

First Semester B.E. Degree Examination, Jan./Feb.2021 Engineering Mathematics – I

Engineering Mathematics –

Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each module.

Module - 1

- 1 a. If $y = a\cos(\log x) + b\sin(\log x)$, show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$. (07 Marks)
 - b. Find the Pedal equation for the curve $r^n = a^n \cos n\theta$. (06 Marks)
 - c. Show that the radius of curvature at any point θ on the cycloid $x = a(\theta + \sin \theta)$,

$$y = a(1 - \cos \theta)$$
 is $4a \cos \left(\frac{\theta}{2}\right)$. (07 Marks)

- 2 a. Find the nth derivative of cos2x cos3x cos5x. (07 Marks)
 - b. Find the angle between the radius vector and the tangent and also find the slope of the tangent for the curve $\frac{2a}{r} = 1 \cos\theta$ at $\theta = \frac{2\pi}{3}$. (07 Marks)
 - c. Derive an expression to find radius of curvature in pedal form. (06 Marks)

Module – 2

- 3 a. Obtain Maclaurin's series for log(secx) upto the term containing x⁶. (07 Marks)
 - b. If u is a homogeneous function of degree 'n' in x and y, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$.

(06 Marks)

- c. If u = x + y + z, v = y + z, w = z then find the value of $\frac{\partial(u, v, w)}{\partial(x, y, z)}$. (07 Marks)
- 4 a. Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}$ (07 Marks)
 - b. If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$. (06 Marks)
 - c. Find the extreme values of $\sin x + \sin y + \sin(x + y)$. (07 Marks)

Module - 3

- 5 a. A particle moves along the curve $x = t^3 4t$, $y = t^2 + 4t$, $z = 8t^2 3t^3$, where t denotes time. Find the components of its acceleration at t = 2 along the tangent and normal.

 (07 Marks)
 - b. Evaluate $\int_0^1 \frac{x^{\alpha} 1}{\log x} dx$ ($\alpha \ge 0$) using differentiation under the internal sign where α is the parameter. (06 Marks)
 - c. Apply the general rules to trace the curve $y^2(a-x) = x^3$, a > 0. (07 Marks)

6 a. Find the angle between the tangents to the curve $\vec{r} = t^2i + 2tj - t^3k$ at the points $t = \pm 1$.

(07 Marks)

b. Show that $\vec{F} = \frac{xi + yj}{x^2 + y^2}$ is both solenoidal and irrotational. (06 Marks)

c. Show that $\operatorname{curl}(\operatorname{grad}\phi) = \overrightarrow{0}$. (07 Marks)

Module - 4

7 a. Obtain the reduction formula for $\int \sin^n x dx$. (07 Marks)

b. Solve $(x^2 + y^2 + x)dx + xydy = 0$ (06 Marks)

c. Find the orthogonal trajectories of the family $r = a(1 - \cos \theta)$ (07 Marks)

8 a. Evaluate $\int_{0}^{1} x^{2} (1-x^{2})^{\frac{3}{2}} dx$. (07 Marks)

b. Solve: $\frac{dy}{dx} + \frac{1}{x}y = y^2x$ (06 Marks)

c. A body originally at 80°C cools down to 60°C in 20 min, the temperature of the air being 40°C. What will be the temperature of the body after 40 min from the original? (07 Marks)

Module – 5

9 a. Find the rank of matrix,

$$A = \begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$
 (06 Marks)

b. Diagonalize the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ (07 Marks)

c. Reduce $2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_3$ to canonical form by orthogonal transformation.

(07 Marks)

10 a. Solve by Gauss elimination method:

$$2x + 5y + 7z = 52$$

$$2x + y - z = 0$$

x + y + z = 9. (06 Marks)

b. Solve by LU decomposition method the equations,

$$3x + 2y + 7z = 4$$

$$2x + 3y + z = 5$$

 $3x + 4y + z = 7 \tag{07 Marks}$

c. Use power method to find the largest eigen value and the corresponding eigen vectors of,

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 taking initial eigen vectors $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Carryout 4 iterations.

(07 Marks)