
CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – Sep. 2020

Sub: Programming Using C# and .Net Sub Code:
18MC

A51

Date: 12/09/2020 Duration: 90 min’s
Max

Marks:
50 Sem 5

th
 Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I
MA

RKS

OBE

CO

RBT

1A Explain the different components of .NET Framework 4.0

Components of .NET Framework 4.0:

The .NET Framework provides all the necessary components to develop and run an

application. The components of .NET Framework 4.0 architecture are as follows:

 Common Language Runtime (CLR)

 Common Type System (CTS)

 Metadata and Assemblies

 .NET Framework class library

 Windows Forms

 ASP.NET and ASP.NET AJAX

 ADO.NET

 Windows Workflow Foundation

 Windows Presentation Foundation

 Windows Communication Foundation

 Windows CardSpace

 LINQ

Let’s now discuss about each of them in detail.

CLR[Common Language Runtime]:

“CLR is an Execution Engine for .NET Framework applications”.

CLR is a heart of the.NET Framework. It provides a run-time environment to run the

code and various services to develop the application easily.

The services provided by CLR are –

 Memory Management

 Exception Handling

 Debugging

 Security

 Thread execution

 Code execution

 Language Integration

 Code safety

 Verification

 Compilation

[5]

CO1

L1

The following figure shows the process of compilation and execution of the code by

the JIT Compiler:

i. After verifying, a JIT [Just-In-Time] compiler extracts the metadata from the

file to translate that verified IL code into CPU-specific code or native code.

These type of IL Code is called as managed code.

ii. The source code which is directly compiles to the machine code and runs on the

machine where it has been compiled such a code called as unmanaged code. It

does not have any services of CLR.

iii. Automatic garbage collection, exception handling, and memory management are

also the responsibility of the CLR.

Managed Code: Managed code is the code that is executed directly by the CLR. The

application that are created using managed code automatically have CLR services,

such as type checking, security, and automatic garbage collection.

The process of executing a piece of managed code is as follows:

 Selecting a language compiler

 Compiling the code to IL[This intermediate language is called managed code]

 Compiling IL to native code Executing the code

Unmanaged Code: Unmanaged Code directly compiles to the machine code and

runs on the machine where it has been compiled. It does not have services, such as

security or memory management, which are provided by the runtime. If your code is

not security-prone, it can be directly interpreted by any user, which can prove

harmful.

Automatic Memory Management: CLR calls various predefined functions of .NET

framework to allocate and de-allocate memory of .NET objects. So that, developers

need not to write code to explicitly allocate and de-allocate memory.

CTS [Common Type Specifications]:

The CTS defines the rules for declaring, using, and managing types at runtime. It is

an integral part of the runtime for supporting cross-language communication.

The common type system performs the following functions:

 Enables cross-language integration, type safety, and high-performance code

execution.

 Provides an object-oriented model for implementation of many programming

languages.

 Defines rules that every language must follow which runs under .NET

framework like C#, VB.NET, F# etc. can interact with each other.

The CTS can be classified into two data types, are

iv. Value Types

v. Reference Type

1b What are the benefits of .NET framework

Benefits of .NET Framework
Consistent Programming Model:- Provides a consistent object oriented

programming model across different languages to create programs for performing

different tasks such as connecting to and retrieving data from databases , and reading

and writing into files.

Cross- Platform support:- Specifies that any windows platform that supports

CLR can execute .NET application that is a .NET application enables interoperability

between multiple windows operating systems.

Language Interoperability:- Enables code written in different languages to

interact with each other. This allows reusability of code and improves the efficiency of

development process.

Automatic Management of Resources :- While developing application we need

not manually free up the application resources such as files, memory, network and

database connections. The framework provides a feature called CLR that automatically

tracks the resource usage and helps you in performing the task of manual resource

management.

Ease of development:- The framework installs applications or components that

do not affect the existing applications. In most cases, to install an application we need to

copy the application along with its components on the target computer. In .NET

applications are deployed in the form of assemblies. Registry entries are not required to

store information about components and applications. In addition assemblies store

information about different versions of a single component used by an application. This

resolves the version problem .

[5]

CO1 L1

2a What is an Assembly? Explain each component in the assembly

An assembly is a file that is automatically generated by the compiler upon successful
compilation of every . NET application. It can be either a Dynamic Link Library or an
executable file. It is generated only once for an application and upon each subsequent
compilation the assembly gets updated

Assemblies can stored in two types:

Static assemblies: Static assemblies include interfaces, classes and resources.

