

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test –I, September 2020

Sub: MACHINE LEARNING Code: 18MCA53

Date: 15-09-2020 Duration: 90 mins Max Marks: 50 Sem: V Branch: MCA

Answer Any 5 QUESTIONs Marks
OBE

CO RBT
1a) Define well-posed learning problem and explain with the help of an example. 4 CO1 L1

1b) Discuss the following with respect to the learning task for “A checkers learning problem’.

i) Choosing the training experience.

ii) Choosing the target function.

iii) Choosing a function approximation algorithm.

6 CO1 L2

2) Write FIND-S algorithm and discuss the issues with the algorithm 10 CO1 L2

3) Consider the given below following training example.

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

Show the general and specific boundaries of the version space after applying candidate elimination

algorithm.

10 CO1 L5

4 Explain the various stages involved in designing a learning system in brief. 10 CO1 L2

5 What is decision tree and discuss the use of decision tree for classification with an example. 10 CO2 L2

6) Summarize the practical issues of decision tree learning. 10 CO2 L3

7) Design the decision tree for the following dataset and predict whether Golf will be played on the day.

Day Outlook Temperature Humidity Wind Play Golf

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

10 CO2 L5

8) What do you mean by gain and entropy? How it is used to build decision tree. Explain it with the help of an

example.

10 CO2 L2

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – Sep. 2020

Sub: MACHINE LEARNING Sub Code:
18MCA

53

Date: 15-09-2020 Duration: 90 min’s
Max

Marks:
50 Sem 5

th
 Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I
MAR

KS

OBE

C

O

RB

T

1a) Well-Posed Learning Definition: A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.

Examples:

Checkers Game: A computer program that learns to play checkers might improve its performance

as measured by its ability to win at the class of tasks involving playing checkers game, through

experience obtained by playing games against itself:

checkers learning problem:
 Task T: playing checkers
 Performance measure P: percent of games won against opponents
 Training experience E: playing practice games against itself

A handwriting recognition learning problem:
 Task T: recognizing and classifying handwritten words within images
 Performance measure P: percent of words correctly classified

 Training experience E: a database of handwritten words with given classifications

A robot driving learning problem:
 Task T: driving on public four-lane highways using vision sensors

 Performance measure P: average distance travelled before an error (as judged by

human overseer)

 Training experience E: a sequence of images and steering commands recorded while

observing a human driver

4 CO1 L1

1b) DESIGNING A LEARNING SYSTEM

The basic design issues and approaches to machine learning are illustrated by designing a

program to learn to play checkers, with the goal of entering it in the world checkers

tournament
1. Choosing the Training Experience
2. Choosing the Target Function
3. Choosing a Function Approximation Algorithm

1. Estimating training values
2. Adjusting the weights

1. Choosing the Training Experience

 The first design choice is to choose the type of training experience from which the

6 CO1 L2

system will learn.

 The type of training experience available can have a significant impact on success or

failure of the learner.

There are three attributes which impact on success or failure of the learner

1. Whether the training experience provides direct or indirect feedback regarding the

choices made by the performance system.

For example, in checkers game:

In learning to play checkers, the system might learn from direct training examples

consisting of individual checkers board states and the correct move for each.

Indirect training examples consisting of the move sequences and final outcomes of

various games played. The information about the correctness of specific moves early in

the game must be inferred indirectly from the fact that the game was eventually won or

lost.

Here the learner faces an additional problem of credit assignment, or determining the

degree to which each move in the sequence deserves credit or blame for the final

outcome.

2. The degree to which the learner controls the sequence of training examples

For example, in checkers game:

The learner might depends on the teacher to select informative board states and to

provide the correct move for each.

Alternatively, the learner might itself propose board states that it finds particularly

confusing and ask the teacher for the correct move.

The learner may have complete control over both the board states and (indirect) training

classifications, as it does when it learns by playing against itself with no teacher present.

3. How well it represents the distribution of examples over which the final system

performance P must be measured

For example, in checkers game:

In checkers learning scenario, the performance metric P is the percent of games the

system wins in the world tournament.

If its training experience E consists only of games played against itself, there is a danger

that this training experience might not be fully representative of the distribution of

situations over which it will later be tested.

It is necessary to learn from a distribution of examples that is different from those on

which the final system will be evaluated.

2. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be learned and how

this will be used by the performance program.

