Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Microwave and Radar

Max. Marks: 100

Note: Answer any EIVE full questions, selecting at least TWO full questions from each part.

PART - A

- 1 a. Derive an expression for the line impedance of a transmission line, at the sending end, in terms of load impedance (Z_l) and characteristic impedance (Z_0) . (08 Marks)
 - b. Define and derive expressions for reflection co-efficient and transmission co-efficient for a transmission line. (08 Marks)
 - c. A transmission line has following parameters:

Find: i) Characteristic impedance

 $R = 2\Omega/m$

G = 0.5 m mho/m

f = 1GHz L = 8nH/m

C = 0.23 pF

ii) Propagation constant.

(04 Marks)

:3

2 a. Derive electric and magnetic field equations in rectangular waveguides for TM_{mn} mode.

b. Define coupling factor, directivity of a directional coupler. Explain two hole directional coupler.

(10 Marks)

- 3 a. Explain the fundamental concept of Ridley Watkins-Hilsum (RWH) theory. Derive an expression for the condition for negative resistance in the Gunn diode, with the help of two-valley model. (10 Marks)
 - b. Draw equivalent circuit of the parametric amplifier. Explain briefly parametric up converter.
 (06 Marks)
 - c. An n-type GaAs Gunn diode has following parameter:
 - i) Electron density $n = 10^{18}$ cm⁻³
 - ii) Electron density at lower valley: $n_l = 10^{10} \text{cm}^{-3}$
 - iii) Electron density at upper valley $n_u = 10^8 \text{cm}^{-3}$
 - iv) Temperature $T = 300^{\circ}K$

Determine the conductivity of the diode.

(04 Marks)

4 a. State and derive properties of S-parameters.

(10 Marks)

- b. Define the following losses in microwave network in terms of S-parameters:
 - i) Insertion loss
 - ii) Transmission loss
 - iii) Reflection loss
 - iv) Return loss.

(06 Marks)

31

- c. Write S-matrix for
 - i) Directional coupler
 - ii) Four port circulator.

(04 Marks)

PART - B

5 a. Write short note on coaxial connectors and adapters.

(05 Marks)

- b. Explain construction and working of a precision rotary type phase shifter, with neat diagram.
 (10 Marks)
- c. Explain magic tee with neat diagram.

(05 Marks)

6	a.	With necessary equations, explain various losses in microstrip lines. (06 Marks)	
	b.	With a neat sketch, explain the different types of strip lines. (10 Marks)	
	c.	Compare strip-line and microstrip line. (04 Marks)	
7	a.	Explain RADAR with neat block diagram. (06 Marks)	
	b.	State and explain applications of RADAR. (06 Marks)	
	C.	Derive an expression for the basic form of RADAR-RANGE equation. (08 Marks)	

8 a. Explain the principle and working of MTI RADAR with the help of a neat block diagram.
(06 Marks)

b. Explain single delay line canceller with neat block diagram. Derive an expression for the frequency response of a delay line canceller. (08 Marks)

c. For an MTI RADAR, what are the first three blind speed at 2GHz when PRF is at 1kHz.

(06 Marks)