- Design an algorithm for string matching problem using brute force technique.
Apply it to search a pattern ABABC in the text BAABABABCCA.

USN 1|C AW
INSTITUTE OF IS
TECHNOLOGY :
Internal Assessment Test 11 — Nov 2020
Sub: Design and Analysis of Algorithms Code: | 18MCA33
Max . .
Date: | 04-11-20 | Duration: | 90 mins | Marks: | 50 Sem: . Branch: MeA
Note: Answer any full 5 questions. All questions carry equal marks. Total marks: 5
OBE
Marks'co T ReT
. Explain and design Prim’s algorithm and apply it for the given graph to find | 10
minimum cost spanning tree.
5 ¥
(& \
. i #
. Find the minimum cost spanning tree for the given graph below by applying | 10
Kruskal’s algorithm. Write the algorithm and compute minimum cost
. Apply the Dijkstra’s single source shortest path algorithms and analyze its 10
time complexity. Source vertex ‘a’.
(B——c)
3 X\
) 2 5
& 7), 4 \&)
. Construct Huffman Tree for the following data. Encode DAD and Decode 10
100110111110
Symbol A B C D -
Frequency: 035 01 02 02 0.15
. Implement Knapsack algorithm on the following data. Maximum capacity of | 10
the sack is 8.
Item 1 12 |3 |4
Value 1 12 |5 |6
Weight |2 |3 |4 |5
10

10 (o2 12
7. Discuss Divide and Conquer strategy for designing algorithms. Apply it for CO4| L3
multiplication of large integers. CO6
8. Write pseudo-code for merge sort and calculate the time complexity. 10 |CO2) L2
CO3
CO4
CO6
Answers:

1. Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding subtrees. The

initial subtree in such a sequence consists of a single vertex selected arbitrarily from the set V of the

graph’ s vertices. On each iteration, the algorithm expands the current tree by simply attaching to it the

nearest vertex not in that tree. The algorithm stops after all the graph’ s vertices have been included in

the tree being constructed.

Since the algorithm expands a tree by exactly one vertex on each of its iterations, the total number of

such iterations is n — 1, where n is the number of vertices in the graph. The tree generated by the

algorithm is obtained as the set of edges used for the tree expansions.
Here is pseudocode of this algorithm

ALGORITHM Prim(G)

/[Prim’s algorithm for constructing a minimum spanning tree
/Mnput: A weighted connected graph G = (V, E)
/[Qutput: E, the set of edges composing a minimum spanning tree of G
Vr < {ug} //the set of tree vertices can be initialized with any vertex
Er—a
fori < 1to|V|—1do
find a minimum-weight edge ¢* = (v*, «*) among all the edges (v, u)
such that visin Vy and uisin V — V.
Vy < Vp U {u*}
Er < Ey U {e*}
return Ey

Min cost = 2+3+4+6 =15

2. Kruskal’s algorithm is used for solving the minimal spanning tree problem. Spanning tree of an
undirected connected graph is its connected acyclic subgraph(tree) that contains all the vertices of the
graph. If such a graph has weights assigned to its edges, a minimum spanning tree is its spanning tree of
the smallest weight, where the weight of a tree is defined as the sum of the weights on all its edges. The
minimum spanning tree problem is the problem of finding a minimum spanning tree for a given
weighted connected graph.

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph G = (V, E) as an acyclic
subgraph with |V| — 1 edges for which the sum of the edge weights is the smallest. Consequently, the algorithm
constructs a minimum spanning tree as an expanding sequence of subgraphs that are always acyclic but are not
necessarily connected on the intermediate stages

Tree edges

Sorted list of edges

Ilustration

bhe ef ab bf of af df ae cod de
1 2 3 4 4 5 5 6 6 8
bc bec ef ab bf cof af df ae od de
1 1 2 3 4 4 5 5 6 6 8
ef be ef ab bf of af df ae cod de
2 1 2 3 4 4 5 5 6 6 8
ab bec ef ab bf cof af df ae od de
3 1 2 3 4 4 5 5 6 6 8
bf be ef ab bf of af df ae cod de
4 1 2 3 4 4 5 5 6 6 8 (B L c
/\ Xf a &
5 = 5
G _, D
J\V
5 2
e
df

ALGORITHM Kruskal(G)

fMKruskal’s algorithm for constructing a minimum spanning tree

fMnput: A weighted connected graph G = {V, E}

ffOutput: Ey. the set of edges composing a minimum spanning tree of G
sort £ in nondecreasing order of the edge weights wie;,)<---=< w{e,-“:_)