These assemblies are stored in PE (Portable executable) files on a disk.

Dynamic assemblies: Dynamic assemblies run directly from the memory without

being saved to disk before execution. However, after execution you can save the

dynamic assemblies on the disk.

Global Assembly Cache:

[10]

 CO1 L2

The Global Assembly Cache (GAC) is a folder in Windows directory to store the

.NET assemblies that are specifically designated to be shared by all applications

executed on a system.

 The assemblies must be sharable by registering them in the GAC, only when

needed; otherwise, they must be kept private.

 Each assembly is accessed globally without any conflict by identifying its

name, version, architecture, culture and public key.

You can deploy an assembly in GAC by using any one of the following:

 An installer that is designed to work with the GAC

 The GAC tool known as Gacutil.exe

 The Windows Explorer to drag assemblies into the cache.

Strong Name Assembly:

A Strong Name contains the assembly’s identity, that is, the information about the

assembly’s name, version number, architecture, culture and public key.

 Using Microsoft Visual Studio .NET and other tools, you can provide a strong

name to an assembly.

 By providing strong names to the assembly, you can ensure that assembly is

globally unique.

Private and Shared Assembly:

A single application uses an assembly, then it is called as a private assembly.

Example: If you have created a DLL assembly containing information about your

business logic, then the DLL can be used by your client application only. Therefore,

to run the application, the DLL must be included in the same folder in which the

client application has been installed. This makes the assembly private to your

application.

Assemblies that are placed in the Global Assembly cache so that they can be used by

multiple applications, then it is called as a shared assembly.

Example: Suppose the DLL needs to be reused in different applications. In this

scenario, instead of downloading a copy of the DLL to each and every client

application, the DLL can be placed in the global assembly cache by using the

Gacutil.exe tool, from where the application can be accessed by any client

application.

Side-by-Side Execution Assembly:

The process of executing multiple versions of an application or an assembly is

known as side-by-side execution. Support for side-by-side storage and execution of

different versions of the same assembly is an integral part of creating a strong name

for an assembly.

 Strong naming of .NET assembly is used to provide unique assembly identity

by using the sn.exe command utility.

 The strong-named assembly’s version number is a part of its identity, the

runtime can store multiple versions of the same assembly in the GAC.

 Load these assemblies at runtime.

3a
 What are different types in C# with example.

C# DataTypes

Types Data Types

Value Data Type short, int, char, float, double etc

Reference Data Type String, Class, Object and Interface

Pointer Data Type Pointers

Value Data Type

The value data types are integer-based and floating-point

based. C# language supports both signed and unsigned

[5]

CO1 L2

literals.

There are 2 types of value data type in C# language.

1) Predefined Data Types - such as Integer, Boolean, Float,

etc.

2) User defined Data Types - such as Structure,

Enumerations, etc.

The memory size of data types may change according to 32 or

64 bit operating system.

Let's see the value data types. It size is given according

to 32 bit OS.

Data Types Memory

Size

Range

char 2 byte -128 to 127

signed

char

2 byte -128 to 127

unsigned

char

2 byte 0 to 127

short 2 byte -32,768 to 32,767

signed

short

2 byte -32,768 to 32,767

unsigned

short

2 byte 0 to 65,535

int 4 byte -2,147,483,648 to -2,147,483,647

signed int 4 byte -2,147,483,648 to -2,147,483,647

Reference Data Type

The reference data types do not contain the actual data

stored in a variable, but they contain a reference to the

variables. In other words they refer to the memory

location.

If the data is changed by one of the variables, the other

variable automatically reflects this change in value.

There are 2 types of reference data type in C# language.

1) Predefined Types - such as Objects, String.

2) User defined Types - such as Classes, Interface.

Object Type: The Object Type is the ultimate base class

for all data types in C# Common Type System (CTS). Object

is an alias for System.Object class. The object types can

be assigned values of any other types, value types,

unsigned

int

4 byte 0 to 4,294,967,295

long 8 byte ?9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

signed

long

8 byte ?9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

unsigned

long

8 byte 0 - 18,446,744,073,709,551,615

float 4 byte 1.5 * 10-45 - 3.4 * 1038, 7-digit precision

double 8 byte 5.0 * 10-324 - 1.7 * 10308, 15-digit

precision

decimal 16

byte

at least -7.9 * 10?28 - 7.9 * 1028, with at

least 28-digit precision

reference types, predefined or user-defined types.

However, before assigning values, it needs type

conversion.

When a value type is converted to object type, it is

called boxing and on the other hand, when an object type

is converted to a value type, it is called unboxing.

