CMR G
INSTITUTE OF
TECHNOLOGY USN

Internal Assessment Test 2 Answer Key— Nov. 2020

Sub: | System Software Sub Code: | 18MCA34 | Branch: | MCA

Date: 05/11/2020 ‘ Duration:‘ 90 min’s ‘ Max Marks: ‘50 Sem 1l ‘

Q1) Explain following machine independent features of assembler [10]
i) Program block
ii) Control Sections and Program linking

1) Program block

Program block refers to segment of code that are rearranged within a single object program unit and
control section to refer to segments that are translated into independent object program units.
Assembler Directive USE indicate which portion of the source program belong to various blocks

USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block.

If no USE statements are included, the entire program belongs to this single block.

Each program block may actually contain several separate segments of the source program. Assemblers
rearrange these segments to gather together the pieces of each block and assign address.

Passl

A separate location counter for each program block is maintained. Save and restore LOCCTR when
switching between blocks. At the beginning of a block, LOCCTR is set to 0. Assign each label an address
relative to the start of the block. Store the block name or number in the SYMTAB along with the assigned
relative address of the label Indicate the block length as the latest value of LOCCTR for each block at the
end of Pass1 Assign to each block a starting address in the object program by concatenating the program
blocks in a particular order

Pass2 : Calculate the address for each symbol relative to the start of the object program by adding: The
location of the symbol relative to the start of its block. The starting address of this block

2) Control Sections and program linking

e A control section is a part of the program that maintains its identity after assembly; each control
section can be loaded and relocated independently of the others.

e Different control sections are most often used for subroutines or other logical subdivisions. The
programmer can assemble, load, and manipulate each of these control sections separately.

e Because of this, there should be some means for linking control sections together. For example,
instructions in one control section may refer to the data or instructions of other control sections.

Page 1 of 10

Since control sections are independently loaded and relocated, the assembler is unable to process
these references in the usual way. Such references between different control sections are called
external references.

e The assembler generates the information about each of the external references that will allow the
loader to perform the required linking. When a program is written using multiple control sections,
the beginning of each of the control section is indicated by an assembler directive — assembler
directive: CSECT The syntax secname CSECT

e separate location counter is maintained for each control section Control sections differ from program
blocks in that they are handled separately by the assembler.

Q2) Write One pass Assembler algorithm. [10]

1 while opcode != 'End' do

2 begin

3 if there is no conmment line then

4 begin

5 if there is a symbol in the LABEL field then

6 begin

7 search SYMTAB for LABEL

8 if found then

9 begin

10 if <symbol value> as null

11 set <symbol value> as LOCCTR and search

12 the linked list with corresponding
13 operand

14 PTR addresses and generate operand

15 addresses as corresponding symbol
16 values

17 set symbol value as LOCCTR in symbol table
18 and delete the linked list

19 end

20 else

21 insert (LABEL,LOCCTR) into symtab

22

23 end

24 search OPTAB for OPCODE

25 if found then

26 begin

27 search SYMTAB for OPERAND addresses

28 if found then

29 if symbol value not equal to null then

30 store symbol value as OPERAND address
31 else

32 insert at the end of the linked list
33 with a node with address as LOCCTR
34 else

35 insert (symbol name,null)

36 LOCCTR+=3

37 end

38 else if OPCODE='WORD' then

39 add 3 to LOCCTR and convert comment to object code
40 else if OPCODE='RESW' then

41 add 3 #[OPERAND] to LOCCTR

42 else if OPCODE='RESB' then

43 add #[OPERAND] to LOCCTR

44 else if OPCODE='Byte' then

45 begin

46 find the length of constant in bytes

47 add length to LOCCTR

48 convert constant to object code

49 end

50 if object code will not fit into current text record then
51 begin

52 write text record to object program initialize new Text record
53 end

54 add object code to Text record

55 end

56 write listing line

57 read next input line

58 end

59 write last Text recordto object program
60 write End record to object program

61 write last listing line

62

Q3) Explain following machine dependent features of assembler [10]
i) Instruction Formats and Addressing modes
ii) Program Relocation

Page 2 of 10

1) Instruction Formats and Addressing modes
The instruction formats depend on the memory organization and the size of the memory.
In SIC machine the memory size is 215 bytes. Accordingly it supports only one instruction format.
Whereas the memory of a SIC/XE machine is 220 bytes (1 MB).
This supports four different types of instruction types, they are:
e 1 byte instruction
e 2 byte instruction
e 3 byte instruction
* 4 byte instruction
Instructions can be
e Instructions involving register to register (,register to register" instructions are faster than ,register
to memory" instruction because they do not require memory reference)
e Instructions with one operand in memory, the other in Accumulator (Single operand instruction)
e Extended instruction format

Addressing Modes are:
Index Addressing(SIC):
Syntax Opcode m, x
Example STCH BUFFER, X
Indirect Addressing: prefixed with @
Syntax Opcode @m
Example] @RETADR
Immediate addressing: prefixed with#
Syntax Opcode #c
Example LDA #3
PC-relative:
Syntax Opcode m
Base relative:
Syntax Opcode m

Instruction involving Register-Register:

During pass 1 the registers can be entered as part of the symbol table itself. The value for these registers is
their equivalent numeric codes.

