CMR INSTITUTE OF TECHNOLOGY

HON					
USIN					

Sub:	1				sesment		Septembe	er 2020			ı		
Sub.				MACHI	NE LEAI	RNING				Co	de:	18MC	A53
Date:	15-	09-2020	Dura	tion: 90 n	nins M	ax Mark	s: 50	Sem:	V	Bra	nch:	MC	A
			Ans	wer Any 5	QUESTI	ON s					Marks	CO	BE RB
1a)	Define well-	posed learn	ning problem	and explain w	ith the help	of an exa	mple.				4	CO1	L1
1b)	Discuss the ii) ii) iii)	Choosin Choosin	ng the training ng the target fu	-		checkers l	earning prob	olem'.			6	CO1	L2
2)	Write FIND	-S algorith	m and discuss	the issues wit	h the algor	ithm					10	CO1	L2
3)	Consider the	given belo	ow following t	training examp	ole.								
ŕ	Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoyS	port				
	1	Sunny	Warm	Normal	Strong	Warm	Same	Yes					
	2	Sunny	Warm	High	Strong	Warm	Same	Yes					
	3	Rainy	Cold	High	Strong	Warm	Change	No			10	CO1	L5
	4	Sunny	Warm	High	Strong	Cool	Change	Yes					
	algorithm.						ying candida		uon				
4	Explain the			n designing a	learning sy	stem in br	ief.		non		10	CO1	
5	Explain the				learning sy	stem in br	ief.		LION		10	CO1	L2
	Explain the What is deci	sion tree a	nd discuss the	n designing a	learning sy	stem in br	ief.		uon				
5	Explain the What is deci	sion tree an	nd discuss the	n designing a	n tree for cring.	stem in brickers	ief. on with an ex	xample.			10	CO2	L2 L3
5 6)	Explain the What is deci	sion tree an	nd discuss the	n designing a use of decisio	n tree for c	stem in brickers	ief. on with an ex	xample.	e day.		10	CO2	L2 L3
5 6)	Explain the What is deci	sion tree at the practica lecision tre	nd discuss the	n designing a use of decisio cision tree lear wing dataset a	n tree for cring.	stem in brickers	on with an exolution	xample.	e day.		10	CO2	L2 L3
5 6)	Explain the What is deci	sion tree and the practical lecision tree	nd discuss the al issues of decee for the follo	n designing a use of decisio cision tree lear wing dataset a	n tree for coning. Ind predict Humidi	stem in brickers	on with an exolif will be p Wind Weak Strong	kample. layed on the Play (e day.		10	CO2	L2 L3
5 6)	What is deci Summarize to Design the dot Day D1	the practica lecision tre Outlook Sunny Sunny Overcast	nd discuss the al issues of dece for the follo Temp Hot Hot Hot Hot	n designing a use of decisio cision tree lear wing dataset a	on tree for coning. Indicate the predict the Humidity of the	stem in brickers	on with an exolution with an exolution will be pure wind weak Strong Weak	layed on the Play Control No No Yes	e day.		10	CO2	L2 L3
5 6)	What is deci Summarize to Design the do Day D1 D2 D3 D4	sion tree and the practical lecision tree Outlook Sunny Sunny Overcast Rain	nd discuss the al issues of dece for the followard Hot Hot Hot Mild	n designing a use of decisio cision tree lear wing dataset a	n tree for coning. nd predict Humidi High High High High	stem in brickets	on with an exolution with an exolution with an exolution will be part wind weak Strong Weak Weak Weak	layed on the Play Control No No Yes Yes	e day.		10	CO2	L2 L3
5 6)	What is deci Summarize to Design the do Day D1 D2 D3 D4 D5	sion tree and the practical lecision tree Outlook Sunny Sunny Overcast Rain Rain	nd discuss the al issues of dece for the followard Hot Hot Hot Mild Cool	use of decision tree lear wing dataset a perature	on tree for coming. In predict Humidity High High High Normal	stem in br	on with an exolution with an exolution will be part wind weak Strong weak weak weak	layed on the Play Control No No Yes Yes Yes	e day.		10	CO2	L2 L3
5 6)	What is deci Summarize to Design the do Day D1 D2 D3 D4 D5 D6	sion tree and the practical lecision tree Outlook Sunny Sunny Overcast Rain Rain Rain	nd discuss the al issues of dece for the followard Hot Hot Hot Mild Cool	use of decision tree lear wing dataset a perature	on tree for conting. In predict Humidity High High High Normal Normal	elassification whether G	on with an export will be property wind weak Strong Weak Weak Weak Strong	layed on the Play Control No No Yes Yes No	e day.		10	CO2	L2
5 6)	What is deci Summarize to Design the do Day D1 D2 D3 D4 D5 D6 D7	sion tree and the practical lecision tree Outlook Sunny Sunny Overcast Rain Rain Rain Overcast	nd discuss the al issues of dece for the followard Hot Hot Hot Mild Cool Cool	n designing a use of decisio cision tree lear wing dataset a perature	on tree for conting. In predict Humidity High High High Normal Normal Normal	elassification whether G	on with an exolution with an exolution with an exolution will be part with weak Strong Weak Weak Strong Strong	layed on the Play Control No No Yes Yes No Yes	e day.		10	CO2	L2 L3
5 6)	What is deci Summarize to Design the do Day D1 D2 D3 D4 D5 D6 D7 D8	sion tree and the practical lecision tree Outlook Sunny Sunny Overcast Rain Rain Rain Overcast Sunny	nd discuss the al issues of dece for the following the Hot Hot Hot Mild Cool Cool to Cool Mild	n designing a use of decisio cision tree lear wing dataset a perature	on tree for conting. In predict Humidity High High High Normal Normal High High	elassification whether G	on with an exponential of the control of the contro	layed on the Play ONO NO Yes Yes NO Yes NO	e day.		10	CO2	L2 L3
5 6)	What is deci Summarize to Design the do Day D1 D2 D3 D4 D5 D6 D7 D8 D9	sion tree and the practical lecision tree Outlook Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny	nd discuss the al issues of dece for the followard for the followa	n designing a use of decisio cision tree lear wing dataset a perature	on tree for coming. In predict Humidi High High High Normal Normal High Normal Normal High Normal High Normal	elassification whether G	on with an exponential of the control of the contro	layed on the Play (No No Yes Yes No Yes No Yes No Yes	e day.		10	CO2	L2 L3
5 6)	What is deci Summarize to Design the decimal Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10	sion tree and the practical lecision tree Outlook Sunny Sunny Overcast Rain Rain Rain Overcast Sunny Sunny Sunny	nd discuss the al issues of dece e for the follor	n designing a use of decisio cision tree lear wing dataset a perature	on tree for coming. In predict Humidi High High High Normal Normal High Normal Normal High Normal High Normal High Normal Norma	elassification whether G	on with an exponential or with a possible or with a possible or with an exponential or with an exponential or with a possible or with an exponential or with a possible or with a	No No Yes Yes No Yes No Yes Yes No Yes Yes No Yes	e day.		10	CO2	L2
5 6)	What is deci Summarize to Design the decimal Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11	the practical lecision tree outlook Sunny Sunny Overcast Rain Rain Rain Overcast Sunny Sunny Sunny Sunny	nd discuss the al issues of dece e for the follo	n designing a use of decisio cision tree lear wing dataset a perature	on tree for coming. In tree f	elassification whether G	on with an exponential of the control of the contro	layed on the Play On No No Yes Yes No Yes No Yes	e day.		10	CO2	L2 L3
5 6)	What is deci Summarize to Design the d Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12	the practical lecision tree Outlook Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Sunny Sunny Sunny Sunny Overcast	nd discuss the al issues of dece e for the follor Hot Hot Hot Cool Cool Cool Mild Cool Mild Cool Mild Mild Mild Mild Mild Mild	n designing a use of decisio cision tree lear wing dataset a perature	on tree for coming. In tree for coming. In predict Humidi High High High Normal Normal High Normal Normal High Normal High Normal High Normal High Normal Normal High Normal High High High High High	stem in br	on with an expension weak. Weak weak weak weak strong strong strong	layed on the Play On No No Yes Yes No Yes	e day.		10	CO2	L2
5 6)	What is deci Summarize to Design the d Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13	the practical lecision tree outlook Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Sunny Sunny Sunny Covercast Sunny Covercast	nd discuss the al issues of dece e for the follo	n designing a use of decisio cision tree lear wing dataset a perature	n tree for coming. In tree for coming. In predict Humidi High High High Normal Normal Normal Normal Normal Normal Normal Normal Normal	stem in br	on with an expension weak. Weak weak weak weak strong strong weak.	No No Yes Yes No Yes	e day.		10	CO2	L2 L3
5 6)	What is deci Summarize to Design the d Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	sion tree and the practical lecision tree Outlook Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Sunny Rain Sunny Overcast Rain	nd discuss the al issues of dece e for the follo	n designing a use of decisio cision tree lear wing dataset a perature	en tree for coming. In tree for coming. In predict Humidi High High High Normal	stem in bright stem i	on with an expension weak. Weak weak weak weak strong strong weak strong strong weak strong	No No Yes Yes No Yes Yes Yes Yes No Yes Yes No Yes No Yes Yes No Yes No Yes No Yes No	e day. Golf		10	CO2	L.

