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1.  Explain and design Prim’s algorithm and apply it for the given graph to find 
minimum cost spanning tree.  

 

10 CO2 
CO4 
CO6 

L2 
L4 

2.  Find the minimum cost spanning tree for the given graph below by applying 
Kruskal’s algorithm. Write the algorithm and compute minimum cost 

 

10 CO2 
CO4 
CO6 

L2 
L4 

 

3.  Apply the Dijkstra’s single source shortest path algorithms and analyze its 
time complexity. Source vertex ‘a’. 
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L2 
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4.   
 
Construct Huffman Tree for the following data. Encode DAD and Decode 
100110111110 
Symbol      :    A          B          C          D          - 
Frequency :    0.35     0.1       0.2       0.2        0.15 
 

10 CO2 
CO4 
CO6 

L4 

5.   Implement Knapsack algorithm on the following data. Maximum capacity of 
the sack is 8. 
 

Item 1 2 3 4 

Value 1 2 5 6 

Weight 2 3 4 5 
 

10 CO2 
CO4 
CO6 

L4 

 
6.  

    
Design an algorithm for string matching problem using brute force technique. 
Apply it to search a pattern ABABC in the text BAABABABCCA. 

10 
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7.    

  
Discuss Divide and Conquer strategy for designing algorithms. Apply it for 
multiplication of large integers. 

10 CO2 
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L2 
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8.      Write pseudo-code for merge sort and calculate the time complexity. 10 CO2 
CO3 
CO4 
CO6 

L2 

Answers: 

 

1. Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding subtrees. The 

initial subtree in such a sequence consists of a single vertex selected arbitrarily from the set V of the 

graph’s vertices. On each iteration, the algorithm expands the current tree by simply attaching to it the 

nearest vertex not in that tree. The algorithm stops after all the graph’s vertices have been included in 

the tree being constructed.  

Since the algorithm expands a tree by exactly one vertex on each of its iterations, the total number of 
such iterations is n − 1, where n is the number of vertices in the graph. The tree generated by the 
algorithm is obtained as the set of edges used for the tree expansions. 
Here is pseudocode of this algorithm 

.  

 

 

Min cost  = 2+3+4+6 = 15 



2. Kruskal’s algorithm is used for solving the minimal spanning tree problem. Spanning tree of an 

undirected connected graph is its connected acyclic subgraph(tree) that contains all the vertices of the 

graph. If such a graph has weights assigned to its edges, a minimum spanning tree is its spanning tree of 

the smallest weight, where the weight of a tree is defined as the sum of the weights on all its edges. The 

minimum spanning tree problem is the problem of finding a minimum spanning tree for a given 

weighted connected graph.  

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph G = (V, E) as an acyclic 

subgraph with |V| − 1 edges for which the sum of the edge weights is the smallest. Consequently, the algorithm 

constructs a minimum spanning tree as an expanding sequence of subgraphs that are always acyclic but are not 

necessarily connected on the intermediate stages  

 

 
 

 
 

 



 
3. Dijkstra’s algorithm is an algorithm for solving the single-source shortest-paths problem: for a given vertex 

called the source in a weighted connected graph with non negative edges, find shortest paths to all its other 

vertices. Some of the applications of the problem are transportation planning, packet routing in 

communication networks finding shortest paths in social networks, etc. First, it finds the shortest path from 

the source. to a vertex nearest to it, then to a second nearest, and so on. In general, before its ith iteration 

starts, the algorithm has already identified the shortest paths to i − 1 other vertices nearest to the source. 

These vertices, the source, and the edges of the shortest paths leading to them from the source form a 

subtree Ti of the given graph. The set of vertices adjacent to the vertices in T called “fringe vertices”; are the 

candidates from which Dijkstra’s algorithm selects the next vertex nearest to the source. To identify the ith 

nearest vertex, the algorithm computes, for every fringe vertex u, the sum of the distance to the nearest 

tree vertex v and the length dv of the shortest path from the source to v and then selects the vertex with the 

smallest such d value. d indicates the length of the shortest path from the source to that vertex till that 

point. We also associate a value p with each vertex which indicates the name of the next-to-last vertex on 

such a path, . After we have identified a vertex u* to be added to the tree, we need to perform two 

operations.  