Er «— @, ecounter «— 0 Minitialize the set of tree edges and its size
k10 Mfinitialize the number of processed edges
while ecounter = |V| — 1 do

k—k+1

if Ex U {e;,} is acyclic
Ey «— Egf\J {E‘,‘tll
return £

ecounter «— ecounter 1+ 1

3. Dijkstra’s algorithm is an algorithm for solving the single-source shortest-paths problem: for a given vertex
called the source in a weighted connected graph with non negative edges, find shortest paths to all its other
vertices. Some of the applications of the problem are transportation planning, packet routing in
communication networks finding shortest paths in social networks, etc. First, it finds the shortest path from
the source. to a vertex nearest to it, then to a second nearest, and so on. In general, before its ith iteration
starts, the algorithm has already identified the shortest paths to i — 1 other vertices nearest to the source.
These vertices, the source, and the edges of the shortest paths leading to them from the source form a
subtree Ti of the given graph. The set of vertices adjacent to the vertices in T called “fringe vertices”; are the
candidates from which Dijkstra’s algorithm selects the next vertex nearest to the source. To identify the ith
nearest vertex, the algorithm computes, for every fringe vertex u, the sum of the distance to the nearest
tree vertex v and the length dv of the shortest path from the source to v and then selects the vertex with the
smallest such d value. d indicates the length of the shortest path from the source to that vertex till that
point. We also associate a value p with each vertex which indicates the name of the next-to-last vertex on
such a path, . After we have identified a vertex u* to be added to the tree, we need to perform two
operations.

The psuedocode for Dijkstra’s is as given below:

® Move u* from the fringe to the set of tree vertices.

B For each remaining fringe vertex u that is connected to u* by an edge of
weight wiu*, u) such that d,« + w(u*, u) < d,, update the labels of u by u*
and d s + wiu*, u), respectively.

ALGORITHM Dijkstra(G. s)

//Dijkstra’s algorithm for single-source shortest paths
fMnput: A weighted connected graph G = (V, E} with nonnegative weights

1 and its vertex s
f/Output: The length d, of a shortest path from s to v
/Il and its penultimate vertex p, for every vertex v in V

Initialize(Q) /finitialize priority queue to empty
for every vertex v in V
d, <00, p, < null
Insert(Q. v, d,) /finitialize vertex priority in the priority queue
d, < 0, Decrease(Q, s, d;) [lupdate priority of s with d,
Vi @
fori < Oto |V|—1do
u* «— DeleteMin(Q) //delete the minimum priority element
]FJ'Jr' - 1«; U -{u*}
for every vertex u in V — V- that is adjacent to «* do
ifd, +wu* u)<d,
dy, < d +wiu*, u)y, p,«—u*
Decrease(Q. u. d,)

Analysis:

The time efficiency of Dijkstra’s algorithm depends on the data structures used for implementing the priority
queue and for representing an input graph itself.

Graph represented by adjacency matrix and priority queue by array:

In loop for initialization takes time |V| since the insertion into the queue would just involve appending the
vertices at the end(since it is an array implementation). For the second loop, the loop runs |V| times. Each
time the DeleteMin operation would take a maximum of 6(|V|) time since it would involve finding the vertex
in the array with min d value, for a total time of |\V|2. The for loop (for iupdating the neighbor vetices) would

run |V| times again. However the Decrease would take 0(1) time because the index of the vertex would be
known.

Thus the total time complexity is 6(|V|2).

Graph represented by adjacency list and priority queue by binary heap:

All heap operations take 0(Ig|V|) time. Thus the first loop runs |V| times and each time the Insert would take
0(1g|V|) time. The second loop runs |[V| times and the DeleteMin would again take Ig|V/| time. Thus the total
number of time DecreaseMin would run across all iterations is 8(VIg|V|). In the second loop the basic
operation is Decrease(Q,u,du) whoch is run the maximum number of times. Across all iterations using
adjacency list, since for each vertex Decrease is called for a maximum of all its adjacent vertices, the
number of times Decrease is invoked |E| times. For each time it is onvoked , it takes O(lg|V|) time to
execute. Thus the total time complexity is O((|[E[+|V]|)lg|V]).