Internal Assessment Test 1 – Sep. 2020

Sub:			MACHINE 1	LEARNING	G			Sub Code:	18MCA 53
Date:	15-09-2020	Duration:	90 min's	Max Marks:	50	Sem	5 th	Branch:	MCA

Note: Answer FIVE FULL Questions, choosing ONE full question from each Module

			Ol	BE
	PART I	MAR KS	C O	RB T
1a)	Well-Posed Learning Definition: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Examples: Checkers Game: A computer program that learns to play checkers might improve its performance as measured by its ability to win at the class of tasks involving playing checkers game, through experience obtained by playing games against itself: checkers learning problem: Task T: playing checkers Performance measure P: percent of games won against opponents Training experience E: playing practice games against itself A handwriting recognition learning problem: Task T: recognizing and classifying handwritten words within images Performance measure P: percent of words correctly classified Training experience E: a database of handwritten words with given classifications A robot driving learning problem: Task T: driving on public four-lane highways using vision sensors Performance measure P: average distance travelled before an error (as judged by human overseer) Training experience E: a sequence of images and steering commands recorded while observing a human driver	4	CO1	L1
1b)	The basic design issues and approaches to machine learning are illustrated by designing a program to learn to play checkers, with the goal of entering it in the world checkers tournament 1. Choosing the Training Experience 2. Choosing the Target Function 3. Choosing a Function Approximation Algorithm 1. Estimating training values 2. Adjusting the weights 1. Choosing the Training Experience The first design choice is to choose the type of training experience from which the	6	CO1	L2

system will learn.

The type of training experience available can have a significant impact on success or

There are three attributes which impact on success or failure of the learner

1. Whether the training experience provides *direct or indirect feedback* regarding the choices made by the performance system.

For example, in checkers game:

failure of the learner.