The psuedocode for Dijkstra’s is as given below:  

 
 

 
 

Analysis:  

The time efficiency of Dijkstra’s algorithm depends on the data structures used for implementing the priority 

queue and for representing an input graph itself.  

Graph represented by adjacency matrix and priority queue by array:  

In loop for initialization takes time |V| since the insertion into the queue would just involve appending the 

vertices at the end(since it is an array implementation). For the second loop, the loop runs |V| times. Each 

time the DeleteMin operation would take a maximum of θ(|V|) time since it would involve finding the vertex 

in the array with min d value, for a total time of |V|2. The for loop (for iupdating the neighbor vetices) would 



run |V| times again. However the Decrease would take θ(1) time because the index of the vertex would be 

known.  

Thus the total time complexity is θ(|V|2).  

Graph represented by adjacency list and priority queue by binary heap:  

All heap operations take θ(lg|V|) time. Thus the first loop runs |V| times and each time the Insert would take 

θ(lg|V|) time. The second loop runs |V| times and the DeleteMin would again take lg|V| time. Thus the total 

number of time DecreaseMin would run across all iterations is θ(Vlg|V|). In the second loop the basic 

operation is Decrease(Q,u,du) whoch is run the maximum number of times. Across all iterations using 

adjacency list, since for each vertex Decrease is called for a maximum of all its adjacent vertices, the 

number of times Decrease is invoked |E| times. For each time it is onvoked , it takes O(lg|V|) time to 

execute. Thus the total time complexity is θ((|E|+|V|)lg|V|).  

Graph represented by adjacency list and priority queue by fibonacci heap:  

The time taken in this case θ(|E|+|V|lg|V|).  

 

 

 
4. Huffman’s algorithm 

Step 1 Initialize n one-node trees and label them with the symbols of the alphabet given. Record 
the frequency of each symbol in its tree’s root to indicate the tree’s weight. (More generally, the 
weight of a tree will be equal to the sum of the frequencies in the tree’s leaves.)  
Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the 
smallest weight (ties can be broken arbitrarily, but see Problem 2 in this section’s exercises). Make 
them the left and right 



subtree of a new tree and record the sum of their weights in the root of the new tree as its weight. 
A tree constructed by the above algorithm is called a Huffman tree. It 
defines—in the manner described above—a Huffman code. 

 

 
Hence, DAD is encoded as 011101, and 
 10011011011101 is decoded as BAD_AD. 
 

5.  

Value Weight 0 1 2 3 4 5 6 7 8 

1 2 0 0 1 1 1 1 1 1 1 

2 3 0 0 1 2 2 3 3 3 3 

5 4 0 0 1 2 5 5 6 7 7 

6 5 0 0 1 2 5 6 6 7 8 

 

6. Given a string of n characters called the text and a string of m characters (m ≤ n) called the pattern, 

find a substring of the text that matches the pattern. To put it more precisely, we want to find i—the 

index of the leftmost character of the first matching substring in the text—such that 

 

  
If matches other than the first one need to be found, a string-matching algorithm can simply 
continue working until the entire text is exhausted. align the pattern against the first m characters 
of the text and start matching the corresponding pairs of characters from left to right until either 



all the m pairs of the characters match (then the algorithm can stop) or a mismatching pair is 

encountered. 

 

 

Example 
 
Text String = { BAABABABCCA }  

Pattern String ={ ABABC }  
 

B A A B A B A B  C C A  

A B A B C        

 A B A B C       

  A B A B C      

   A B A B C     

    A B A B C    

  
String is matched return the starting Index -4 
 

B A A B A B A B  C C A  

    A B A B C    

 

The time complexity would be analyzed by finding the number of times the basic operation j=j+1 is 

executed.  