Graph represented by adjacency list and priority queue by fibonacci heap:
The time taken in this case O(|E|+|V|Ig|V)).

o) & =y
73 : X—\
L3 7 Lo W)

Tree vertices Remaining vertices Mustration

al—, 0) bia, 3) c(—. oc) dia, T) ef{—, oo)

bia. 3 cib. 3+ 4) dib, 3+ 2} e(—. o)
dib. 5 cib. T} e(d. 54+ 4)
7 el 4 e
(b, T e(d, %) -, F -
W2 7 "\-i-' 4 L2
e(d, Tj

The shortest paths (identified by following nonnumeric labels backward from a
destination vertex in the left column to the source) and their lengths (given by
numeric labels of the tree vertices) are as follows:

fromatob: a—~& of length 3
fromatod: a—b—d of length 5
fromatoc: a—b—c of length 7

fromatoe: a—b—d—e of length9

4. Huffman’s algorithm

Step 1 Initialize n one-node trees and label them with the symbols of the alphabet given. Record
the frequency of each symbol in its tree’s root to indicate the tree’s weight. (More generally, the
weight of a tree will be equal to the sum of the frequencies in the tree’s leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the
smallest weight (ties can be broken arbitrarily, but see Problem 2 in this section’s exercises). Make
them the left and right

subtree of a new tree and record the sum of their weights in the root of the new tree as its weight.
A tree constructed by the above algorithm is called a Huffman tree. It
defines —in the manner described above —a Huffman code.

[0] [eas] [oz] [o0z] [o035]
Le | L1 Lc] e] |
S 1
©29)
[D] S~
e | [— |

©.25) 035 (0.4

Ve
==
[B | [—] [D]

(0.4) (0.6)

E _25/\ -
[D | J\ a

,6 = SER
[D] o’\—/\1
-E- —

The resulting codewords are as follows:

symbol | A B C D -
frequency .35 0.1 0.2 0.2 0.15
codeword 11 100 00 0 101

Hence, DAD is encoded as 011101, and
10011011011101 is decoded as BAD_AD.

5.
Value Weight 0 1 2 3 4 5 6 7 8
1 2 0 0 1 1 1 1 1 1 1
2 3 0 0 1 2 2 3 3 3 3
5 4 0 0 1 2 5 5 6 7 7
6 5 0 0 1 2 5 6 6 7 8
6. Given a string of n characters called the text and a string of m characters (m < n) called the pattern,

find a substring of the text that matches the pattern. To put it more precisely, we want to find i—the
index of the leftmost character of the first matching substring in the text—such that
L=Po, ... Livyij=Pjsoo o ligm—1= Pm—1:

A T T o text T
1 t ¥
Po -~ Pj - Pm-1 pattern P

If matches other than the first one need to be found, a string-matching algorithm can simply
continue working until the entire text is exhausted. align the pattern against the first m characters
of the text and start matching the corresponding pairs of characters from left to right until either

all the m pairs of the characters match (then the algorithm can stop) or a mismatching pair is
encountered.

Algorithm Brute Force string match (T[O..,n-1], P[O..m-1])
// Input: An array T [0..n-1] of n chars, text

// An array P [0..m-1] of m chars , a pattern.
// Output: The position of the first character in the text that starts the first
// matching substring if the search is successful and -1 otherwise.

Ffor i+— O to Nn-m do
j =— O
while j< m and P[j] = TLi+j] de
J - j+1
if j = m return i
return -1

Example

Text String = { BAABABABCCA }
Pattern String ={ ABABC }

B A B A B A B C C A
B A B C
B A B C
A B A B
A B A B
A B B C

String is matched return the starting Index -4

B A A B A B A B C C A

A B A B C

The time complexity would be analyzed by finding the number of times the basic operation j=j+1 is
executed.
The inner loop will be executed a maximum of m times (j=0 to m-1).

Therefore
n—m Z?_n—l 1= n-—m m
T(n)= =0 F7=0 =0 = (n-my*m = 0(mn).

Where m is the length of pattern and n is the length of text.

7. The conventional algorithm for multiplying two n-digit integers, each of the n digits of the first
number is multiplied by each of the n digits of the second number for the total of n2 digit
multiplications. (If one of the numbers has fewer digits than the other, we can pad the shorter

number with leading zeros to equalize their lengths.)
By using divide-and-conquer method, it would be possible to design an algorithm with fewer than
n? digit multiplications,