In learning to play checkers, the system might learn from *direct training examples* consisting of *individual checkers board states* and *the correct move for each*.

Indirect training examples consisting of the **move sequences** and **final outcomes** of various games played. The information about the correctness of specific moves early in the game must be inferred indirectly from the fact that the game was eventually won or lost.

Here the learner faces an additional problem of *credit assignment*, or determining the degree to which each move in the sequence deserves credit or blame for the final outcome.

2. The degree to which the *learner controls the sequence of training examples*

For example, in checkers game:

The learner might depends on the *teacher* to select informative board states and to provide the correct move for each.

Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the teacher for the correct move.

The learner may have complete control over both the board states and (indirect) training classifications, as it does when it learns by playing against itself with *no teacher present*.

3. How well it represents the *distribution of examples* over which the final system performance P must be measured

For example, in checkers game:

In checkers learning scenario, the performance metric P is the percent of games the system wins in the world tournament.

If its training experience E consists only of games played against itself, there is a danger that this training experience might not be fully representative of the distribution of situations over which it will later be tested.

It is necessary to learn from a distribution of examples that is different from those on which the final system will be evaluated.

2. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be learned and how this will be used by the performance program.

Let's consider a checkers-playing program that can generate the legal moves from any board state. The program needs only to learn how to choose the best move from among these legal moves. We must learn to choose among the legal moves, the most obvious choice for the type of information to be learned is a program, or function, that chooses the best move for any given board state.

1. Let <i>ChooseMove</i> be the target function and the notation is	
ChooseMove: $B \rightarrow M$	
which indicate that this function accepts as input any board from the set of legal board	
states B and produces as output some move from the set of legal moves M.	
ChooseMove is a choice for the target function in checkers example, but this function will turn out to be very difficult to learn given the kind of indirect training experience	
available to our system	
available to our system	
2. An alternative target function is an <i>evaluation function</i> that assigns a <i>numerical score</i> to	
any given board state	
Let the target function V and the notation	
$V:B \longrightarrow R$	
which denote that V maps any legal board state from the set B to some real value. Intend	
for this target function V to assign higher scores to better board states. If the system can	
successfully learn such a target function V, then it can easily use it to select the best	
move from any current board position.	
Let us define the target value V(b) for an arbitrary board state b in B, as follows:	
If b is a final board state that is won, then $V(b) = 100$	
☐ If b is a final board state that is lost, then $V(b) = -100$ ☐ If b is a final board state that is drawn, then $V(b) = 0$	
☐ If b is a not a final state in the game, then $V(b) = V(b')$,	
If the is a not a final state in the game, then $V(t) = V(t)$,	
Where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game	
3. Choosing a Function Approximation Algorithm	
In order to learn the target function f we require a set of training examples, each describing a specific board state b and the training value Vtrain(b) for b.	
Each training example is an ordered pair of the form (b, Vtrain(b)).	
For instance, the following training example describes a board state b in which black has won the	
game (note $x2 = 0$ indicates that red has no remaining pieces) and for which the target function value Vtrain(b) is therefore +100.	
((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)	
Function Approximation Procedure	
 Derive training examples from the indirect training experience available to the learner Adjusts the weights wi to best fit these training examples 	
Estimating training values A simple approach for estimating training values for intermediate board states is to assign the training value of Vtrain(b) for any intermediate board state b to be V(Successor(b)) Where,	
V is the learner's current approximation to V	
Successor(b) denotes the next board state following b for which it is again the	
	 _

	program's turn to move Rule for estimating training values			
	$Vtrain(b) \leftarrow V (Successor(b))$ 2. Adjusting the weights			
	Specify the learning algorithm for choosing the weights wi to best fit the set of training examples {(b, Vtrain(b))}			
	A first step is to define what we mean by the bestfit to the training data.			
	One common approach is to define the best hypothesis, or set of weights, as that which minimizes the squared error E between the training values and the values predicted by the hypothesis.			
	Several algorithms are known for finding weights of a linear function that minimize E. One such algorithm is called the <i>least mean squares</i> , <i>or LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example	l		
	LMS weight update rule: For each training example (b, Vtrain(b))			
	Use the current weights to calculate V (b)			
	For each weight wi, update it as			
	$wi \leftarrow wi + \eta (Vtrain (b) - V(b)) xi$			
	Here η is a small constant (e.g., 0.1) that moderates the size of the weight update.			
	Working of weight update rule			
	^			
	When the error (Vtrain(b)- V(b)) is zero, no weights are changed.			
	When (Vtrain(b) - V(b)) is positive (i.e., when V(b) is too low), then each weight is increased in proportion to the value of its corresponding feature. This will raise	:		
	the value of V(b), reducing the error.			
	If the value of some feature xi is zero, then its weight is not altered regardless of the error, so that the only weights updated are those whose features actually occur on the training example board.			
2)	FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS			
	FIND-S Algorithm			
	1. Initialize h to the most specific hypothesis in H			
	2. For each positive training instance <i>x</i>			
	For each attribute constraint a_i in h			
	If the constraint a_i is satisfied by x			
	Then do nothing	10	CO1	L2
	Else replace a_i in h by the next more general constraint that is satisfied by x 3.			
	Output hypothesis h			
	Unanswered by FIND-S			
	Has the learner converged to the correct target concept?			
	2. Why prefer the most specific hypothesis?			
	3. Are the training examples consistent?			
	4. What if there are several maximally specific consistent hypotheses?		l i	1