The inner loop will be executed a maximum of m times (j=0 to m-1). 

 Therefore  

T(n)=   = (n-m)*m = θ(mn).  

 

Where m is the length of pattern and n is the length of text. 

 

7. The conventional algorithm for multiplying two n-digit integers, each of the n digits of the first 

number is multiplied by each of the n digits of the second number for the total of n2 digit 

multiplications.  (If one of the numbers has fewer digits than the other, we can pad the shorter 

number with leading zeros to equalize their lengths.)  
By using divide-and-conquer method, it would be possible to design an algorithm with fewer than 
n2 digit multiplications, 
 



 
 

 
 
 
Example : 
To demonstrate the basic idea of the algorithm, let us start with a case of 

Four-digit integers –6721  and 3032 . These numbers can be represented as follows: 

X= 3421  = 67 * 102 + 21     Let A = 67 ; B = 21 

Y=3032   = 30 * 102 + 32     Let C = 30; D = 32 

 

Now let us multiply them: 

X* Y =   AC * 104 + [ AC + (A – B)* ( D – C) + BD ] * 102 + BD 

        =  67 * 60  * 104  +[( 67 * 60)  +(67 – 21) * (32 -30)  * 102   + (21 * 32) 

       =  4020 * 10000  + [4020 +92 + 672] * 100  + 672 

       = 40200000 + 478400 +672  

       = 40679072 

Algorithm multi( X, Y, n) 

//Input : X & Y two long integers; n – no.of digits of X 

// Output : Product of two long integers 

Begin 

    If ( n == 1) 



         Return( X * Y) 

    Else 

          A= Left   n/2  bits of  X  

          B = Right   n/2  bits of   X 

          C= Left   n/2  bits of   Y  

          D = Right   n/2  bits of   Y 

          m1 = multi( A,C) 

          m2 = multi( A-B, D-C) 

          m3  = multi( B,D) 

          return (m1 * 10n  +( m1 + m2  +m3) * 10n/2 +m3 

 End 

 

Analysis 

 

Hence T(n) = θ(𝑛log2 3) = θ(n1.58). This time complexity is much better than the brute force 

multiplication which takes θ(n2) time for n digit multiplication. 
 

8.  

 

Given that the merge function runs in \Theta(n)Θ(n)\Theta, left parenthesis, n, 

right parenthesis time when merging nnn elements, how do we get to showing 

that mergeSort runs in \Theta(n \log_2 n)Θ(nlog2n)\Theta, left parenthesis, n, log, 

start base, 2, end base, n, right parenthesis time? We start by thinking about the 

three parts of divide-and-conquer and how to account for their running times. We 

assume that we're sorting a total of nnn elements in the entire array. 



1. The divide step takes constant time, regardless of the subarray size. After 

all, the divide step just computes the midpoint qqq of the 

indices ppp and rrr. Recall that in big-Θ notation, we indicate constant time 

by \Theta(1)Θ(1)\Theta, left parenthesis, 1, right parenthesis. 

2. The conquer step, where we recursively sort two subarrays of 

approximately n/2n/2n, slash, 2 elements each, takes some amount of time, 

but we'll account for that time when we consider the subproblems. 

3. The combine step merges a total of nnn elements, 

taking \Theta(n)Θ(n)\Theta, left parenthesis, n, right parenthesis time. 

If we think about the divide and combine steps together, the \Theta(1)Θ(1)\Theta, 

left parenthesis, 1, right parenthesis running time for the divide step is a low-

order term when compared with the \Theta(n)Θ(n)\Theta, left parenthesis, n, 

right parenthesis running time of the combine step. So let's think of the divide 

and combine steps together as taking \Theta(n)Θ(n)\Theta, left parenthesis, n, 

right parenthesis time. To make things more concrete, let's say that the divide 

and combine steps together take cncnc, n time for some constant ccc. 