Let’s consider a checkers-playing program that can generate the legal moves from any board state.

The program needs only to learn how to choose the best move from among these legal moves. We

must learn to choose among the legal moves, the most obvious choice for the type of information

to be learned is a program, or function, that chooses the best move for any given board state.

1. Let ChooseMove be the target function and the notation is

ChooseMove : B→ M
which indicate that this function accepts as input any board from the set of legal board

states B and produces as output some move from the set of legal moves M.

ChooseMove is a choice for the target function in checkers example, but this function

will turn out to be very difficult to learn given the kind of indirect training experience

available to our system

2. An alternative target function is an evaluation function that assigns a numerical score to

any given board state
Let the target function V and the notation

V:B →R

which denote that V maps any legal board state from the set B to some real value. Intend

for this target function V to assign higher scores to better board states. If the system can

successfully learn such a target function V, then it can easily use it to select the best

move from any current board position.

Let us define the target value V(b) for an arbitrary board state b in B, as follows:
 If b is a final board state that is won, then V(b) = 100
 If b is a final board state that is lost, then V(b) = -100
 If b is a final board state that is drawn, then V(b) = 0
 If b is a not a final state in the game, then V(b) = V(b'),

Where b' is the best final board state that can be achieved starting from b and playing optimally

until the end of the game

3. Choosing a Function Approximation Algorithm

In order to learn the target function f we require a set of training examples, each describing a

specific board state b and the training value Vtrain(b) for b.

Each training example is an ordered pair of the form (b, Vtrain(b)).

For instance, the following training example describes a board state b in which black has won the

game (note x2 = 0 indicates that red has no remaining pieces) and for which the target function

value Vtrain(b) is therefore +100.

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)

Function Approximation Procedure

1. Derive training examples from the indirect training experience available to the learner
2. Adjusts the weights wi to best fit these training examples

1. Estimating training values

A simple approach for estimating training values for intermediate board states is to assign the

 training value of Vtrain(b) for any intermediate board state b to be

V(Successor(b))

Where ,

V is the learner's current approximation to V

 Successor(b) denotes the next board state following b for which it is again the

program's turn to move

Rule for estimating training values
Vtrain(b) ← V (Successor(b))

2. Adjusting the weights

Specify the learning algorithm for choosing the weights wi to best fit the set of training

examples {(b, Vtrain(b))}

A first step is to define what we mean by the bestfit to the training data.

One common approach is to define the best hypothesis, or set of weights, as that which

minimizes the squared error E between the training values and the values predicted by the

hypothesis.

Several algorithms are known for finding weights of a linear function that minimize E. One

such algorithm is called the least mean squares, or LMS training rule. For each observed

training example it adjusts the weights a small amount in the direction that reduces the error

on this training example

LMS weight update rule :- For each training example (b, Vtrain(b))

Use the current weights to calculate V (b)
For each weight wi, update it as

wi ← wi + ƞ (Vtrain (b) - V(b)) xi

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update.

Working of weight update rule

When the error (Vtrain(b)- V(b)) is zero, no weights are changed.

When (Vtrain(b) - V(b)) is positive (i.e., when V(b) is too low), then each weight
is increased in proportion to the value of its corresponding feature. This will raise

the value of V(b), reducing the error.

 If the value of some feature xi is zero, then its weight is not altered regardless of the

error, so that the only weights updated are those whose features actually occur on the
training example board.

2) FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS

FIND-S Algorithm

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x

For each attribute constraint ai in h

If the constraint ai is satisfied by x

Then do nothing

Else replace ai in h by the next more general constraint that is satisfied by x 3.

Output hypothesis h

Unanswered by FIND-S

1. Has the learner converged to the correct target concept?
2. Why prefer the most specific hypothesis?
3. Are the training examples consistent?
4. What if there are several maximally specific consistent hypotheses?

10 CO1 L2

3) CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of all

hypotheses in H;

Initializing the G boundary set to contain the most general hypothesis in

H G0 ?, ?, ?, ?, ?, ?

Initializing the S boundary set to contain the most specific (least general) hypothesis

S0 , , , , ,

 When the second training example is observed, it has a similar effect of generalizing S

further to S2, leaving G again unchanged i.e., G2 = G1 = G0

Consider the third training example.

Consider the fourth training example

10 CO1 L5

After processing these four examples, the boundary sets S4 and G4 delimit the version space of

all hypotheses consistent with the set of incrementally observed training examples.