I

Now we apply this trick to multiplying two a-digit integers @ and » where # is
a positive even number. Let us divide both numbers in the middle—after all, we
promised to take advantage of the divide-and-conquer technique. We denote the
first half of the a's digits by @, and the second half by a,,: for b, the notations are b
and by, respectively. In these notations, a = ayag implies that a = a,; 10"? 4+ a, and
b = byb, implies that b = b, 10"? & b, Therefore, taking advantage of the same
trick we used for two-digit numbers, we get

cmasbwm (@10 4 a,)« (0,102 & by)
= (ay * 10" 4 (ay + by 4+ ag » h,)l()"/2 + (ag * by)
= 210" 4 ;10" 4 cp.
where
¢y e ay » by s the product of their first halves,
Cp W ag + by is the product of their second halves,

Cy = (ay + ap) * (by + by) — (€3 +) 1s the product of the sum of the
a'’s halves and the sum of the £°'s halves minus the sum of ¢, and «,.

n/2 is even, we can apply the same method for computing the products ¢,, ¢,

and ¢y, Thus, if # is a power of 2, we have a recursive algorithm for computing the
product of two a-digit integers. In its pure form, the recursion is stopped when »
becomes 1. It can also be stopped when we deem 2 small enough to multiply the
numbers of that size directly.

How many digit multiplications does this algorithm make? Since multiplica-

tion of n-digit numbers requires three multiplications of »/2-digit numbers, the
recurrence for the number of multiplications M(n) is

M(n)y=3Mn;2) lorn>1, M(l)=1.

Solving it by backward substitutions for n = 2* yields

1

MY =3MR") =33M2") =3M2)
= omIMA)= =3 =3

Example :
To demonstrate the basic idea of the algorithm, let us start with a case of

Four-

digit integers -6721 and 3032 . These numbers can be represented as follows:

X=3421 =67*102+21 LetA=67;B=21
Y=3032 =30*102+32 LetC=30;D =32

Now let us multiply them:
X*Y= AC*10*+[AC+ (A-B)*(D-C)+BD]*102+ BD
= 67*60 *10* +[(67 * 60) +(67 - 21) * (32-30) *10% + (21 *32)

4020 * 10000 + [4020 +92 + 672] * 100 + 672
40200000 + 478400 +672
40679072

Algorithm multi(X, Y, n)
//Input : X & Y two long integers; n - no.of digits of X
// Output : Product of two long integers

Begin

If (n==1)

Return(X *Y)
Else

A= Left n/2 bits of X
B =Right n/2 bitsof X
C=Left n/2 bitsof Y
D =Right n/2 bitsof Y
m1 = multi(A,C)
m2 = multi(A-B, D-C)
m3 = multi(B,D)
return (m1 * 10» +(m1 + m2 +m3) * 100/2 +m3

End

Analysis
r*ﬁ'\ 4 19
simee muitiplic ation op n-digit numbey wequiTed three |
mukiphs ww o Ny oh(aﬁr ne's the ne oy TOCUTTIANCE pog
ns &g mul uahon% T(n) will be

wa V=371 (”/Q)TCP‘ (qﬂ(ﬂ@()

36lve u%ina master's thepwem
T = aT(Ng)++n)
hete >3 b=4& d=1 -
o >be
3> Q-

Hence T(n) = B(n'°823) = B(n'°8). This time complexity is much better than the brute force
multiplication which takes 8(n?) time for n digit multiplication.

ALGORITHM Mergesort(A[U.n — 1])
{fSorts array A[0..n — 1] by recursive mergesort
{Input: An array A[0.n — 1] of orderable elemenis
HOutput: Array A[(l.n — 1] sorted in nondecreasing order
if n =1
copy A[0.[n/2] —1]1o B[0..|n/2] — 1]
copy A[|n/2].n — 1] to C[0..Tr/2] — 1]
Mergesort(B[0..|n/2] —1])
Mergesort(C[0..[n/2] —1])
Merge(B, C, A) lisee below

Given that the merge function runs in \Theta(n)®(n)\Theta, left parenthesis, n,
right parenthesis time when merging nnn elements, how do we get to showing
that mergesort runs in \Theta(n \log_2 n)®(nlogzn)\Theta, left parenthesis, n, log,
start base, 2, end base, n, right parenthesis time? We start by thinking about the
three parts of divide-and-conquer and how to account for their running times. We

assume that we're sorting a total of nnn elements in the entire array.

1. The divide step takes constant time, regardless of the subarray size. After
all, the divide step just computes the midpoint gqq of the
indices Ppp and Irr. Recall that in big-® notation, we indicate constant time
by \Theta(1)®(1)\Theta, left parenthesis, 1, right parenthesis.

2. The conquer step, where we recursively sort two subarrays of
approximately N/2n/2n, slash, 2 elements each, takes some amount of time,
but we'll account for that time when we consider the subproblems.

