Time 13 hr

Third Semester B.E. Degree Examination, Jan./Feb. 2021

Electronic Instrumentation

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following terms as applied to electronic instruments.
 - i) Accuracy ii) resolution iii) Error iv) Sensitivity. (08 Marks)
 - b. What is systematic error? Explain the different types of systematic error by listing them.
 (08 Marks)

OR

- 2 a. Explain the operation of true RMS voltmeter with neat diagram. (06 Marks)
 - b. With neat diagram, explain the operation of DC differential voltmeter. (06 Marks)
 - c. A D'Arsonval movement with a full scale deflection current of $50\mu A$ and internal resistance of 500Ω is to be converted into a multirange voltmeter. Determine the value of multiplier required for 0-20V, 0-50V and 0-100V. (04 Marks)

Module-2

- 3 a. With neat block diagram, explain dual slope integrating meter and also derive the unknown voltage equation. (08 Marks)
 - b. Describe the operation of a successive approximation type DVM with a neat sketch.

(08 Marks)

57

1

OR

- 4 a. Explain digital pH meter with a neat diagram. (08 Marks)
 - b. With a neat sketch, explain the working of a digital frequency meter.

(08 Marks)

Module-3

5 a. Draw the basic block diagram of an oscilloscope and explain the function of each block.

(08 Marks)

b. Explain the operation of a digital storage oscilloscope with a neat diagram. (08 Marks)

OR

- 6 a. Describe the operation of a function generator with a neat diagram. (08 Marks)
 - b. List the basic requirements of a pulse.

(04 Marks)

c. Sketch the block diagram and explain the AF sine and square wave generator. (04 Marks)

Module-4

7 a. Explain the operation of a phase meter with relevant diagrams.

(08 Marks)

b. Describe the operation of Q-meter with relevant diagrams and equations.

(08 Marks)

OR

- 8 a. Find the equivalent parallel resistance and capacitance that causes a Wien bridge to null with the following component values. $R_1 = 3.1 \text{k}\Omega$, $C_1 = 5.2 \mu\text{F}$, $R_2 = 25 \text{K}\Omega$, f = 2.5 KHz and $R_4 = 100 \text{K}\Omega$. Draw the bridge circuit for the above. (08 Marks)
 - b. Explain the operation of a Wheat stone's bridge with relevant diagram and derive the equation when the bridge is balanced. (08 Marks)

Module-5

9 a. Explain the working of LVDT with relevant diagrams.

(08 Marks)

b. Explain briefly the working of a resistive position transducer with neat diagram. (08 Marks)

OR

10 a. What is a transducer? Explain how to select a transducer.

(08 Marks)

b. Explain the different types of thermistor with neat diagrams. Mention its advantages and limitations. (08 Marks)