	For training example d, (Sunny, Warm, High, Strong, Cool Change) +			
	S ₃ \(\summath{Sunny}, Warm, ?, Strong, Warm, Same\)			
	S_4 $\langle Sunny, Warm, ?, Strong, ?, ? \rangle$			
	G ₄ $\langle Sunny, ?, ?, ?, ?, ? \rangle \langle ?, Warm, ?, ?, ?, ? \rangle$			
	G_3 $\langle Sunny, ?, ?, ?, ?, ? \rangle \langle ?, Warm, ?, ?, ?, ? \rangle \langle ?, ?, ?, ?, ?, Sam$			
	After processing these four examples, the boundary sets S4 and G4 delimit the version space of all hypotheses consistent with the set of incrementally observed training examples.			
	S_4 $\langle Sunny, Warm, ?, Strong, ?, ? \rangle$			
	\(\summy, ?, ?, strong, ?, ?)\(\summy, Warm, ?, ?, ?, ?\)\(\sigma, Warm, ?, Strong, ?, ?)\(\sigma, Warm, ?, ?, ?\)\(\sigma, Warm, ?, Strong, ?, ?\)\(\sigma, Warm, ?, ?\)\(\sigma, Warm, ?, ?\)\(\sigma, Warm, ?\)\(\sigma, Varm, ?\)\(\sigma, Va			
	C (Comm. 2 2 2 2 2) (2 Wymm. 2 2 2 2)			
4)	$G_4 \qquad \langle Sunny, ?, ?, ?, ?, ? \rangle \langle ?, Warm, ?, ?, ?, ? \rangle$ DESIGNING A LEARNING SYSTEM			
4)	DESIGNING A LEARNING STSTEM			
	The basic design issues and approaches to machine learning are illustrated by designing a program to learn to play checkers, with the goal of entering it in the world checkers			
	tournament 4. Choosing the Training Experience			
	5. Choosing the Target Function			
	6. Choosing a Representation for the Target Function 7. Choosing a Function Approximation Algorithm			
	7. Choosing a Function Approximation Algorithm 1. Estimating training values			
	2. Adjusting the weights			
	8. The Final Design) (201	L2
	2. Choosing the Training Experience			L/2
	☐ The first design choice is to choose the type of training experience from which the system will learn.			
	☐ The type of training experience available can have a significant impact on success or failure of the learner.			
	There are three attributes which impact on success or failure of the learner			
	2. Whether the training experience provides <i>direct or indirect feedback</i> regarding the choices made by the performance system.			

For example, in checkers game:

In learning to play checkers, the system might learn from *direct training examples* consisting of *individual checkers board states* and *the correct move for each*.

Indirect training examples consisting of the **move sequences** and **final outcomes** of various games played. The information about the correctness of specific moves early in the game must be inferred indirectly from the fact that the game was eventually won or lost.

Here the learner faces an additional problem of *credit assignment*, or determining the degree to which each move in the sequence deserves credit or blame for the final outcome.

4. The degree to which the *learner controls the sequence of training examples*

For example, in checkers game:

The learner might depends on the *teacher* to select informative board states and to provide the correct move for each.

Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the teacher for the correct move.

The learner may have complete control over both the board states and (indirect) training classifications, as it does when it learns by playing against itself with *no teacher present*.

5. How well it represents the *distribution of examples* over which the final system performance P must be measured

For example, in checkers game:

In checkers learning scenario, the performance metric P is the percent of games the system wins in the world tournament.

If its training experience E consists only of games played against itself, there is a danger that this training experience might not be fully representative of the distribution of situations over which it will later be tested.

It is necessary to learn from a distribution of examples that is different from those on which the final system will be evaluated.

3. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be learned and how this will be used by the performance program.

Let's consider a checkers-playing program that can generate the legal moves from any board state. The program needs only to learn how to choose the best move from among these legal moves. We must learn to choose among the legal moves, the most obvious choice for the type of information to be learned is a program, or function, that chooses the best move for any given board state.

1. Let *ChooseMove* be the target function and the notation is

ChooseMove: $B \rightarrow M$

which indicate that this function accepts as input any board from the set of legal board states B and produces as output some move from the set of legal moves M. *ChooseMove* is a choice for the target function in checkers example, but this function will turn out to be very difficult to learn given the kind of indirect training experience available to our system

	n alternative target function is an <i>evaluation function</i> that assigns a <i>numerical score</i> to make any given board state	
	et the target function V and the notation	
	$V:B \longrightarrow R$	
for suc	hich denote that V maps any legal board state from the set B to some real value. Intend r this target function V to assign higher scores to better board states. If the system can coessfully learn such a target function V, then it can easily use it to select the best ove from any current board position.	
☐ If I☐	the the target value $V(b)$ for an arbitrary board state b in B , as follows: b is a final board state that is won, then $V(b) = 100b$ is a final board state that is lost, then $V(b) = -100b$ is a final board state that is drawn, then $V(b) = 0b$ is a not a final state in the game, then $V(b) = V(b')$,	
Where b' is	the best final board state that can be achieved starting from b and playing optimally d of the game	
3. Choosing	g a Representation for the Target Function	
	se a simple representation - for any given board state, the function c will be calculated combination of the following board features:	
□ x2 □ x3 □ x4 □ x5 ne:	the number of black pieces on the board the number of red pieces on the board the number of black kings on the board the number of red kings on the board the number of black pieces threatened by red (i.e., which can be captured on red's ext turn) the number of red pieces threatened by black	
Thus, learni	ing program will represent as a linear function of the form	
Where,	$= w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_6 x_6$	
alg	O through w6 are numerical coefficients, or weights, to be chosen by the learning gorithm. Parned values for the weights w1 through w6 will determine the relative importance of e various board features in determining the value of the board ne weight w0 will provide an additive constant to the board value	
4. Choosin	ng a Function Approximation Algorithm	
	learn the target function f we require a set of training examples, each describing a ard state b and the training value Vtrain(b) for b.	
Each trainin	ng example is an ordered pair of the form (b, Vtrain(b)).	
	e, the following training example describes a board state b in which black has won the $x2 = 0$ indicates that red has no remaining pieces) and for which the target function	