4) DESIGNING A LEARNING SYSTEM

The basic design issues and approaches to machine learning are illustrated by designing a

program to learn to play checkers, with the goal of entering it in the world checkers

tournament
4. Choosing the Training Experience
5. Choosing the Target Function
6. Choosing a Representation for the Target Function
7. Choosing a Function Approximation Algorithm

1. Estimating training values
2. Adjusting the weights

8. The Final Design

2. Choosing the Training Experience

 The first design choice is to choose the type of training experience from which the

system will learn.

 The type of training experience available can have a significant impact on success or

failure of the learner.

There are three attributes which impact on success or failure of the learner

2. Whether the training experience provides direct or indirect feedback regarding the

choices made by the performance system.

10 CO1 L2

For example, in checkers game:

In learning to play checkers, the system might learn from direct training examples

consisting of individual checkers board states and the correct move for each.

Indirect training examples consisting of the move sequences and final outcomes of

various games played. The information about the correctness of specific moves early in

the game must be inferred indirectly from the fact that the game was eventually won or

lost.

Here the learner faces an additional problem of credit assignment, or determining the

degree to which each move in the sequence deserves credit or blame for the final

outcome.

4. The degree to which the learner controls the sequence of training examples

For example, in checkers game:

The learner might depends on the teacher to select informative board states and to

provide the correct move for each.

Alternatively, the learner might itself propose board states that it finds particularly

confusing and ask the teacher for the correct move.

The learner may have complete control over both the board states and (indirect) training

classifications, as it does when it learns by playing against itself with no teacher present.

5. How well it represents the distribution of examples over which the final system

performance P must be measured

For example, in checkers game:

In checkers learning scenario, the performance metric P is the percent of games the

system wins in the world tournament.

If its training experience E consists only of games played against itself, there is a danger

that this training experience might not be fully representative of the distribution of

situations over which it will later be tested.

It is necessary to learn from a distribution of examples that is different from those on

which the final system will be evaluated.

3. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be learned and how

this will be used by the performance program.

Let’s consider a checkers-playing program that can generate the legal moves from any board state.

The program needs only to learn how to choose the best move from among these legal moves. We

must learn to choose among the legal moves, the most obvious choice for the type of information

to be learned is a program, or function, that chooses the best move for any given board state.

1. Let ChooseMove be the target function and the notation is

ChooseMove : B→ M
which indicate that this function accepts as input any board from the set of legal board

states B and produces as output some move from the set of legal moves M.

ChooseMove is a choice for the target function in checkers example, but this function

will turn out to be very difficult to learn given the kind of indirect training experience

available to our system

3. An alternative target function is an evaluation function that assigns a numerical score to

any given board state
Let the target function V and the notation

V:B →R

which denote that V maps any legal board state from the set B to some real value. Intend

for this target function V to assign higher scores to better board states. If the system can

successfully learn such a target function V, then it can easily use it to select the best

move from any current board position.

Let us define the target value V(b) for an arbitrary board state b in B, as follows:
 If b is a final board state that is won, then V(b) = 100
 If b is a final board state that is lost, then V(b) = -100
 If b is a final board state that is drawn, then V(b) = 0
 If b is a not a final state in the game, then V(b) = V(b'),

Where b' is the best final board state that can be achieved starting from b and playing optimally

until the end of the game

3. Choosing a Representation for the Target Function

Let’s choose a simple representation - for any given board state, the function c will be calculated

as a linear combination of the following board features:

 xl: the number of black pieces on the board
 x2: the number of red pieces on the board
 x3: the number of black kings on the board
 x4: the number of red kings on the board

 x5: the number of black pieces threatened by red (i.e., which can be captured on red's

next turn)
 x6: the number of red pieces threatened by black

Thus, learning program will represent as a linear function of the form

Where,

 w0 through w6 are numerical coefficients, or weights, to be chosen by the learning

algorithm.

 Learned values for the weights w1 through w6 will determine the relative importance of

the various board features in determining the value of the board
 The weight w0 will provide an additive constant to the board value

4. Choosing a Function Approximation Algorithm

In order to learn the target function f we require a set of training examples, each describing a

specific board state b and the training value Vtrain(b) for b.

Each training example is an ordered pair of the form (b, Vtrain(b)).

