## 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages

USN COLL

## Third Semester B.E. Degree Examination, Jan./Feb. 2021 Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

## PART - A

- 1 a. Derive an expression for force due to 'N' number of charges using principle of superposition. (06 Marks)
  - b. Two particle each of mass 'm' and having a charge 'q' are suspended by a string of length  $\ell$ ' from a common point. Show that the angle  $\theta$  which each string makes with the vertical is obtained from:  $\frac{\tan^3 \theta}{1 + \tan^2 \theta} = \frac{\theta^2}{16\pi \epsilon_0 \text{ mgl}^2}.$  (07 Marks)
  - Deduce workdone is independent of path selected in any electrostatic field by assuming charge Q = 2C, moved from point B(1, 0, 1) to A(0.8, 0.6, 1) in electric field intensity
     E = yâ<sub>x</sub> + xâ<sub>y</sub> + zâ<sub>z</sub>.
- 2 a. State and prove Divergence theorem applicable for a differential volume element. (06 Marks)
  - b. Surface charge densities of 200, -50 and  $P_{sx}$   $\mu C/m^2$  are located at r=3, 5 and 7 cm respectively. Find  $\overline{E}$  and  $\overline{D}$  at
    - i) r = 2cm ii) r = 4cm iii) r = 6cm iv) find  $P_{sx}$  if  $\overline{D} = 0$  at r = 7.32cm. (08 Marks)
  - c. Prove the divergence theorem for the region  $r \le a$  (in spherical co-ordinate system) having the flux density  $\overline{D} = \frac{5r}{3} \hat{a}_r$ . (06 Marks)
- 3 a. Derive an expression for continuity equation of the current in terms of integral and point form.

  (06 Marks)
  - b. Obtain suitable expression for tangential electric field is continuous across boundary and  $\overline{D}$  is discontinuous across boundary and also deduce normal component of flux density  $\overline{D}$  is continuous at the boundary between two dielectric and normal components of electric field inversely proportional to relative permittivity of two media. (06 Marks)
  - c. Use Laplace equation to find the capacitance per unit length of co-axial cable of inner radius 'a' m and outer radius 'b'm. Assume  $v = v_0$  at r = a and v = 0 at r = b. (08 Marks)
- 4 a. State and prove Ampere's circuital law.

(06 Marks)

- b. Given field  $\overline{A} = \rho^2 \sin^2 \phi \, \hat{a}_{\rho} + \rho^2 \cos^2 \phi \, \hat{a}_{\phi} + 2z^2 \, \hat{a}_z$  evaluate both sides of Stoke's theorem for the path formed by the intersection of the cylinder  $\rho = 2$  and plane z = 1 and for the surface  $\rho = 2$ ,  $1 \le z \le 3$  and z = 3,  $0 \le \rho \le 2$  (07 Marks)
- c. Find  $\overline{H}$  and  $\overline{B}$  inside a long straight non magnetic conductor of radius 8mm carrying a uniform current density of 100KA/m<sup>2</sup>.
  - i) Show that  $\nabla \times \overline{H} = \overline{J}$ . Find the total magnate flux crossing the surface
  - ii) z = 0 for  $0.2 < \rho < 8$ mm  $\pi < \phi < 2\pi$
  - iii)  $\phi = 0$ ,  $0 < \rho < 8$ mm, 0 < z < 10mm.

(07 Marks)

## PART-B

- Obtain an expression for torque on a current loop placed in magnetic field. 5 (06 Marks)
  - b. A point charge of Q = -1.2c has velocity  $\bar{v} = (5a_x + 2\bar{a}_y 3\bar{a}_z)M/S$  find the magnitude of force excreted on charge if,
    - i)  $\bar{E} = -18\bar{a}_x + 5\bar{a}_y 10\bar{a}_z \text{ V/M}$
    - ii)  $\overline{B} = -4\overline{a}_x + 4\overline{a}_y + 3\overline{a}_z T$
    - iii) Both are present simultaneously.

(06 Marks)

- c. Region 1 has semi-infinite space in which 2x 5y > 0, while region 2 is defined by
  - 2x 5y < 0. Let  $\mu_{r1} = 3$ ,  $\mu_{r2} = 4$  and  $\overline{H}_1 = 30\overline{a}_x A/M$ .

$$Find: i) \ | \ \overline{B}_1 \ | \ ii) \ | \ \overline{B}_{N1} \ | \ iii) \ | \ \overline{H}_{tan1} \ | \ iv) \ | \ \overline{H}_2 \ | \ .$$

(08 Marks)

- a. Explain physical significance of displacement current applied to magnetostate.
  - b. Given the retarded potentials : v = -y(x + at)v and  $\overline{A} = y(\frac{x}{a} + t)\overline{a}_x$  Wb/m

$$a = \frac{1}{\sqrt{\mu_0 \in_0}}.$$
 i) Show that  $\nabla \cdot \overline{A} = -\mu \in \frac{\partial v}{\partial t}$  ii) Find  $\overline{B}$ ,  $\overline{H}$ ,  $\overline{E}$  and  $\overline{D}$ . (08 Marks)

- c. A circular loop conductor lies in plane z = 0 and has radius of 0.1m and resistance of  $5\Omega$ . Given  $\overline{B} = 0.2 \sin 10^3 t \,\overline{a}_z \,T$ . Determine the current in the loop. (07 Marks)
- Derive the point and integral form of the Poynting theorem starting from Maxwell's 7 equation.
  - b. The electric field of uniform plane wave propagating in a sea water ( $\sigma = 4$ S/m,  $\epsilon = 80 \epsilon_0$ and  $\mu = \mu_0$ ) in positive z direction is given by  $\overline{E} = \cos(5 \times 10^4 \,\text{mt}) \, \bar{a}_{\pi} \, \text{V/M}$  at z = 0 calculate:
    - i) The instantaneous power flow per unit area normal to the z direction as a function of z
    - ii) Time average power flow per unit area normal to the z –direction as a function of z.

(08 Marks)

Obtain an expression for uniform plane wave in practical discretric.

(06 Marks)

- Explain reflection of uniform plane waves with normal incidence at a plane of dielectric boundary and also obtain an expression for transmission and reflection coefficient. (08 Marks)
  - An airplane flies over the surface of ocean for which  $\sigma = 4S/M$ ,  $\epsilon_r = 81$  and  $\mu_r = 1$ . The airplane transmits the signal in the form of 1MHz plane wave having an electric filed intensity of 1000V/M and propagating vertically downward. If a submarine requires a minimum signal of 10 µv/m for adequate reception. Determine maximum communication depth of submarine?



Fig.Q8(b)

Write a short notes as wave propagation in dispersive media.

(04 Marks)