1 77 1 (1) 1 (1) 2 (1) 4 (0)	
value Vtrain(b) is therefore +100.	
((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)	
Function Approximation Procedure	
3. Derive training examples from the indirect training experience available to the learner4. Adjusts the weights wi to best fit these training examples	
2. Estimating training values A simple approach for estimating training values for intermediate board states is to assign the training value of Vtrain(b) for any intermediate board state b to be V(Successor(b)) Where,	
☐ <i>V</i> is the learner's current approximation to V	
☐ Successor(b) denotes the next board state following b for which it is again the program's turn to move	
Rule for estimating training values $Vtrain(b) \leftarrow V (Successor(b))$	
3. Adjusting the weights	
Specify the learning algorithm for choosing the weights wi to best fit the set of training examples {(b, Vtrain(b))}	
A first step is to define what we mean by the bestfit to the training data.	
One common approach is to define the best hypothesis, or set of weights, as that which minimizes the squared error E between the training values and the values predicted by the hypothesis.	
Several algorithms are known for finding weights of a linear function that minimize E. One such algorithm is called the <i>least mean squares</i> , <i>or LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example	1
such algorithm is called the <i>least mean squares</i> , or <i>LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error	1
such algorithm is called the <i>least mean squares</i> , or <i>LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example	1
such algorithm is called the <i>least mean squares</i> , <i>or LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example **LMS weight update rule :- For each training example (b, Vtrain(b))	1
such algorithm is called the <i>least mean squares</i> , <i>or LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example **LMS weight update rule :- For each training example (b, Vtrain(b)) Use the current weights to calculate V (b)	1
such algorithm is called the <i>least mean squares</i> , <i>or LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example **LMS weight update rule :- For each training example (b, Vtrain(b)) Use the current weights to calculate V (b) For each weight wi, update it as	1
such algorithm is called the <i>least mean squares</i> , or <i>LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example	1
such algorithm is called the <i>least mean squares</i> , or <i>LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example *LMS weight update rule: For each training example (b, Vtrain(b)) Use the current weights to calculate V (b) For each weight wi, update it as $wi \leftarrow wi + \eta (Vtrain (b) - V(b)) xi$ Here η is a small constant (e.g., 0.1) that moderates the size of the weight update.	1
such algorithm is called the <i>least mean squares</i> , or <i>LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example *LMS weight update rule: For each training example (b, Vtrain(b)) Use the current weights to calculate V (b) For each weight wi, update it as $wi \leftarrow wi + \eta (Vtrain (b) - V(b)) xi$ Here η is a small constant (e.g., 0.1) that moderates the size of the weight update.	1
such algorithm is called the <i>least mean squares</i> , or <i>LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the erro on this training example **LMS weight update rule :- For each training example (b, Vtrain(b)) Use the current weights to calculate V (b) For each weight wi, update it as wi ← wi + η (Vtrain (b) - V(b)) xi Here η is a small constant (e.g., 0.1) that moderates the size of the weight update. **Working of weight update rule**	
such algorithm is called the <i>least mean squares</i> , or <i>LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example **LMS weight update rule :- For each training example (b, Vtrain(b)) **Use the current weights to calculate V (b) **For each weight wi, update it as **wi \(\sim \text{wi} + \eta \) (Vtrain (b) - V(b)) xi **Here \(\eta \) is a small constant (e.g., 0.1) that moderates the size of the weight update. **Working of weight update rule** **Working of weight update rule** **When (Vtrain(b) - V(b)) is zero, no weights are changed. **When (Vtrain(b) - V(b)) is positive (i.e., when V(b) is too low), then each weight	
such algorithm is called the <i>least mean squares</i> , <i>or LMS training rule</i> . For each observed training example it adjusts the weights a small amount in the direction that reduces the erro on this training example **LMS weight update rule :- For each training example (b, Vtrain(b)) Use the current weights to calculate V (b) For each weight wi, update it as wi ← wi + η (Vtrain (b) - V(b)) xi Here η is a small constant (e.g., 0.1) that moderates the size of the weight update. Working of weight update rule When the error (Vtrain(b) - V(b)) is zero, no weights are changed. When (Vtrain(b) - V(b)) is positive (i.e., when V(b) is too low), then each weight is increased in proportion to the value of its corresponding feature. This will raise	

The final design of checkers learning system can be described by four distinct program modules that represent the central components in many learning systems 1. **The Performance System** is the module that must solve the given performance task by using the learned target function(s). It takes an instance of a new problem (new game) as input and produces a trace of its solution (game history) as output. The Critic takes as input the history or trace of the game and produces as output a set of training examples of the target function The Generalizer takes as input the training examples and produces an output hypothesis that is its estimate of the target function. It generalizes from the specific training examples, hypothesizing a general function that covers these examples and other cases beyond the training examples. 4. The Experiment Generator takes as input the current hypothesis and outputs a new problem (i.e., initial board state) for the Performance System to explore. Its role is to pick new practice problems that will maximize the learning rate of the overall system. Experiment Generator New problem Hypothesis (initial game board) (V) Performance Generalizer System Solution trace (game history) Critic Decision tree learning is a method for approximating discrete-valued target functions, in which the 5) learned function is represented by a decision tree. DECISION TREE REPRESENTATION Decision trees classify instances by sorting them down the tree from the root to some leaf node, which provides the classification of the instance. Each node in the tree specifies a test of some attribute of the instance, and each branch descending from that node corresponds to one of the possible values for this attribute. An instance is classified by starting at the root node of the tree, testing the attribute 10 CO2 L2 specified by this node, then moving down the tree branch corresponding to the value of the attribute in the given example. This process is then repeated for the subtree rooted at the new node. Outlook Overcasi Humidity Wind Yes