For instance, the following training example describes a board state b in which black has won the

game (note x2 = 0 indicates that red has no remaining pieces) and for which the target function

value Vtrain(b) is therefore +100.

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)

Function Approximation Procedure

3. Derive training examples from the indirect training experience available to the learner
4. Adjusts the weights wi to best fit these training examples

2. Estimating training values

A simple approach for estimating training values for intermediate board states is to assign the

 training value of Vtrain(b) for any intermediate board state b to be

V(Successor(b))

Where ,

V is the learner's current approximation to V

 Successor(b) denotes the next board state following b for which it is again the

program's turn to move

Rule for estimating training values
Vtrain(b) ← V (Successor(b))

3. Adjusting the weights

Specify the learning algorithm for choosing the weights wi to best fit the set of training

examples {(b, Vtrain(b))}

A first step is to define what we mean by the bestfit to the training data.

One common approach is to define the best hypothesis, or set of weights, as that which

minimizes the squared error E between the training values and the values predicted by the

hypothesis.

Several algorithms are known for finding weights of a linear function that minimize E. One

such algorithm is called the least mean squares, or LMS training rule. For each observed

training example it adjusts the weights a small amount in the direction that reduces the error

on this training example

LMS weight update rule :- For each training example (b, Vtrain(b))

Use the current weights to calculate V (b)
For each weight wi, update it as

wi ← wi + ƞ (Vtrain (b) - V(b)) xi

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update.

Working of weight update rule

When the error (Vtrain(b)- V(b)) is zero, no weights are changed.

When (Vtrain(b) - V(b)) is positive (i.e., when V(b) is too low), then each weight
is increased in proportion to the value of its corresponding feature. This will raise

the value of V(b), reducing the error.

 If the value of some feature xi is zero, then its weight is not altered regardless of the

error, so that the only weights updated are those whose features actually occur on the

training example board.

The Final Design

The final design of checkers learning system can be described by four distinct program modules

that represent the central components in many learning systems

1. The Performance System is the module that must solve the given performance task by

using the learned target function(s). It takes an instance of a new problem (new game) as

input and produces a trace of its solution (game history) as output.

2. The Critic takes as input the history or trace of the game and produces as output a set of

training examples of the target function

3. The Generalizer takes as input the training examples and produces an output hypothesis

that is its estimate of the target function. It generalizes from the specific training

examples, hypothesizing a general function that covers these examples and other cases

beyond the training examples.

4. The Experiment Generator takes as input the current hypothesis and outputs a new

problem (i.e., initial board state) for the Performance System to explore. Its role is to

pick new practice problems that will maximize the learning rate of the overall system.

5)

Decision tree learning is a method for approximating discrete-valued target functions, in which the

learned function is represented by a decision tree.

DECISION TREE REPRESENTATION

 Decision trees classify instances by sorting them down the tree from the root to some leaf

node, which provides the classification of the instance.

 Each node in the tree specifies a test of some attribute of the instance, and

each branch descending from that node corresponds to one of the possible values for this

attribute.

 An instance is classified by starting at the root node of the tree, testing the attribute

specified by this node, then moving down the tree branch corresponding to the value of

the attribute in the given example. This process is then repeated for the subtree rooted at

the new node.

10 CO2 L2

FIGURE: A decision tree for the concept PlayTennis. An example is classified by sorting it
through the tree to the appropriate leaf node, then returning the classification associated with this
leaf.

Example:-

Let’s say we have a sample of 50 students with three variables Gender (Boy/ Girl), Class(X/ XI)

and Height (5 to 6 ft). 20 out of these 50 play cricket in rest time. Suppose you want to find on

unknown dataset which contains all the features(Gender, class, height) that he/she will play or not

in rest time.

This is where decision tree supports, it will separate the students based on all values of three

variable and identify the variable, which creates the best uniform sets of students

6) Issues in learning decision trees include

1 Avoiding Overfitting the Data

2 Reduced error pruning

3 Rule post-pruning

4 Incorporating Continuous-Valued Attributes
5 Alternative Measures for Selecting Attributes
6 Handling Training Examples with Missing Attribute Values

7 Handling Attributes with Differing Costs

 Avoiding Overfitting the Data

8 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify

the training examples but it can lead to difficulties when there is noise in the data, or

when the number of training examples is too small to produce a representative sample of

the true target function. This algorithm can produce trees that overfit the training

examples.