During pass2, these values are assembled along with the mnemonics object code. If required a separate
table can be created with the register names and their equivalent numeric values.

Instruction involving Register-to-memory:

Most of the register-to-memory instructions are assembled using either program-counter relative or base
relative addressing.

Program-Counter Relative: In this usually format-3 instruction format is used. The instruction contains the
opcode followed by a 12-bit displacement value. The range of displacement values are from 0 -2048. This
displacement (should be small enough to fit in a 12-bit field) value is added to the current contents of the
program counter to get the target address of the operand required by the instruction.

TA = (PC) + displacement value

Base-Relative Addressing Mode: in this mode the base register is used to mention the displacement value.
Therefore the target address is

TA = (base) + displacement value

2) Program Relocation.

Page 3 of 10

It is often desirable to have more than one program at a time sharing the memory and other resources
of the machine.

In such a situation the actual starting address of the program is not known until the load time. Program
in which the address is mentioned during assembling itself. This is called Absolute Assembly or
Absolute Program.

Since assembler will not know actual location where the program will get loaded, it cannot make the
necessary changes in the addresses used by the program. However, the assembler identifies for the
loader those parts of the program which need modification.

An object program that has the information necessary to perform this kind of modification is called the
relocatable program.

This can be accomplished with a Modification record having following format:

Modification record

Col. 1M

Col. 2-7 Starting location of the address field to be modified, relative to the beginning of the program
(Hex)

Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

One modification record is created for each address to be modified The length is stored in half-bytes.
The starting location is the location of the byte containing the leftmost bits of the address field to be
modified. If the field contains an odd number of half-bytes, the starting location begins in the middle of
the first byte.

0000
0006 |4B101036 | (+JSUB RDREC)
1036“| B410 le— RDREC

1076

5000
5006 |4B106036 | (+JSUB RDREC)

6036 | B410 4— RDREC

6076

7426 | 4B108456 | (+JSUB RDREC)
8456" | B410 le—— RDREC

8496

Q4 a) Explain absolute loader with a algorithm [5]

The operation of absolute loader is very simple. The object code is loaded to specified locations in the
memory. At the end the loader jumps to the specified address to begin execution of the loaded program.
The role of absolute loader The advantage of absolute loader is simple and efficient. But the
disadvantages are, the need for programmer to specify the actual address, and, difficult to use
subroutine libraries.

Begin
read Header record

Page 4 of 10

verify program name and length

read first Text record

while record type is <> ‘E’ do

begin

{if object code is in character form, convert into internal representation} move object code to specified
location in memory

read next object program record

end

jump to address specified in End record

end

Q4 b) Explain bootstrap loader with a algorithm [5]

When a computer is first turned on or restarted, a special type of absolute loader, called bootstrap
loader is executed. This bootstrap loads the first program to be run by the computer -- usually an
operating system. The bootstrap itself begins at address 0. It loads the OS starting address 0x80. No
header record or control information, the object code is consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin
X=0x80 (the address of the next memory location to be loaded
Loop

A&GETC (and convert it from the ASCII character code to the value of the hexadecimal digit) save
the value in the high-order 4 bits of S

A&GETC combine the value to form one byte A¢& (A+S) store the value (in A) to the address in
register X

X&EX+1
End

Q5) Explain following loader design options [10]
i) Linkage Editors
i) Dynamic Linking

1. Linkage Editor
The figure below shows the processing of an object program using Linkage editor.

Page 5 of 10

FIGURE 3,17 Processing of an object pragram using (&) linking loader and (b) linkage

aditor
Object) Object .
program(s) programis)

<3 7
Library Linking Library Linkage
Ipader editor
Mermaory

(a)

Relocating
loader

i

Memory

(b)

A linkage editor produces a linked version of the program — often called a load module or an executable
image, which is written to a file or library for later execution. The linked program produced is generally in
a form that is suitable for processing by a relocating loader.