	FIGURE: A decision tree for the concept <i>PlayTennis</i> . An example is classified by sorting it through the tree to the appropriate leaf node, then returning the classification associated with this leaf.			
	Example:-			
	Let's say we have a sample of 50 students with three variables Gender (Boy/ Girl), Class(X/ XI)			
	and Height (5 to 6 ft). 20 out of these 50 play cricket in rest time. Suppose you want to find on			
	unknown dataset which contains all the features(Gender, class, height) that he/she will play or not			
	in rest time.			
	This is where decision tree supports, it will separate the students based on all values of three			
	variable and identify the variable, which creates the best uniform sets of students			
6)	Issues in learning decision trees include 1 Avoiding Overfitting the Data 2 Reduced error pruning			
	2 Reduced error pruning 3 Rule post-pruning 4 Incorporating Continuous-Valued Attributes 5 Alternative Measures for Selecting Attributes 6 Handling Training Examples with Missing Attribute Values 7 Handling Attributes with Differing Costs			
	Avoiding Overfitting the Data			
	8 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the training examples but it can lead to difficulties when there is noise in the data, or when the number of training examples is too small to produce a representative sample of the true target function. This algorithm can produce trees that overfit the training examples.			
	How can it be possible for tree h to fit the training examples better than h', but for it to perform more poorly over subsequent examples?			
	 Overfitting can occur when the training examples contain random errors or noise When small numbers of examples are associated with leaf nodes. 			
	Approaches to avoiding overfitting in decision tree learning	10	CO2	L3
	11 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data			
	12 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree			
	Criterion used to determine the correct final tree size			
	13 Use a separate set of examples, distinct from the training examples, to evaluate the utility of post-pruning nodes from the tree			
	14 Use all the available data for training, but apply a statistical test to estimate whether expanding (or pruning) a particular node is likely to produce an improvement beyond the training set			
	15 Use measure of the complexity for encoding the training examples and the decision tree, halting growth of the tree when this encoding size is minimized. This approach is called the Minimum Description Length			
	MDL – Minimize : size(tree) + size (misclassifications(tree)) Reduced-Error Pruning			
	16 Reduced-error pruning, is to consider each of the decision nodes in the tree to be candidates for pruning			
	17 <i>Pruning</i> a decision node consists of removing the subtree rooted at that node, making it a			

- leaf node, and assigning it the most common classification of the training examples affiliated with that node
- 18 Nodes are removed only if the resulting pruned tree performs no worse than-the original over the validation set.
- 19 Reduced error pruning has the effect that any leaf node added due to coincidental regularities in the training set is likely to be pruned because these same coincidences are unlikely to occur in the validation set

2. <u>Incorporating Continuous-Valued Attributes</u>

Continuous-valued decision attributes can be incorporated into the learned tree.

There are two methods for Handling Continuous Attributes

20 Define new discrete valued attributes that partition the continuous attribute value into a discrete set of intervals.

E.g., $\{\text{high} \equiv \text{Temp} > 35^{\circ} \text{ C}, \text{ med} \equiv 10^{\circ} \text{ C} < \text{Temp} \leq 35^{\circ} \text{ C}, \text{ low} \equiv \text{Temp} \leq 10^{\circ} \text{ C} \}$

21 Using thresholds for splitting nodes

e.g., $A \le a$ produces subsets $A \le a$ and A > a

What threshold-based Boolean attribute should be defined based on Temperature?

Temperature: 40 48 60 72 80 90 PlayTennis: No No Yes Yes Yes No

- 22 Pick a threshold, c, that produces the greatest information gain
- 23 In the current example, there are two candidate thresholds, corresponding to the values of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2.
 - 24The information gain can then be computed for each of the candidate attributes, Temperature >54, and Temperature >85 and the best can be selected (Temperature >54)

3. Alternative Measures for Selecting Attributes

- The problem is if attributes with many values, Gain will select it?
- Example: consider the attribute Date, which has a very large number of possible values. (e.g., March 4, 1979).
- If this attribute is added to the PlayTennis data, it would have the highest information gain of any of the attributes. This is because Date alone perfectly predicts the target attribute over the training data. Thus, it would be selected as the decision attribute for the root node of the tree and lead to a tree of depth one, which perfectly classifies the training data.
- This decision tree with root node Date is not a useful predictor because it perfectly separates the training data, but poorly predict on subsequent examples.