Object ob1;

ob1 = 100; // This is boxing

Dynamic Type : You can store any type of value in the

dynamic data type variable. Type checking for these types

of variables takes place at run-time.

dynamic variablename = value;

dynamic d = 10;

Dynamic types are similar to object types except that type

checking for object type variables takes place at compile

time, whereas that for the dynamic type variables takes

place at run time.

Pointer Data Type

The pointer in C# language is a variable, it is also known

as locator or indicator that points to an address of a

value.

Symbols used in pointer

Symbol Name Description

& (ampersand

sign)

Address operator Determine the address of

a variable.

* (asterisk Indirection Access the value of an

sign) operator address.

Example:

int *a;

char *b;

3b
Type conversion is converting one type of data to another type. It is also known
as Type Casting. In C#, type casting has two forms −

 Implicit type conversion − These conversions are performed by C# in a
type-safe manner. For example, are conversions from smaller to larger
integral types and conversions from derived classes to base classes.

 Explicit type conversion − These conversions are done explicitly by
users using the pre-defined functions. Explicit conversions require a cast
operator.

Sr.No. Methods & Description

1
ToBoolean

Converts a type to a Boolean value, where possible.

2
ToByte

Converts a type to a byte.

3
ToChar

Converts a type to a single Unicode character, where possible.

4
ToDateTime

Converts a type (integer or string type) to date-time structures.

5
ToDecimal

Converts a floating point or integer type to a decimal type.

6
ToDouble

[5]

CO1 L2

Converts a type to a double type.

7
ToInt16

Converts a type to a 16-bit integer.

8
ToInt32

Converts a type to a 32-bit integer.

9
ToInt64

Converts a type to a 64-bit integer.

10
ToSbyte

Converts a type to a signed byte type.

11
ToSingle

Converts a type to a small floating point number.

12
ToString

Converts a type to a string.

13
ToType

Converts a type to a specified type.

14
ToUInt16

Converts a type to an unsigned int type.

15
ToUInt32

Converts a type to an unsigned long type.

16
ToUInt64

Converts a type to an unsigned big integer.

4a
How method overloading is different from overriding . illustrate with an example
In overriding, a child class can implement the parent class method in a different way but the
child class method has the same name and same method signature as parent whereas

[10]
CO1 L3

in overloading there are multiple methods in a class with the same name and different
parameters.

Overloading

1. class Program
2. {
3. public int Add(int num1, int num2)
4. {
5. return (num1 + num2);
6. }
7. public int Add(int num1, int num2, int num3)
8. {
9. return (num1 + num2 + num3);
10. }
11. public float Add(float num1, float num2)
12. {
13. return (num1 + num2);
14. }
15. public string Add(string value1, string value2)
16. {
17. return (value1 + " " + value2);
18. }
19. static void Main(string[] args)
20. {
21. Program objProgram = new Program();
22. Console.WriteLine("Add with two int parameter :" + objProg

ram.Add(3, 2));
23. Console.WriteLine("Add with three int parameter :" + objPr

ogram.Add(3, 2, 8));
24. Console.WriteLine("Add with two float parameter :" + objPr

ogram.Add(3 f, 22 f));
25. Console.WriteLine("Add with two string parameter :" + objP

rogram.Add("hello", "world"));
26. Console.ReadLine();
27. }
28. }

Overriding
Method Overriding is a type of polymorphism. It has several names like “Run Time
Polymorphism” or “Dynamic Polymorphism” and sometime it is called “Late Binding”.

Method Overriding means having two methods with same name and same signatures
[parameters], one should be in the base class and other method should be in a derived class
[child class]. You can override the functionality of a base class method to create a same name
method with same signature in a derived class. You can achieve method overriding using
inheritance. Virtual and Override keywords are used to achieve method overriding.

1. class BaseClass
2. {
3. public virtual int Add(int num1, int num2)

4. {
5. return (num1 + num2);
6. }
7. }
8. class ChildClass: BaseClass
9. {
10. public override int Add(int num1, int num2)
11. {
12. if (num1 <= 0 || num2 <= 0)
13. {
14. Console.WriteLine("Values could not be less than zero

or equals to zero");
15. Console.WriteLine("Enter First value : ");
16. num1 = Convert.ToInt32(Console.ReadLine());
17. Console.WriteLine("Enter First value : ");
18. num2 = Convert.ToInt32(Console.ReadLine());
19. }
20. return (num1 + num2);
21. }
22. }
23. class Program
24. {
25. static void Main(string[] args)
26. {
27. BaseClass baseClassObj;
28. baseClassObj = new BaseClass();
29. Console.WriteLine("Base class method Add :" + baseClassObj