How can it be possible for tree h to fit the training examples better than h', but for it to perform

more poorly over subsequent examples?
9 Overfitting can occur when the training examples contain random errors or noise
10 When small numbers of examples are associated with leaf nodes.

Approaches to avoiding overfitting in decision tree learning

11 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where

it perfectly classifies the training data
12 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree

Criterion used to determine the correct final tree size

13 Use a separate set of examples, distinct from the training examples, to evaluate the utility

of post-pruning nodes from the tree

14 Use all the available data for training, but apply a statistical test to estimate whether

expanding (or pruning) a particular node is likely to produce an improvement beyond the

training set

15 Use measure of the complexity for encoding the training examples and the decision tree,

halting growth of the tree when this encoding size is minimized. This approach is called

the Minimum Description Length

MDL – Minimize : size(tree) + size (misclassifications(tree))

Reduced-Error Pruning

16 Reduced-error pruning, is to consider each of the decision nodes in the tree to be

candidates for pruning

17 Pruning a decision node consists of removing the subtree rooted at that node, making it a

10 CO2 L3

leaf node, and assigning it the most common classification of the training examples

affiliated with that node

18 Nodes are removed only if the resulting pruned tree performs no worse than-the original

over the validation set.

19 Reduced error pruning has the effect that any leaf node added due to coincidental

regularities in the training set is likely to be pruned because these same coincidences are

unlikely to occur in the validation set

2. Incorporating Continuous-Valued Attributes

Continuous-valued decision attributes can be incorporated into the learned tree.

There are two methods for Handling Continuous Attributes

20 Define new discrete valued attributes that partition the continuous attribute value into a

discrete set of intervals.
E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C}

21 Using thresholds for splitting nodes
e.g., A ≤ a produces subsets A ≤ a and A > a

What threshold-based Boolean attribute should be defined based on Temperature?

22 Pick a threshold, c, that produces the greatest information gain
23 In the current example, there are two candidate thresholds, corresponding to the values

of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2.
24 The information gain can then be computed for each of the candidate attributes,

Temperature >54, and Temperature >85 and the best can be selected (Temperature
>54)

3. Alternative Measures for Selecting Attributes

 The problem is if attributes with many values, Gain will select it ?

 Example: consider the attribute Date, which has a very large number of possible values.
(e.g., March 4, 1979).

 If this attribute is added to the PlayTennis data, it would have the highest information
gain of any of the attributes. This is because Date alone perfectly predicts the target
attribute over the training data. Thus, it would be selected as the decision attribute for
the root node of the tree and lead to a tree of depth one, which perfectly classifies the
training data.

 This decision tree with root node Date is not a useful predictor because it perfectly
separates the training data, but poorly predict on subsequent examples.

4. Handling Training Examples with Missing Attribute Values

The data which is available may contain missing values for some

attributes Example: Medical diagnosis
 <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>
 Sometimes values truly unknown, sometimes low priority (or cost too high)

Strategies for dealing with the missing attribute value

 If node n test A, assign most common value of A among other training examples sorted

to node n

 Assign most common value of A among other training examples with same target value

 Assign a probability pi to each of the possible values vi of A rather than simply assigning

the most common value to A(x)

5. Handling Attributes with Differing Costs

 In some learning tasks the instance attributes may have associated costs.

 For example: In learning to classify medical diseases, the patients described in terms of

attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc.

 These attributes vary significantly in their costs, both in terms of monetary cost and cost

to patient comfort

 Decision trees use low-cost attributes where possible, depends only on high-cost

attributes only when needed to produce reliable classifications.

7)

Step 1:

Total – 14 Yes(p) - 9 No(n) – 5

Attributes: Outlook ={Sunny, Overcast, Rain} Temperature = {Hot,

Mild, Cool}

 Humidity = {High, Normal} Wind ={Weak, Strong}

Step 2: Calculate the entropy of the dataset

Entropy(S) = - p+ log2 p+ - p- log2 p-

 =- -

 (

) -

 (

)

 =- (9/(9+5)) log(9/(9+5)) –(5/(9+5)) log(5/(9+5))

 =-(9/14) log(9/14) – (5/14) log(5/14)

 = (-0.643)(-0.637) – (0.357)(-1.486)

