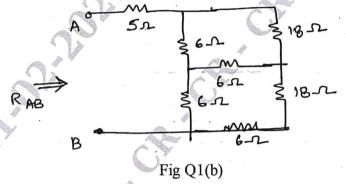
Third Semester B.E. Degree Examination, Jan./Feb. 2021 **Electric Circuit Analysis**

Time: 3 hrs.

Max. Marks: 80


Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 Define Passive and Active Elements with example. (06 Marks)

(10 Marks)

Determine R_{AB} using star – Delta transformation in the network show Fig Q1(b).

OR

- A series RLC circuit consists of a resistance is $1k\Omega$ and an inductance of 100mA in series 2 with capacitance is 10pF. If 100V is applied as input across the combination determine:
 - i) Resonant Frequency ii) Maximum current in the circuit iv) Half power frequencies.
- iii) Q factor of the circuit (08 Marks)
- Use nodal analysis to obtain current I in the Network shown Fig Q2(b).

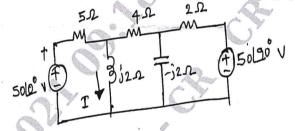
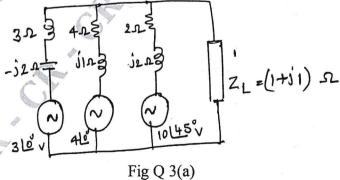
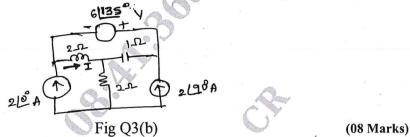
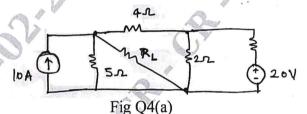



Fig Q2(b)

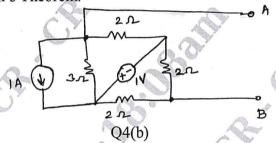
(08 Marks)


Module-2

Using Millmans theorem calculate the current through the load (Ref. Fig Q3(a))


(08 Marks)

b. Using superposition Theorem find the current I for the network shown Fig Q3(b).


OF

4 a. In the circuit shown below Q4(a), find the current through $R_L = 7.5\Omega$, using superposition theorem.

(08 Marks)

b. Determine the current through 1Ω resistor connected across AB in the network shown Fig Q4(b). Using Norton's Theorem.

(08 Marks)

Module-3

5 a. In the circuit shown in Fig Q5(a), switch 'K' is kept at position A for long time. At t = 0, switch is moved to position B. Find the expression for current for t > 0. Find the value of the current at t = 13.334 msec.

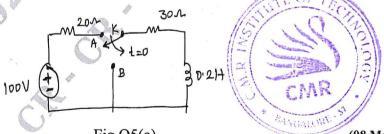
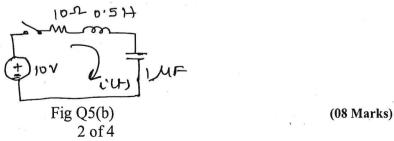



Fig Q5(a) (08 Marks)

b. Obtain the expression for current i(t) for $t \ge 0$, using time domain approach for the circuit shown in Fig Q5(b).

6 a. The Network shown Fig Q6(a), is under steady state condition with switch K is at position 1 find expression for i(t), if switch K is moved to position 2.

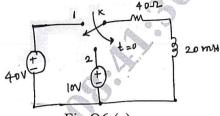
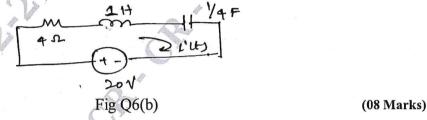



Fig Q6 (a)

(08 Marks)

b. Find the expression for current in a series RLC circuit fed by a d.c voltage of 20V with $R = 4\Omega$, L = 1H, $C = \frac{1}{4}F$. Assume initial conditions to be zero.

Module-4

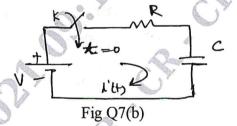

7 a. Express the wave from shown Fig Q7(a), is using of step function

Fig Q7(a)

(06 Marks)

b. In the series R-C circuit shown Fig Q7 (b), the switch is closed at t = 0. Obtain the expression for current.

(10 Marks)

OR

8 a. Express the waveform shown in Fig Q8(a) in term of standard functions

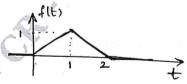
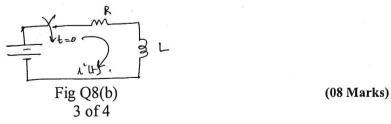
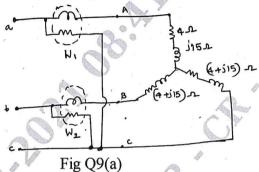



Fig Q8(a)


(08 Marks)

b. In the circuit shown Fig Q8(b) the switch is closed at t = 0, derive the expression of the resulting current using Laplace Transform

Module-5

The balanced load shown in Fig Q9(a), is fed by a balanced three phase system having $V_{ab} = 230 \ \underline{0^{\circ}} \ V_{rms}$, and position phase sequence, find the reading in each wattmeter and total power drawn by the load.

(08 Marks)

Find the z- parameters for the network shown Fig Q9(b).

OR

For the circuit shown in Fig Q10(a), the loads are $Z_A = 25 \ \underline{60^{\circ}}\Omega$, $Z_B = 50 \ \underline{-60^{\circ}}\Omega$, $Z_C = 50 \ [\underline{60^{\circ}}\ \Omega,\ V_{AB} = 600 \ \underline{0^{\circ}}\ V_{rms}$, and locate point 'x' at C, find P_A , P_B , P_C

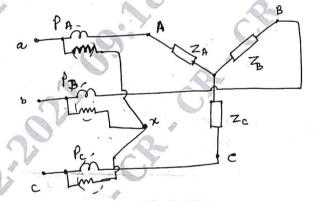
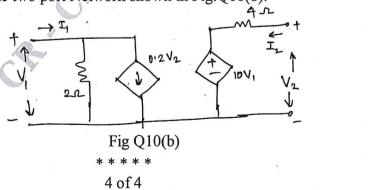



Fig Q10(a)

(08 Marks)

(08 Marks)

Find Y parameter of the two port Network shown in Fig.Q10(b).

