Third Semester B.E. Degree Examination, Jan./Feb. 2021 Computer Organization

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain with a neat diagram, the different functional units of a digital computer. (08 Marks)
 - b. Explain the basic operational concepts between the processor and memory, with a neat diagram. (08 Marks)

OR

2 a. Explain the following: i) Byte addressability ii) Big – endian assignment

iii) Little – endian assignment iv) Word alignment of a machine. (08 Marks

b. Registers R_1 and R_2 of a computer contain the decimal value 1200 and 4600, what is the effective address of the source operand in each of the following instruction:

[R₁, R₂ and R₅ are registers]

Load $20(R_1)$, R_5

Move #3000, R₅

Store R_5 , $30(R_1, R_2)$

Add $-(R_2)$, R_5 .

(08 Marks)

Module-2

3 a. What is Interrupt? With example, explain the concept of interrupts.

(08 Marks)

b. What are the different methods of DMA transfer? Explain any one.

(08 Marks)

OR

- 4 a. Why is bus arbitration required? Explain with block diagram, bus arbitration using Daisy Chain. (08 Marks)
 - b. Explain Serial port and a Serial interface.

(08 Marks)

- Module-3
- 5 a. Define and explain the following: i) Memory access time ii) Memory cycle time iii) Random Access Memory (RAM) iv) Read Only Memory (ROM). (08 Marks)
 - b. Discuss the Internal organization of a 2M × 8 asynchronous DRAM chip.

(08 Marks)

OR

- 6 a. Draw a neat block diagram of memory hierarchy in a contemporary computer system. Also indicate relative variation of size, speed and cost per bit, in the hierarchy. (08 Marks)
 - b. Explain Associative mapping technique and Set Associative mapping technique, with a neat diagram. (08 Marks)

Module-4

7 a. Design a 4 - bit binary adder / subtractor and explain its functions.

(08 Marks)

b. Explain with diagram, Look – ahead Carry generator.

(08 Marks)

OR

8 a. Perform Multiplication for (-13) and (+09) using Booth's Algorithm. (08 Marks)
b. Perform Multiplication of (+13) and (-6) using Bit Pair recoding method. (08 Marks)

Module-

9 a. With a diagram, explain typical single bus processor data path.
b. Write the control sequence for an unconditional branch instruction.
(08 Marks)
(08 Marks)

OR

a. Explain the 3 – bus organization of the data path with a neat diagram and write the control sequence for the instruction ADD R₄, R₅, R₆ for the 3 – bus organization.
b. Draw and explain typical hard wired control unit.
(08 Marks)