 =0.940

Step 3:

i) Select Outlook attribute

Outlook ={Sunny, Overcast, Rain}

Sunny : Yes(p)- 2 No(n)- 3

Overcast: Yes(p)- 4 No(n)- 0

Rain: Yes(p)- 3 No(n)- 2

a) Entropy of Outlook attribute

 =- -

 (

) -

 (

)

 Entropy(Outlook = Sunny) = -(2/5)log(2/5) – (3/5)log(3/5)

 = -(0.4)(-1.322) – (0.6)(-0.737) =0.971

 Entropy(Outlook = Overcast) = -(4/4)log(4/4) – 0 = 0

 Entropy(Outlook = Rain) = -(3/5)log(3/5) – (2/5)log(2/5)

 =-(0.6)(-0.737) – (0.4)(-1.322) = 0.971

b) Average Information Entropy(I)

I(Outlook) = ((2+3)/(9+5))*0.971 + ((3+2)/(9+5))*0.971 + 0

 = (5/14)*0.971 + 0.3571*0.971

 = 0.693

c) Information Gain(Outlook) = Entropy(S) –I(Outlook)

 = 0.940 - 0.940 = 0.247

ii) Select Temperature attribute

Temperature = {Hot, Mild, Cool}

Hot : p=2 n= 2

Mild: p=4 n=2

Cool: p=3 n=1

a. Calculate the entropy for Temperature

 =- -

 (

) -

 (

)

Entropy(Temperature= Hot)= -(2/4)log(2/4) – (2/4)log(2/4)

 = -(0.5)(-1) – (0.5)(-1)

 = 1

10 CO2 L5

Entropy(Temperature = Mild) = -(4/6)log(4/6) – (2/6)log(2/6)

 = -(0.66)(-0.599) – (0.33)(-1.599)

 = 0.923

Entropy(Temperature = Cool) = -(3/4)log(3/4) – (1/4)log(1/4)

 = -(0.75)(-0.415) – (0.25)(-2)

 = 0.811

b. Average Information Entropy(I)

I(Temperature) = (4/14)*1 + (6/14)* 0.923 + (4/14)* 0.811 = 0.913

c. Information Gain(Temperature)

 IG(Temperature) = Entropy(S) – I(Temperature)

 = 0.940 - 0.913

 = 0.027

iii) Select Humidity attribute

 Humidity = {High, Normal}

 High: p: 3 n:4

 Normal: p: 6 n: 1

a. Calculate the entropy for Temperature

 =- -

 (

) -

 (

)

Entropy(Humidity = High) = - (3/7)log(3/7) – (4/7)log(4/7)

 = -(0.4286)(-1.2223) – (0.5714)(-0.8074)

 = 0.985

Entropy(Humidity = Normal) = -(6/7)log(6/7) – (1/7)log(1/7)

 = -(0.8571)(-0.2225)-(0.1429)(-2.8069) =

0.591

b. Average Information Entropy

c. Average Information Entropy(I)

I(Humidity) = (7/14)*0.985 + (7/14)*0.591

 = 0.788

d. Information Gain(Humidity)

IG(Humidity) = Entropy(S) – I(Humidity)

 = 0.940 – 0.788

 = 0.152

iv) Select Windy attribute

 Wind ={Weak, Strong}

Weak: p:6 n:2

Strong: p:3 n:3

a. Calculate the entropy for Windy

 =- -

 (

) -

 (

)

Entropy(Windy = Weak) = -(6/8)log(6/8) – (2/8)log(2/8)

 = 0.811

Entropy(Windy = Strong) = -(3/6)log (3/6) – (3/6)log(3/6)

 = 1

b. Average Information Entropy(I)

I(Windy) = (8/14)* 0.811 + (6/14)*1

 = 0.892

c. Information Gain(Windy)

IG(Windy) = Entropy(S) – I(Windy)

 = 0.940 – 0.892 = 0.048

IG(Outlook) = 0.247

IG(Temperature) = 0.27

IG(Humidity) = 0.152

IG(Windy) = 0.048

Highest Information Gain is 0.247 -> Outlook

P:2 N:3 Total:5

Temperature= {hot, cool, mild}

Hot:p:0 n:2

Cool: p:1 n:0

Mild: p:1 n:1

Humidity={High, Normal}

High: p:0 n:3

Normal:p:2 n:0

Windy:{Weak, Strong}

Weak: p:1 n:2

Strong: p:1 n:1

1. Calculate the entropy of Dataset(S)

=- -

 (

) -

 (

)