.Add(-3, 8));
30. baseClassObj = new ChildClass();
31. Console.WriteLine("Child class method Add :" + baseClassOb

j.Add(-2, 2));
32. Console.ReadLine();
33. }
34. }

5a Write a C# program to find Fibonacci series with and without recursion

Without recursion

1. class Program
2. {
3. static int FibonacciSeries(int n)
4. {
5. int firstnumber = 0, secondnumber = 1, result = 0;
6.
7. if (n == 0) return 0; //To return the first Fibonacci numb

er
8. if (n == 1) return 1; //To return the second Fibonacci num

ber
9.
10.
11. for (int i = 2; i <= n; i++)
12. {

[10] CO1 L3

13. result = firstnumber + secondnumber;
14. firstnumber = secondnumber;
15. secondnumber = result;
16. }
17.
18. return result;
19. }
20.
21. static void Main(string[] args)
22. {
23. Console.Write("Enter the length of the Fibonacci Series: "

);
24. int length = Convert.ToInt32(Console.ReadLine());
25.
26. for (int i = 0; i < length; i++)
27. {
28. Console.Write("{0} ", FibonacciSeries(i));
29. }
30. Console.ReadKey();
31. }
32. }

With recursion

1. class Program
2. {
3. public static int FibonacciSeries(int n)
4. {
5. if (n == 0) return 0; //To return the first Fibonacc

i number
6. if (n == 1) return 1; //To return the second Fibonac

ci number
7. return FibonacciSeries(n - 1) + FibonacciSeries(n -

 2);
8. }
9. public static void Main(string[] args)
10. {
11. Console.Write("Enter the length of the Fibonacci Ser

ies: ");
12. int length = Convert.ToInt32(Console.ReadLine());
13. for (int i = 0; i < length; i++)
14. {
15. Console.Write("{0} ", FibonacciSeries(i));
16. }
17. Console.ReadKey();
18. }
19. }

6a

Write a c# program to print factorial of a number

1. using System;

2. public class FactorialExample

3. {

[10] CO1 L3

4. public static void Main(string[] args)

5. {

6. int i,fact=1,number;

7. Console.Write("Enter any Number: ");

8. number= int.Parse(Console.ReadLine());

9. for(i=1;i<=number;i++){

10. fact=fact*i;

11. }

12. Console.Write("Factorial of " +number+" is: "+fact);

13. }

14. }

7a Write a c# program to convert number in characters

1. using System;

2. public class ConversionExample

3. {

4. public static void Main(string[] args)

5. {

6. int n,sum=0,r;

7. Console.Write("Enter the Number= ");

8. n= int.Parse(Console.ReadLine());

9. while(n>0)

10. {

11. r=n%10;

12. sum=sum*10+r;

13. n=n/10;

14. }

15. n=sum;

16. while(n>0)

17. {

18. r=n%10;

19. switch(r)

20. {

21. case 1:

22. Console.Write("one ");

23. break;

24. case 2:

25. Console.Write("two ");

26. break;

27. case 3:

28. Console.Write("three ");

29. break;

30. case 4:

31. Console.Write("four ");

32. break;

33. case 5:

34. Console.Write("five ");

35. break;

36. case 6:

[10]

CO1 L3

37. Console.Write("six ");

38. break;

39. case 7:

40. Console.Write("seven ");

41. break;

42. case 8:

43. Console.Write("eight ");

44. break;

45. case 9:

46. Console.Write("nine ");

47. break;

48. case 0:

49. Console.Write("zero ");

50. break;

51. default:

52. Console.Write("tttt ");

53. break;

54. }//end of switch

55. n=n/10;

56. }//end of while loop

57. }

58. }

8a

Write a C# program to convert decimal to binary

1. using System;

2. public class ConversionExample

3. {

4. public static void Main(string[] args)

5. {

6. int n, i;

7. int[] a = new int[10];

8. Console.Write("Enter the number to convert: ");

9. n= int.Parse(Console.ReadLine());

10. for(i=0; n>0; i++)

11. {

12. a[i]=n%2;

13. n= n/2;

14. }

15. Console.Write("Binary of the given number= ");

16. for(i=i-1 ;i>=0 ;i--)

17. {

18. Console.Write(a[i]);

19. }

20. }

21. }

[10]

CO1

L3

10

[10]

CO2

L3