To keep things reasonably simple, let's assume that if n>1n>1n, is greater than, 1, 

then nnn is always even, so that when we need to think about n/2n/2n, slash, 2, it's 

an integer. (Accounting for the case in which nnn is odd doesn't change the result 

in terms of big-Θ notation.) So now we can think of the running time 

of mergeSort on an nnn-element subarray as being the sum of twice the running 

time of mergeSort on an (n/2)(n/2)left parenthesis, n, slash, 2, right parenthesis-

element subarray (for the conquer step) plus cncnc, n (for the divide and combine 

steps—really for just the merging). 

Now we have to figure out the running time of two recursive calls on n/2n/2n, 

slash, 2 elements. Each of these two recursive calls takes twice of the running 

time of mergeSort on an (n/4)(n/4)left parenthesis, n, slash, 4, right parenthesis-

element subarray (because we have to halve n/2n/2n, slash, 2) plus cn/2cn/2c, n, 

slash, 2 to merge. We have two subproblems of size n/2n/2n, slash, 2, and each 

takes cn/2cn/2c, n, slash, 2 time to merge, and so the total time we spend merging 

for subproblems of size n/2n/2n, slash, 2 is 2\cdot cn/2 = cn2⋅cn/2=cn2, dot, c, n, 

slash, 2, equals, c, n. 

Let's draw out the merging times in a "tree": 



 

A diagram with a tree on the left and merging times on the right. The tree is 

labeled "Subproblem size" and the right is labeled "Total merging time for all 

subproblems of this size." The first level of the tree shows a single node n and 

corresponding merging time of c times n. The second level of the tree shows two 

nodes, each of 1/2 n, and a merging time of 2 times c times 1/2 n, the same as c 

times n. 

Computer scientists draw trees upside-down from how actual trees grow. 

A tree is a graph with no cycles (paths that start and end at the same place). 

Convention is to call the vertices in a tree its nodes. The root node is on top; here, 

the root is labeled with the nnn subarray size for the original nnn-element array. 

Below the root are two child nodes, each labeled n/2n/2n, slash, 2 to represent the 

subarray sizes for the two subproblems of size n/2n/2n, slash, 2. 

Each of the subproblems of size n/2n/2n, slash, 2 recursively sorts two subarrays 

of size (n/2)/2(n/2)/2left parenthesis, n, slash, 2, right parenthesis, slash, 2, 

or n/4n/4n, slash, 4. Because there are two subproblems of size n/2n/2n, slash, 2, 

there are four subproblems of size n/4n/4n, slash, 4. Each of these four 

subproblems merges a total of n/4n/4n, slash, 4 elements, and so the merging time 

for each of the four subproblems is cn/4cn/4c, n, slash, 4. Summed up over the four 

subproblems, we see that the total merging time for all subproblems of 

size n/4n/4n, slash, 4 is 4 \cdot cn/4 = cn4⋅cn/4=cn4, dot, c, n, slash, 4, equals, c, n: 

 



A diagram with a tree on the left and merging times on the right. The tree is 

labeled "Subproblem size" and the right is labeled "Total merging time for all 

subproblems of this size." The first level of the tree shows a single node n and 

corresponding merging time of c times n. The second level of the tree shows two 

nodes, each of 1/2 n, and a merging time of 2 times c times 1/2 n, the same as c 

times n. The third level of the tree shows four nodes, each of 1/4 n, and a merging 

time of 4 times c times 1/4 n, the same as c times n. 

What do you think would happen for the subproblems of size n/8n/8n, slash, 8? 