Entropy = -(2/5)log(2/5) – (3/5)log(3/5) = 0.971

2. Calculate the Information Gain

a. Calculate entropy of humidity

Entropy(Humidity = High) = 0 – (3/3)log(3/3) = 0

Entropy(Humidity = Normal) = 0

b. Calculate Average information entropy(I) of humidity

I(Humidity) = 0

c. Information gain of humidity

IG(Humidity) = Entropy(S) – I(Humidity)

 =0.971 – 0 = 0.971

d. Calculate entropy of Windy

Windy:{Weak, Strong}

Weak: p:1 n:2

Strong: p:1 n:1

=- -

 (

) -

 (

)

Entropy(Windy = Weak) = -(1/3)log(1/3) – (2/3)log(2/3) = 0.918

Entropy(wind = Strong) = -(1/2)log(1/2) – (1/2) log(1/2) =1

e. Calculate Average information entropy of windy

I(Windy) = (3/5) *0.918 + (2/5)*1 = 0.951

f. Information gain of windy

IG(Windy) = Entropy(S) - I(Windy)

 = 0.971- 0.951 = 0.020

g. Calculate entropy of temperature

Temperature= {hot, cool, mild}

Hot:p:0 n:2

Cool: p:1 n:0

Mild: p:1 n:1

=- -

 (

) -

 (

)

Entropy (Temperature = hot) = 0

Entropy(Temperature = Cool) = 0

Entropy(Temperature = mild) = -(1/2)log(1/2) – (1/2)log(1/2) = 1

h. Calculate Average information entropy of temperature

I(temperature) = (2/5) * 0 + (1/5)*0 + (2/5)*1= 0.4

i. Information gain of temperature

IG(Temperature) =0.971 - 0.4 = 0.571

3. Select the attribute with highest information gain

IG(Temperature) =0.971 - 0.4 = 0.571

IG(Windy) = 0.020

IG(Humidity) = 0.971

 Total = 5

 P=3

 N= 2

1. Calculate the entropy of the dataset(S)

 (

) -

 (

)

Entropy = - (3/5)log(3/5) – (2/5)log(2/5) = 0.971

2. Calculate the information gain

a. Calculate entropy of temperature

Temperature ={mild, cool}

Mild:p:2 n:1

Cool:p:1 n:1

Entropy(temperature = mild) = -(2/3)log(2/3) – (1/3)log(1/3) = 0.918

Entropy(temperature = cool) =-(1/2)log(1/2) – (1/2)log(1/2) = 1

b. Calculate average information entropy of temperature

I(Temperature) = 0.951

c. Information gain of temperature

0.971 – 0.951 = 0.20

d. Calculate entropy of Humidity

Entropy(Humidity= High) = 1

Entropy(Humidity = Normal) = 0.918

e. Calculate average information entropy of humidity

I(Humidity) = 0.951

f. Information gain of humidity

Gain = 0.971 – 0.951 = 0.020

g. Calculate entropy of Windy

Entropy(Windy = Strong) = 0

Entropy(Windy = Weak) = 0

h. Calculate average information entropy of Windy

I(Windy) = 0

i. Information gain of Windy

Gain = 0.971 – 0 = 0.971

3. Select the attribute with highest information gain

Select Windy.

8) Entropy

Entropy is a measure of the randomness in the information being processed. The higher the

entropy, the harder it is to draw any conclusions from that information. Flipping a coin is an

example of an action that provides information that is random.

From the above graph, it is quite evident that the entropy H(X) is zero when the probability is

either 0 or 1. The Entropy is maximum when the probability is 0.5 because it projects perfect

randomness in the data and there is no chance if perfectly determining the outcome.

ID3 follows the rule — A branch with an entropy of zero is a leaf node and A brach with

entropy more than zero needs further splitting.
Mathematically Entropy for 1 attribute is represented as:

Information Gain

Information gain or IG is a statistical property that measures how well a given attribute separates

the training examples according to their target classification. Constructing a decision tree is all

about finding an attribute that returns the highest information gain and the smallest entropy.

10 CO2 L2

Information gain is a decrease in entropy. It computes the difference between entropy before split

and average entropy after split of the dataset based on given attribute values. ID3 (Iterative

Dichotomiser) decision tree algorithm uses information gain.

Mathematically, IG is represented as:

