding an algorithm:  

Programming the algorithm by using some programming language. Formal 
verification by proof is done for small programs. Validity of large and complex 
programs is done through testing and debugging. 
 

7.     Write an algorithm for Bubble sort. Explain with an example and derive the time 
complexity  
 
Bubble sort is a sorting algorithm that works by repeatedly stepping through lists 
that need to be sorted, comparing each pair of adjacent items and swapping them 
if they are in the wrong order. This passing procedure is repeated until no swaps 
are required, indicating that the list is sorted. 
The algorithm for bubble sort is as follows: 

 
 



 
  
Analysis:  
The no of key comparisons is the same for all arrays of size n, it is obtained by a 
sum which is similar to selection sort. 

 
The no. of key swaps depends on the input. The worst case is same as the no. of 

key comparisons. 

 
 

8.      If t1(n) ∈ O(g1(n)) and t2(n) ∈ O(g2(n)) then prove that:  

𝒕𝟏(𝒏) + 𝒕𝟐(𝒏) ∈ 𝑶(𝐦𝐚𝐱{𝒈𝟏(𝒏),𝒈𝟐(𝒏)}) 

 



 
 

 

 

 

 

Sum of i=0 to n-2 (n-1-i) 

 

(n-1-(n-2))+(n-1-(n-3))+(n-1-(n-4))+….+(n-1-0) 

1+2+3+…+(n-1) 

(n-1)n/2 

(n^2-n)/2 

 

Theta(n^2) 

 

Number of elements*(upper bound_lower bound)/2 

 

 

 

 

 

 

 