4. Handling Training Examples with Missing Attribute Values

5. Handling Attributes with Differing Costs

The da	ta which is available may contain missing values for some
attribut	es Example: Medical diagnosis
	<pre><fever =="" blood-pressure="normal,," blood-test="?," true,=""></fever></pre>
	Sometimes values truly unknown, sometimes low priority (or cost too high)
Strateg	ies for dealing with the missing attribute value
	If node n test A, assign most common value of A among other training examples sorted to node n
	Assign most common value of A among other training examples with same target value
	Assign a probability pi to each of the possible values vi of A rather than simply assignin the most common value to $A(x)$

	☐ In some learning tasks the instance attributes may have associated	d costs.			
	☐ For example: In learning to classify medical diseases, the patients attributes such as Temperature, BiopsyResult, Pulse, BloodTestR				
	☐ These attributes vary significantly in their costs, both in terms of to patient comfort	monetary cost and cost			
	Decision trees use low-cost attributes where possible, depends on attributes only when needed to produce reliable classifications.	aly on high-cost			
7)	Step 1: Total – 14 Yes(p) - 9 No(n) – 5				
	Attributes: Outlook ={Sunny, Overcast, Rain} Mild, Cool}	Temperature = {Hot,			
		Wind ={Weak, Strong}			
	Step 2: Calculate the entropy of the dataset				
	$Entropy(S) = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$				
	$= -\frac{p}{p+n}log\left(\frac{p}{p+n}\right) - \frac{n}{p+n}log\left(\frac{n}{p+n}\right)$				
	$= -(9/(9+5)) \log(9/(9+5)) - (5/(9+5)) \log(5/(9+5))$				
	$= -(9/14) \log(9/14) - (5/14) \log(5/14)$ $= (-0.643)(-0.637) - (0.357)(-1.486)$				
	= (-0.043)(-0.037) = (0.337)(-1.400)				
	Step 3:				
	i) Select Outlook attribute				
	Outlook ={Sunny, Overcast, Rain}				
	Sunny : Yes(p)- 2	No(n)- 3			
	Overcast: Yes(p)- 4	No(n)- 0			
	Rain: Yes(p)- 3	No(n)- 2			
	a) Entropy of Outlook attribute				
	$ = -\frac{p}{p+n} \log \left(\frac{p}{p+n} \right) - \frac{n}{p+n} \log \left(\frac{n}{p+n} \right) $ $Entropy(Outlook = Sunny) = -(2/5) \log(2/5) - (3/5) \log(3/5) $ $ = -(0.4)(-1.322) - (0.4)(-1.322) - (0.4)(-1.322) $ $Entropy(Outlook = Overcast) = -(4/4) \log(4/4) - 0 = 0 $	0.6)(-0.737) =0.971	10	CO2	Ť
	Entropy(Outlook = Rain) = $-(3/5)\log(3/5) - (2/5)\log(2/5)$ = $-(0.6)(-0.737) - (0.4)(-1.32)$	2) = 0.971	10	CO2	1
	b) Average Information Entropy(I)				
	I(Outlook) = ((2+3)/(9+5))*0.971 + ((3+2)/(9+5))*0.971 +	-0			
	= (5/14)*0.971 + 0.3571*0.971				
	= 0.693				
	3.655				
	c) Information Gain(Outlook) = Entropy(S) –I(Outlook)				
	= 0.940 - 0.940 = 0.247				
	ii) Select Temperature attribute				
	Temperature = {Hot, Mild, Cool}				
	Hot:p=2				
	Mild: p=4 n=				
	Cool: p=3	:1			
	a. Calculate the entropy for Temperature				
	$= -\frac{p}{p+n} log\left(\frac{p}{p+n}\right) - \frac{n}{p+n} log\left(\frac{n}{p+n}\right)$				
		,			
	Entropy(Temperature= Hot)= $-(2/4)\log(2/4) - (2/4)\log(2/4)$)			
	= -(0.5)(-1) - (0.5)(-1)				
	= 1				

Entropy(Temperature = Mild) =
$$-(4/6)\log(4/6) - (2/6)\log(2/6)$$

= $-(0.66)(-0.599) - (0.33)(-1.599)$
= 0.923
Entropy(Temperature = Cool) = $-(3/4)\log(3/4) - (1/4)\log(1/4)$
= $-(0.75)(-0.415) - (0.25)(-2)$
= 0.811

b. Average Information Entropy(I)

I(Temperature) = (4/14)*1 + (6/14)*0.923 + (4/14)*0.811 = 0.913

c. Information Gain(Temperature)

= 0.027

iii) Select Humidity attribute

Humidity = {High, Normal}

High: p: 3
Normal: p: 6

a. Calculate the entropy for Temperature

=.
$$-\frac{p}{p+n} log\left(\frac{p}{p+n}\right)$$
 - $-\frac{n}{p+n} log\left(\frac{n}{p+n}\right)$
Entropy(Humidity = High) = - (3/7)log(3/7) - (4/7)log(4/7)
= -(0.4286)(-1.2223) - (0.5714)(-0.8074)
= 0.985
Entropy(Humidity = Normal) = -(6/7)log(6/7) - (1/7)log(1/7)
= -(0.8571)(-0.2225)-(0.1429)(-2.8069) =

n:4

n: 1

0.591

- b. Average Information Entropy
- c. Average Information Entropy(I)

d. Information Gain(Humidity)

IG(Humidity) = Entropy(S) – I(Humidity)
=
$$0.940 - 0.788$$

= 0.152

iv) Select Windy attribute

Wind ={Weak, Strong}

 Weak: p:6
 n:2

 Strong: p:3
 n:3

a. Calculate the entropy for Windy

$$= -\frac{p}{p+n} \log \left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log \left(\frac{n}{p+n}\right)$$