3. The combine step merges a total of NnNn elements,
taking \Theta(n)®(n)\Theta, left parenthesis, n, right parenthesis time.

If we think about the divide and combine steps together, the \Theta(1)®(1)\Theta,
left parenthesis, 1, right parenthesis running time for the divide step is a low-
order term when compared with the \Theta(n)®(n)\Theta, left parenthesis, n,
right parenthesis running time of the combine step. So let's think of the divide
and combine steps together as taking \Theta(n)®(n)\Theta, left parenthesis, n,
right parenthesis time. To make things more concrete, let's say that the divide
and combine steps together take cncnc, n time for some constant ccc.

To keep things reasonably simple, let's assume that if n>1n>1n, is greater than, 1,
then nnn is always even, so that when we need to think about n/2n/2n, slash, 2, it's
an integer. (Accounting for the case in which nnn is odd doesn't change the result
in terms of big-® notation.) So now we can think of the running time

of mergesort on an Nnn-element subarray as being the sum of twice the running
time of mergesort on an (n/2)(n/2)left parenthesis, n, slash, 2, right parenthesis-
element subarray (for the conquer step) plus cncnc, n (for the divide and combine
steps—really for just the merging).

Now we have to figure out the running time of two recursive calls on n/2n/2n,
slash, 2 elements. Each of these two recursive calls takes twice of the running
time of mergesort on an (n/4)(n/4)left parenthesis, n, slash, 4, right parenthesis-
element subarray (because we have to halve n/2n/2n, slash, 2) plus cn/2cn/2c, n,
slash, 2 to merge. We have two subproblems of size n/2n/2n, slash, 2, and each
takes cn/2cn/2c, n, slash, 2 time to merge, and so the total time we spend merging
for subproblems of size n/2n/2n, slash, 2 is 2\cdot cn/2 = cn2-cn/2=cn2, dot, c, n,
slash, 2, equals, ¢, n.

Let's draw out the merging times in a "tree":

Total merging time

Subproblem for all subproblems of
size this size
n CH
2 n2 2eenf2=¢en

A diagram with a tree on the left and merging times on the right. The tree is
labeled "Subproblem size" and the right is labeled "Total merging time for all
subproblems of this size." The first level of the tree shows a single node n and

corresponding merging time of c times n. The second level of the tree shows two
nodes, each of 1/2 n, and a merging time of 2 times c times 1/2 n, the same as c
times n.
Computer scientists draw trees upside-down from how actual trees grow.
A tree is a graph with no cycles (paths that start and end at the same place).
Convention is to call the vertices in a tree its nodes. The root node is on top; here,
the root is labeled with the nnn subarray size for the original nnn-element array.
Below the root are two child nodes, each labeled n/2n/2n, slash, 2 to represent the
subarray sizes for the two subproblems of size n/2n/2n, slash, 2.
Each of the subproblems of size n/2n/2n, slash, 2 recursively sorts two subarrays
of size (n/2)/2(n/2)/2left parenthesis, n, slash, 2, right parenthesis, slash, 2,
or N/4n/4n, slash, 4. Because there are two subproblems of size n/2n/2n, slash, 2,
there are four subproblems of size n/4n/4n, slash, 4. Each of these four
subproblems merges a total of n/4n/4n, slash, 4 elements, and so the merging time
for each of the four subproblems is cn/4cn/4c, n, slash, 4. Summed up over the four
subproblems, we see that the total merging time for all subproblems of
size N/4n/4n, slash, 4 is 4 \cdot cn/4 = cn4-cn/4=cn4, dot, c, n, slash, 4, equals, c, n:

Total merging time

Subproblem for all subproblems of
size this size
n N
ni2 n2 2-enf2 =cn

in'd ifd ' iid 4 enfd =en

A diagram with a tree on the left and merging times on the right. The tree is
labeled "Subproblem size" and the right is labeled "Total merging time for all
subproblems of this size." The first level of the tree shows a single node n and

corresponding merging time of c times n. The second level of the tree shows two
nodes, each of 1/2 n, and a merging time of 2 times c times 1/2 n, the same as c
times n. The third level of the tree shows four nodes, each of 1/4 n, and a merging
time of 4 times c times 1/4 n, the same as c times n.
What do you think would happen for the subproblems of size n/8n/8n, slash, 8?
There will be eight of them, and the merging time for each will be cn/8cn/8c, n,
slash, 8, for a total merging time of 8 \cdot cn/8 = cn8:-cn/8=cn8, dot, c, n, slash, 8,

