Time: 3 hrs

Seventh Semester B.E. Degree Examination, Jan./Feb. 2021

Non Conventional Energy Sources

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. With sketches, explain the production of oil from oil shale and tar sands. (10 Marks)
 - b. Explain the advantages and limitations of use of Non-conventional Energy resources.

(10 Marks)

2 a. With a neat sketch, explain the working of pyrheliometer.

(08 Marks)

b. Explain beam, diffuse, reflected and total radiation on a tilted surface.

(06 Marks)

- c. Calculate angle made by beam radiation with normal to a flat plate collector on December 1st at 9.00AM, Solar time for a location at 28°35′N. The collector is tilted at an angle of latitude plus 10°, with the horizontal and is pointing due south. (06 Marks)
- 3 a. Describe solar pond for solar energy collection and storage.

(10 Marks)

- b. List out the different concentrating solar collectors and explain the working principle with schematic diagram of any one concentrating collector. (10 Marks)
- 4 a. Explain the effect of following parameters on the collector performance
 - i) Collector orientation
 - ii) Selective surface coating
 - iii) Fluid inlet temperature
 - iv) Number of covers

(10 Marks)

b. Data for a flat plate collector used for heating the building are given below:

Factor

Location and Latitude

Baroda, 22°N

Day and time

- Baroda, 22 N

Day and time

January 1, 11:30 – 12:30 (IST)

Specification

Annual average intensity of solar radiation

0.5 Langley/min Latitude + 15°

Collector tilt

- 2

Number of glass covers

- 0.81

Heat removal factor for collector Transmittance Absorptance product $(\tau.\alpha)$

= 0.811

Top loss coefficient for collector

 $= 7.88 \text{ W/m}^{2} \text{°C}$

Collector fluid temperature

= 60 °C

Ambient temperature

= 15 °C

7 indicin tempe

Calculate:

- i) Solar altitude angle
- ii) Incident angle
- iii) Collector Efficiency.

(10 Marks)

PART - B

5 a. Explain the problems associated with wind power.

(10 Marks)

b. Wind at 1 standard atmospheric pressure and 15°C has velocity of 15m/s, calculate

- i) Total power density in the wind stream
- ii) Maximum obtainable power density
- iii) Total power
- iv) Torque at maximum efficiency and maximum axial thrust.

(10 Marks)

6 a. With a net sketch, explain the concept of liquid dominated system of generating geothermal energy. (10 Marks)

b. Sketch and explain double basin type tidal power generation.

(10 Marks)

7 a. Explain with sketch how biogas is produced in an Indian type biogas plant. (10 Marks)

b. Explain the benefit and application of biomass.

(10 Marks)

8 a. With a neat sketch, explain the working principle of tank type electrolyser for hydrogen production. (10 Marks)

- b. Write short notes on:
 - i) Merits of hydrogen Energy
 - ii) Transportation of Hydrogen.

(10 Marks)

* * * * *