There will be eight of them, and the merging time for each will be cn/8cn/8c, n, 

slash, 8, for a total merging time of 8 \cdot cn/8 = cn8⋅cn/8=cn8, dot, c, n, slash, 8, 

equals, c, n: 

 

A diagram with a tree on the left and merging times on the right. The tree is 

labeled "Subproblem size" and the right is labeled "Total merging time for all 

subproblems of this size." The first level of the tree shows a single node n and 

corresponding merging time of c times n. The second level of the tree shows two 

nodes, each of 1/2 n, and a merging time of 2 times c times 1/2 n, the same as c 

times n. The third level of the tree shows four nodes, each of 1/4 n, and a merging 

time of 4 times c times 1/4 n, the same as c times n. The fourth level of the tree 

shows eight nodes, each of 1/8 n, and a merging time of 8 times c times 1/8 n, the 

same as c times n. 

As the subproblems get smaller, the number of subproblems doubles at each 

"level" of the recursion, but the merging time halves. The doubling and halving 

cancel each other out, and so the total merging time is cncnc, n at each level of 

recursion. Eventually, we get down to subproblems of size 1: the base case. We 

have to spend \Theta(1)Θ(1)\Theta, left parenthesis, 1, right parenthesis time to 



sort subarrays of size 1, because we have to test whether p < rp<rp, is less than, r, 

and this test takes time. How many subarrays of size 1 are there? Since we started 

with nnn elements, there must be nnn of them. Since each base case 

takes \Theta(1)Θ(1)\Theta, left parenthesis, 1, right parenthesis time, let's say that 

altogether, the base cases take cncnc, n time: 

 

A diagram with a tree on the left and merging times on the right. The tree is 

labeled "Subproblem size" and the right is labeled "Total merging time for all 

subproblems of this size." The first level of the tree shows a single node n and 

corresponding merging time of c times n. The second level of the tree shows two 

nodes, each of 1/2 n, and a merging time of 2 times c times 1/2 n, the same as c 

times n. The third level of the tree shows four nodes, each of 1/4 n, and a merging 

time of 4 times c times 1/4 n, the same as c times n. The fourth level of the tree 

shows eight nodes, each of 1/8 n, and a merging time of 8 times c times 1/8 n, the 

same as c times n. Underneath that level, dots are shown to indicate the tree 

continues like that. A final level is shown with n nodes of 1, and a merging time of 

n times c, the same as c times n. 

Now we know how long merging takes for each subproblem size. The total time 

for mergeSort is the sum of the merging times for all the levels. If there 

are lll levels in the tree, then the total merging time is l \cdot cnl⋅cnl, dot, c, n. So 

what is lll? We start with subproblems of size nnn and repeatedly halve until we 

get down to subproblems of size 1. We saw this characteristic when we analyzed 



binary search, and the answer is l = \log_2 n + 1l=log2n+1l, equals, log, start base, 

2, end base, n, plus, 1. For example, if n=8n=8n, equals, 8, then \log_2 n + 1 = 4log2

n+1=4log, start base, 2, end base, n, plus, 1, equals, 4, and sure enough, the tree 

has four levels: n = 8, 4, 2, 1n=8,4,2,1n, equals, 8, comma, 4, comma, 2, comma, 1. 

The total time for mergeSort, then, is cn (\log_2 n + 1)cn(log2n+1)c, n, left 

parenthesis, log, start base, 2, end base, n, plus, 1, right parenthesis. When we use 

big-Θ notation to describe this running time, we can discard the low-order term 

(+1+1plus, 1) and the constant coefficient (ccc), giving us a running time 

of \Theta(n \log_2 n)Θ(nlog2n)\Theta, left parenthesis, n, log, start base, 2, end 

base, n, right parenthesis, as promised. 

One other thing about merge sort is worth noting. During merging, it makes a 

copy of the entire array being sorted, with one half in lowHalf and the other half 

in highHalf. Because it copies more than a constant number of elements at some 

time, we say that merge sort does not work in place. By contrast, both selection 

sort and insertion sort do work in place, since they never make a copy of more 

than a constant number of array elements at any one time. Computer scientists 

like to consider whether an algorithm works in place, because there are some 

systems where space is at a premium, and thus in-place algorithms are preferred. 
 