equals, c, n:
Total merging time
Subproblem for all subproblems of
s1ze this size
n oen

nf2 nf2 2-enf2=cn

ni4 n'4 nid nid 4-enld =cn

n8 n'a n's n'8 n's n'8 8 n/8 E-enfB=cn

A diagram with a tree on the left and merging times on the right. The tree is
labeled "Subproblem size" and the right is labeled "Total merging time for all
subproblems of this size." The first level of the tree shows a single node n and

corresponding merging time of c times n. The second level of the tree shows two

nodes, each of 1/2 n, and a merging time of 2 times c times 1/2 n, the same as c
times n. The third level of the tree shows four nodes, each of 1/4 n, and a merging

time of 4 times c times 1/4 n, the same as c times n. The fourth level of the tree
shows eight nodes, each of 1/8 n, and a merging time of 8 times c times 1/8 n, the
same as c times n.

As the subproblems get smaller, the number of subproblems doubles at each
"level” of the recursion, but the merging time halves. The doubling and halving
cancel each other out, and so the total merging time is chcnc, n at each level of
recursion. Eventually, we get down to subproblems of size 1: the base case. We
have to spend \Theta(1)®(1)\Theta, left parenthesis, 1, right parenthesis time to

sort subarrays of size 1, because we have to test whether p < rp<rp, is less than, r,
and this test takes time. How many subarrays of size 1 are there? Since we started
with nnn elements, there must be nnn of them. Since each base case

takes \Theta(1)®(1)\Theta, left parenthesis, 1, right parenthesis time, let's say that

altogether, the base cases take cncnc, n time:
Total merging time

Subproblem for all subproblems of
slze this size
n N
ni2 2 2cenf2=cn
n/d ni'd nid n'd 4-cnld=cn
8 nis nf8 ni8 n's n/8 n'8 n'8 B-cnfB=cn

1 11 1 1 1 1 1 =«««<1 "1 1 1 1 1 11 nso=0n

n

A diagram with a tree on the left and merging times on the right. The tree is
labeled "Subproblem size" and the right is labeled "Total merging time for all
subproblems of this size." The first level of the tree shows a single node n and

corresponding merging time of c times n. The second level of the tree shows two
nodes, each of 1/2 n, and a merging time of 2 times c times 1/2 n, the same as c

times n. The third level of the tree shows four nodes, each of 1/4 n, and a merging
time of 4 times c times 1/4 n, the same as c times n. The fourth level of the tree

shows eight nodes, each of 1/8 n, and a merging time of 8 times c times 1/8 n, the

same as c times n. Underneath that level, dots are shown to indicate the tree
continues like that. A final level is shown with n nodes of 1, and a merging time of
n times ¢, the same as c times n.

Now we know how long merging takes for each subproblem size. The total time

for mergesort is the sum of the merging times for all the levels. If there

are |/l levels in the tree, then the total merging time is | \cdot cnl-cnl, dot, c, n. So

what is 11?7 We start with subproblems of size nnn and repeatedly halve until we

get down to subproblems of size 1. We saw this characteristic when we analyzed

binary search, and the answer is | =\log_2 n + 1/=logzn+1], equals, log, start base,
2, end base, n, plus, 1. For example, if n=8n=8n, equals, 8, then \log_2 n + 1 = 4log2
n+1=4log, start base, 2, end base, n, plus, 1, equals, 4, and sure enough, the tree
has four levels: n = 8, 4, 2, 1n=8,4,2,1n, equals, 8, comma, 4, comma, 2, comma, 1.
The total time for mergesort, then, is cn (\log_2 n + 1)cn(logz2n+1)c, n, left
parenthesis, log, start base, 2, end base, n, plus, 1, right parenthesis. When we use
big-® notation to describe this running time, we can discard the low-order term
(+1+1plus, 1) and the constant coefficient (ccc), giving us a running time

of \Theta(n \log_2 n)®(nlogz2n)\Theta, left parenthesis, n, log, start base, 2, end
base, n, right parenthesis, as promised.

One other thing about merge sort is worth noting. During merging, it makes a
copy of the entire array being sorted, with one half in 1owna1f and the other half
in highHalf. Because it copies more than a constant number of elements at some
time, we say that merge sort does not work in place. By contrast, both selection
sort and insertion sort do work in place, since they never make a copy of more
than a constant number of array elements at any one time. Computer scientists
like to consider whether an algorithm works in place, because there are some

systems where space is at a premium, and thus in-place algorithms are preferred.

