

15MAT31

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Engineering Mathematics - III

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Obtain Fourier series expansion of f(x) = |x| in the intercal $(-\pi, \pi)$ and hence deduce

$$\pi^2/8 = \sum_{1}^{\infty} \frac{1}{(2n-1)^2}$$
 (08 Marks)

b. Obtain half range cosine series of

$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$
 (08 Marks)

OR

2 a. Obtain Fourier series expansion of

$$f(x) = \frac{\pi - x}{2}, 0 \le x \le 2\pi.$$
 (06 Marks)

b. Obtain half range sine series of $f(x) = x^2$ in the interval $(0, \pi)$. (05 Marks)

c. Obtain the Fourier series for the following function neglecting the terms higher than first harmonic. (05 Marks)

x :	0	1	2	3	4	5
y:	9	18	24	28	26	20

Module-2

3 a. Find the Fourier transform of $f(x) = \begin{cases} 1 - |x|, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ and hence deduce $\int_0^\infty \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}$.

(06 Marks)

b. Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.

(05 Marks)

c. Find the Inverse Z - transform of

$$\frac{8z^2}{(2z-1)(4z-1)}$$
 (05 Marks)

OR

4 a. Find the Fourier Cosine transform of

$$f(x) = \begin{cases} 4x, & 0 < x < 1 \\ 4 - x, & 1 < x < 4 \\ 0, & x > 4 \end{cases}$$
 (05 Marks)

b. Find the Z – transform of i) $\sinh n\theta$ ii) n^2 . (06 Marks)

c. Solve the difference equation: $U_{n+2} - 5U_{n+1} + 6U_n = 2$, $U_0 = 3$, $U_1 = 7$. (05 Marks)

Module-3

5 a. Compute the coefficient of correlation and the equation of lines of regression for the data.

X	1	2	3	4	5	6	7
у	9	8	10	12	11	13	14

(06 Marks)

b. Fit a second degree parabola $y = ax^2 + bx + c$ for the following data:

X	0	1	2	3	4	5	6
у	14	18	27	29	36	40	46

(05 Marks)

c. Using Newton Raphson method, find a real root of $x \sin x + \cos x = 0$ near $x = \pi$, corrected to four decimal places. (05 Marks)

OR

6 a. Obtain the lines of regression and hence find coefficient of correlation for the following data

X	1	2	3	4	5
У	2	5	3	8	7

(06 Marks)

b. By the method of Least square, find a straight line that best fits the following data:

X	5	10	15	20	25
ý	16	19	23	26	30

(05 Marks)

c. Using Regula – Falsi method to find a real root of $x \log_{10} x - 1.2 = 0$, carry out 3-iterations. (05 Marks)

Module-4

7 a. Find the interpolating formula f(x), satisfying f(0) = 0, f(2) = 4, f(4) = 56, f(6) = 204, f(8) = 496, f(10) = 980 and hence find f(3).

b. Use Newton's divided difference formula to find f(9), given

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

(05 Marks)

c. Evaluate $\int_0^1 \frac{x}{1+x^2} dx$ by applying Simpson's $\frac{3}{8}$ th rule, taking 7 ordinates. (05 Marks)

OR

8 a. Using Newton's backward interpolation formula, find f(105), given

х	80	85	90	95	100
f(x)	5026	5674	6362	7088	7854

(06 Marks)

b. Apply Lagrange formula to find root of the equation f(x) = 0, given f(30) = -30, f(34) = -13, f(38) = 3 and f(42) = 18.

(05 Marks)

c. Evaluate $\int_{0}^{0.5} \sqrt{1-8x^3} \, dx$, taking 6 – equal strips by applying Weddle's rule. (05 Marks)

Module-5

- 9 a. If $\vec{F} = (3x^2 + 6y)i 14yzj + 20xz^2k$, evaluate $\int \vec{F} . d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the curve given by x = t, $y = t^2$, $z = t^3$. (06 Marks)
 - b. Find the extremal of the functional $\int_0^{\pi/2} (y^2 y'^2 2y \sin x) dx, y(0) = y(\pi/2) = 0.$ (05 Marks)
 - c. Prove that geodesics on a plane are straight lines.

(05 Marks)

OR

- 10 a. Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ with the help of Green's theorem in a plane. (06 Marks)
 - b. Verify Stoke's theorem for $\vec{F} = yi + zj + xk$. Where S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$ and C is it boundary. (05 Marks)
 - c. A heavy chain hangs freely under the gravity between two fixed points. Show that the shape of the chain is a Catenary. (05 Marks)

ž