Linkage editor can perform many useful functions besides simply preparing an object program for
execution.

produce core image if actual address is known in advance

improve a subroutine (PROJECT) of a program (PLANNER) without going back to the original versions of
all of the other subroutines

INCLUDE PLANNER(PROGLIB) DELETE PROJECT {delete from existing PLANNER} INCLUDE
PROJECT(NEWLIB) {include new version} REPLACE PLANNER(PROGLIB) external references are retained
in the linked program

Linkage editors can also be used to build packages of subroutines or other control sections that are
generally used together.

Linkage editors often allow the user to specify that external references are not to be resolved by
automatic library search. Compared to linking loader, Linkage editors in general tend to offer more
flexibility and control, with a corresponding increase in complexity and overhead

2. Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is loaded and linked to the
rest of the program when it is first called. This type of functions is usually called dynamic linking, dynamic
loading or load on call. The advantages of dynamic linking are, it allow several executing programs to
share one copy of a subroutine or library. In an object oriented system, dynamic linking makes it possible
for one object to be shared by several programs.

Dynamic linking provides the ability to load the routines only when (and if) they are needed. The actual
loading and linking can be accomplished using operating system service request. Instead of executing a
JSUB instruction that refers to an external symbol, the program makes a load-and-call service request to
the OS. The OS examines its internal tables to determine whether or not the routine is already loaded.
Control is then passed from the OS to routine being called. When the called subroutine completes its
processing, it returns to its caller. OS then returns control to the program that issued the request.

Page 6 of 10

H
|oadar o .
{pat of the Iynamnc
operating adder \
system)

Dynamic Dynamic
logder loader

[

Load-and-caif| £
ERRHANDL

Lead-and-call
ERRHANDL

Library

L User i User
program program

User User
program pregram

ERRHANDL ERRHANDL

ERRHANDL

) (dy

Dynamic
loader

User
program

ERRHANDL

(8}

FIGRRE 318 Lcading and calling of u submouine aserg dynaric Hins g

Q6) Explain Program Linking with neat diagram [10]

The Goal of program linking is to resolve the problems with external references (EXTREF) and external

definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section names symbols, called external

symbols, that are defined in this (present) control section and may be used by other sections.

ex: EXTDEF BUFFER, BUFFEND, LENGTH EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used in this (present) control section

and are defined elsewhere.

ex: EXTREF RDREC, WRREC EXTREF LISTB, ENDB, LISTC, ENDC

How to implement EXTDEF and EXTREF The assembler must include information in the object program
that will cause the loader to insert proper values where they are required — in the form of Define record (D)

and, Refer record(R).

Define record

The format of the Define record (D) along with examples is as shown here.

Col.1D

Col. 2-7 Name of external symbol defined in this control section

Col. 8-13 Relative address within this control section (hexadecimal)

Col.14-73 Repeat information in

Col. 2-13 for other external symbols

Example records D LISTA 000040 ENDA 000054 D LISTB 000060 ENDB 000070
Refer record

The format of the Refer record (R) along with examples is as shown here.

Page 7 of 10

Col.1R
Col. 2-7 Name of external symbol referred to in this control section
Col. 8-73 Name of other external reference symbols

Example records R LISTB ENDB LISTC ENDC R LISTA ENDA LISTC ENDC R LISTA ENDA LISTB
ENDB

Here are the three programs named as PROGA, PROGB and PROGC, which are separately assembled and
each of which consists of a single control section. LISTA, ENDA in PROGA, LISTB, ENDB in PROGB
and LISTC, ENDC in PROGC are external definitions in each of the control sections. Similarly LISTB,
ENDB, LISTC, ENDC in PROGA, LISTA, ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA, LISTB,
ENDB in PROGC, are external references. These sample programs used to illustrate linking and relocation.
The following figure shows these three programs as they might appear in memory after loading and linking.
PROGA has been loaded starting at address 4000, with PROG B and PROGC immediately following.

Memory
address Contents
Q000 XXRXEEALXX XEXXXXEX XXEXNAXX XRXARXAAXX
. - - . L4
. - 3 . .
- - - - -
3FFO EXKAXAEX XKXXXXKX NEXAXNEXAX XXXXXXNKXK
000 [oemomemn: eeshe e eoiiearay Bnevrsee
BOADY |lemeiniopnass: pammaaimiaw: scesmmpen: o eatanidle
4020 93202DFT 2A0HQCI0S OQDIdGnss: Swvinss + M4—PROGA
GOT0L | Phviennm: Sewetsiiete: waemivess Wamaie i
KOKD: | ssovnomm: anvasere: weesicies: Semee e s s
G030 |eavevece QG412600 000806G40 51000004
4CH0 000083..
RO [s, ‘easarseaty Sauminans waeng v
A0H0. |airsnema: Eevinrie: waeieswear 4l ;;i.é;
&OUYU) | weasmama aatessacee «.031040 40 0
40AD [051000104 wvevevns annmemes sevanens +—PROGB
40BO0 | .ceceasad sosevees t1eseneve ewswvrses
Q00D |avsvmnms: saintiewn oma Al AleTeieaiale
d0D0 [sawwes 0C 41260000 08004051 00000400
4OEL 008R.cos snnsnaos seservne pecsssan
GOFIN [aladimamons simsmiasezan e a0310 40&07710
4100 AUCTOSIG: DOV R cams: memmmsiom Aamases “4+—PROGC
ELED Fivimasald: ssedsens SOLYERPE HEN S
£120° fidveiies 00412600 QQOBC040 51000004
4130 OUOUBth AAXKEXXXX XXAXXKXN XXXAXXXX
4140 KEXXANAA XYXEAKXX XXXAXXXX EXXARAXX