Entropy(Windy = Weak) =
$$-(6/8)\log(6/8) - (2/8)\log(2/8)$$

= 0.811
Entropy(Windy = Strong) = $-(3/6)\log(3/6) - (3/6)\log(3/6)$
= 1

b. Average Information Entropy(I)

$$I(Windy) = (8/14)* 0.811 + (6/14)*1$$

= 0.892

c. Information Gain(Windy)

$$IG(Windy) = Entropy(S) - I(Windy)$$

= 0.940 - 0.892 = 0.048

Highest Information Gain is 0.247 -> Outlook

P:2	N:3	Total:5	
Temperature= {hot, cool, mild}			

Hot:p:0 n:2 Cool: p:1 n:0 Mild: p:1 n:1

Humidity={High, Normal}

High: p:0 n:3 Normal:p:2 n:0

Windy:{Weak, Strong}

Weak: p:1 n:2 Strong: p:1 n:1

1. Calculate the entropy of Dataset(S)

$$= -\frac{p}{p+n} \log \left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log \left(\frac{n}{p+n}\right)$$

Entropy = $-(2/5)\log(2/5) - (3/5)\log(3/5) = 0.971$

- 2. Calculate the Information Gain
 - a. Calculate entropy of humidity

Entropy(Humidity = High) = $0 - (3/3)\log(3/3) = 0$ Entropy(Humidity = Normal) = 0

b. Calculate Average information entropy(I) of humidity

I(Humidity) = 0

c. Information gain of humidity

IG(Humidity) = Entropy(S) - I(Humidity)

$$=0.971 - 0 = 0.971$$

d. Calculate entropy of Windy

Windy:{Weak, Strong}

Weak: p:1 n:2 Strong: p:1 n:1

$$= -\frac{p}{p+n} \log \left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log \left(\frac{n}{p+n}\right)$$

Entropy(Windy = Weak) = $-(1/3)\log(1/3) - (2/3)\log(2/3) = 0.918$ Entropy(wind = Strong) = $-(1/2)\log(1/2) - (1/2)\log(1/2) = 1$

e. Calculate Average information entropy of windy

$$I(Windy) = (3/5) *0.918 + (2/5)*1 = 0.951$$

f. Information gain of windy

$$IG(Windy) = Entropy(S) - I(Windy)$$

= 0.971- 0.951 = 0.020

g. Calculate entropy of temperature

Temperature= {hot, cool, mild}

 Hot:p:0
 n:2

 Cool: p:1
 n:0

 Mild: p:1
 n:1

$$= -\frac{p}{p+n} \log \left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log \left(\frac{n}{p+n}\right)$$

Entropy (Temperature = hot) = 0

Entropy(Temperature = Cool) = 0

Entropy(Temperature = mild) = $-(1/2)\log(1/2) - (1/2)\log(1/2) = 1$

h. Calculate Average information entropy of temperature

I(temperature) = (2/5) * 0 + (1/5)*0 + (2/5)*1 = 0.4

i. Information gain of temperature

IG(Temperature) = 0.971 - 0.4 = 0.571

3. Select the attribute with highest information gain

IG(Temperature) = 0.971 - 0.4 = 0.571

IG(Windy) = 0.020

IG(Humidity) = 0.971

$$Total = 5$$

$$P=3$$

$$N= 2$$

1. Calculate the entropy of the dataset(S)

$$\frac{p}{p+n}\log\left(\frac{p}{p+n}\right)$$
 - $\frac{n}{p+n}\log\left(\frac{n}{p+n}\right)$

Entropy = $-(3/5)\log(3/5) - (2/5)\log(2/5) = 0.971$

2. Calculate the information gain

a. Calculate entropy of temperature

Temperature ={mild, cool}

Mild:p:2 n:1 Cool:p:1 n:1

Entropy(temperature = mild) = $-(2/3)\log(2/3) - (1/3)\log(1/3) = 0.918$

Entropy(temperature = cool) =- $(1/2)\log(1/2) - (1/2)\log(1/2) = 1$

b. Calculate average information entropy of temperature

I(Temperature) = 0.951

c. Information gain of temperature

0.971 - 0.951 = 0.20

d. Calculate entropy of Humidity

Entropy(Humidity= High) = 1

Entropy(Humidity = Normal) = 0.918

e. Calculate average information entropy of humidity

I(Humidity) = 0.951

f. Information gain of humidity

$$Gain = 0.971 - 0.951 = 0.020$$

g. Calculate entropy of Windy

Entropy(Windy = Strong) = 0

Entropy(Windy = Weak) = 0

h. Calculate average information entropy of Windy

I(Windy) = 0

i. Information gain of Windy

Gain = 0.971 – 0 = 0.971 3. Select the attribute with highest information gain Select Windy.		
Select Williay.		
Entropy is a measure of the randomness in the information being processed. The higher the entropy, the harder it is to draw any conclusions from that information. Flipping a coin is an example of an action that provides information that is random. 1.0 0.5		
0 0.5 1.0 $Pr(X=1)$ From the above graph, it is quite evident that the entropy $H(X)$ is zero when the probability is either 0 or 1. The Entropy is maximum when the probability is 0.5 because it projects perfect randomness in the data and there is no chance if perfectly determining the outcome. ID3 follows the rule — A branch with an entropy of zero is a leaf node and A brach with entropy more than zero needs further splitting. Mathematically Entropy for 1 attribute is represented as:	10	CO2
$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$		
Play Golf Yes No		
9 5 Entropy(PlayGolf) = Entropy (5,9) = Entropy (0.36, 0.64) = - (0.36 log ₂ 0.36) - (0.64 log ₂ 0.64)		

Information gain is a decrease in entropy. It computes the difference between entropy before split and average entropy after split of the dataset based on given attribute values. ID3 (Iterative Dichotomiser) decision tree algorithm uses information gain.

Mathematically, IG is represented as:

Information Gain(T,X) = Entropy(T) - Entropy(T, X)

IG(PlayGolf, Outlook) = E(PlayGolf) - E(PlayGolf, Outlook) = 0.940 - 0.693 = 0.247