

15CS54

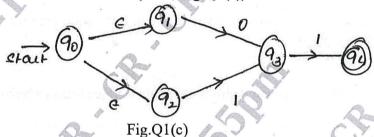
Fifth Semester B.E. Degree Examination, Jan./Feb. 2021

Automata Theory and Computability

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1


- 1 a. Define the following terms with example:
 - (i) Length of a string
- (ii) Reversal
- (iii) Proper substring

- (iv) Language
- (v) Power of an alphabet

(05 Marks)

- Design a FSM to accept set of all strings that either begins or ends or both with substring ab.

 (05 Marks)
- c. Convert the given NDFSM to DFSM. (Refer Fig.Q1(c))

(06 Marks)

ΩR

2 a. Construct a minimized DFSM for the following:

(08 Marks)

Å B C D E F G H

0 B C D E F G H I A

1 E F H H I B B C E

- b. Define NDFSM and construct NDFSM for the following languages:
 - (i) To recognize the following set of strings abc, abd and aacd
 - (ii) $L = \{w | w \in abab^n \text{ or } aba^n \text{ where } n \ge 0\}$
 - (iii) $L = \{w|w = aba \text{ or } |w| \text{ is even}\}$

(08 Marks)

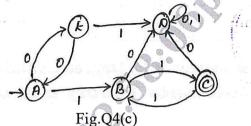
Module-2

- 3 a. Define Regular expression. Obtain a regular expression for the following languages:
 - (i) $L = \{w : |w| \text{ is even}\}$
 - (ii) $L = \{w : \text{in } w \text{ the } 5^{\text{th}} \text{ character from right is a and either character is b} \}$
 - (iii) L = {w: w contains both aa and aba as sub string}

(06 Marks)

- b. Construct FSM for the following RE:
 - (i) ab (ii) b + (ab)
- (iii) (b + (ab))*
- (iv) (babb* + a)*
- $(v) (b + \in) (ab)^* (a + \in)$

(10 Marks)


OR

4 a. Show that for every RE there is an equivalent FSM.

- (05 Marks)
- b. Prove that the regular languages are closed under intersection and difference.

(06 Marks)

c. Obtain RE from the following FSM. (Refer Fig.Q4(c))

(05 Marks)

Module-3

- a. Define context free grammar and write CFG for the following languages:
 - $\begin{array}{ll} (i) & L = \{a^ib^jc^k: i+j=k, \, i \geq 0, \, j \geq 0\} \\ (ii) & L = \{a^nb^mc^k: n+2m=k\} \end{array}$

(ii)
$$L = \{a^n b^m c^k : n + 2m = k\}$$

(06 Marks)

b. Consider the grammar G, with productions:

 $S \rightarrow AbB$

 $A \rightarrow aA \in$

 $B \rightarrow aB|bB| \in$

Give the left most derivation, rightmost derivation and parse tree for the string aaabab.

c. What is agbigous grammar? Prove that the following grammar is ambiqous on the string aab. $G: S \rightarrow aS|aSbS| \in$ (04 Marks)

- Build a PDA to accept delimiters or balanced paranthesis having paranthesis {, (,),}. (08 Marks)
 - b. Explain the following terms: (i) Pushdown Automata (PDA) (ii) Languages of a PDA (04 Marks)
 - c. Obtain a CFG for PDA M with the transitions:

$$\delta(q_0, a, Z) = (q_0, AZ)$$

$$\delta(q_0, b, A) = (q_0, AA)$$

$$\delta(q_0, a, A) = (q_1, \in)$$

(04 Marks)

Module-4

- a. State and prove pumping Lemma for context free languages. (06 Marks)
 - b. Prove that $L = \{w \in \{a, b, c\}^* \text{ where } n_a(w) = n_b(w) = n_c(w)\}$ is not context free. (04 Marks)
 - c. Prove that the Context Free Languages are closed under, union and concatenation. (06 Marks)

With a neat diagram, explain the working of a basic TM. 8

(06 Marks)

b. Design a TM to accept the following language $L = \{0^n 1^n 2^n \mid n \ge 1\}$

(10 Marks)

Module-5

- Write short notes on:
 - a. Multi Tape TM
 - b. Non Deterministic TM
 - c. Post Correspondence Problem

(16 Marks)

- a. Prove that every Language accepted by a multitape TM is accepted by standard TM with 10 single tape. (06 Marks)
 - b. Write note on: (i) Linear Bounded Automata (ii) Recursive Language (10 Marks)