.. é

Page 8 of 10

For example, the value for REF4 in PROGA 1s located at address 4054 (the
beginning address of PROGA plus 0054, the relative address of REF4 within
PROGA). The following figure shows the details of how this value is

computed.
Object programs Memory contents
oooo

PROGA | HPROGA ss+

: (REF4) .
.
H005 (REF4)
P [T I XLET Y] qgfl‘lzﬁ]........ll.l

m@osﬂﬁ@

PROGC ROG . '/'
Y i Gk O
e
/1P Cpocoag {Actual address
Tel t of LISTC)

Load addresses
\ PROGA 004000

"\ PAOGE

“\EROED

Q04063

The initial value from the Text record
TO000540F000014FFFFF600003F000014FFFFCO0 1s 000014.

To this is added the address assigned to LISTC, which is 4112 (the beginning address of PROGC plus 30).
The result is 004126. That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126. Similarly
the load address for symbols LISTA: PROGA+0040=4040, LISTB: PROGB+0060=40C3 and LISTC:
PROGC+0030=4112 Keeping these details work through the details of other references and values of these
references are the same in each of the three programs.

Q7) Explain all machine independent features of loader [10]

i) Automatic Library Search

This feature allows a programmer to use standard subroutines without explicitly including them in the
program to be loaded.

The routines are automatically retrieved from a library as they are needed during linking.

This allows programmer to use subroutines from one or more libraries. The subroutines called by the
program being loaded are automatically fetched from the library, linked with the main program and
loaded.

The loader searches the library or libraries specified for routines that contain the definitions of these
symbols in the main program.

ii) Loader Options

Loader options allow the user to specify options that modify the standard processing. The options may
be specified in three different ways. They are, specified using a command language, specified as a part of
job control language that is processed by the operating system, and an be specified using loader control
statements in the source program. Here are the some examples of how option can be specified. INCLUDE
program-name (library-name) - read the designated object program from a library DELETE csect-name —
delete the named control section from the set pf programs being loaded CHANGE namel, name2 -
external symbol namel to be changed to name2 wherever it appears in the object programs

Page 9 of 10

LIBRARY MYLIB — search MYLIB library before standard libraries NOCALL STDDEV, PLOT, CORREL — no
loading and linking of unneeded routines Here is one more example giving, how commands can be
specified as a part of object file, and the respective changes are carried out by the loader.

LIBRARY UTLIB

INCLUDE READ (UTLIB)

INCLUDE WRITE (UTLIB)

DELETE RDREC,WRREC

CHANGE RDREC, READ

CHANGE WRREC, WRITE

NOCALL SQRT, PLOT

The commands are, use UTLIB (say utility library), include READ and WRITE control sections from the
library, delete the control sections RDREC and WRREC from the load, the change command causes all
external references to the symbol RDREC to be changed to the symbol READ, similarly references to
WRREC is changed to WRITE, finally

Q8) Write Passl algorithm for linking loader [10]

Fass 1.

hagin
get PROCATDR from oparaling systsm
it PSAODR 1o FROGADDR 1for first comtrsl ss-tinc
while not ead of 1nput do
bagin
read next input record {Header record for upotral wectisng
st O517H 1o sontrol section langlh
search ESTAE fior conivol s2cticn nane
1f found then
aet errar flag lduplicats sxteronl uynpoli
alga
arter ooalrel zection name wto ESTHR with vales GEADUR
while rooord iype () 'E° do
bagin
tead nexl ikput record
if record Sype = ‘07 them
for cact gymbol in Lhe record do
hagin
gesron WETAR for synbol asme
1t found them
sel corar flag fduplicats sxioreal symocl)
elee
cnter mymbol into ESYAR sith valas
(LSALDR 1 indizated address:
emd {‘or)
end {%iile (} 'E°}
add CSLTH 1o OSADDR |starting sddress fer next nontrol sectiodi
ad {while not EOF|
end |Pess ||

Page 10 of 10

