ACT OF THE PROPERTY OF STREET STREET

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Signals and Systems

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer FIVE full questions, selecting atleast TWO questions from each part. 2. Missing data, if any, may be suitably assumed.

PART - A

Determine and sketch the even and odd parts of the signal given in Fig.Q1(a).

Fig.Q1(a)

(04 Marks)

b. Given the signal in Fig.Q1(b). Sketch the following

i)
$$x(-2t + 3)$$
 ii) $x(\frac{t}{2} - 2)$

(06 Marks)

- Determine whether the following signals are:
 - 1) Static or dynamic
 - Causal or non causal
 - Linear or non linear
 - Stable or unstable
 - Time variant or invariant.

i)
$$y(t) = 10x(t) + 5$$
 ii) $y(t) = x(n) \cos(\omega_0 n)$. (10 Marks)

Obtain the convolution of the two functions given below: 2

$$x(t) = \begin{cases} 2; & -2 \le t \le 2 \\ 0; & \text{elsewhere} \end{cases} \qquad h(t) = \begin{cases} 4; & 0 \le t \le 2 \\ 0; & \text{elsewhere} \end{cases}$$
 (10 Marks)

Derive an expression for convolution sum.

(04 Marks)

BUTTER OF THE PROPERTY OF STORE OF THE PARTY OF THE PARTY

Convolve the following two sequences to get y(n).

$$x(n) = \{1, 1, 1, 1\} \quad h(n) = \{2, 2\} \quad .$$
 (06 Marks)

Determine the natural response of the system described by the differential equation: 3

$$5\frac{d}{dt}y(t)+10y(t)=2x(t); y(0)=3.$$
 (04 Marks)

dt
b. Find the forced response for the system given by the difference equation:

$$y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = x(n) + x(n-1)$$
 with input $x(n) = \left(\frac{1}{8}\right)^n u(n)$. (06 Marks)

c. Draw the direct form I and II implementation for the system described by

i)
$$y(n) + \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = x(n) + x(n-1)$$

ii)
$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = \frac{dx(t)}{dt}.$$
 (10 Marks)

- State and prove the following:
 - i) Convolution for Fourier series
 - ii) Parsevsal's theorem.

(06 Marks)

- b. Evaluate DTFS for the signal $x(n) = \sin\left(\frac{4\pi}{21}n\right) + \cos\left(\frac{10\pi}{21}n\right) + 1$ sketch the magnitude and phase spectra. (06 Marks)
- Find the Fourier series co-efficient for the signal of Fig. Q4(c).

(08 Marks)

PART – B

5 Prove that:

if
$$x(t) \xrightarrow{FT} X(j\omega)$$

then
$$\int_{-\infty}^{t} x(\tau) d\tau \xleftarrow{FT} \frac{X(j\omega)}{j\omega} + \pi X(j0)\delta(\omega)$$

(08 Marks)

- Find the frequency response and impulse response of the system described by the differential equation: $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = -\frac{dx(t)}{dt}$. (06 Marks)
- Specify the Nyquist rate for each of the following signal
 - i) $x_1(t) = \sin(200t)$

ii)
$$x_2(t) = \sin e^2(200t)$$
.

(06 Marks)

- 6 a. Find the DTFT representation for the periodic signal $x(n) = \cos \frac{\pi}{3} n$. Also draw the spectrum. (08 Marks)
 - b. Obtain the frequency response and impulse response of the system having the output y(n) for the input x(n).

$$x(n) = \left(\frac{1}{2}\right)^{n} u(n); y(n) = \frac{1}{4} \left(\frac{1}{2}\right)^{n} u(n) + \left(\frac{1}{4}\right)^{n} u(n).$$
 (06 Marks)

- c. Obtain the relationship between DTFT and DTFS. (06 Marks)
- 7 a. Prove the following properties with respect to Z-transform.
 i) Linearity ii) Scaling in Z-domain iii) Differentiation in Z domain.
 b. Using appropriate properties to find the Z-transform of:

$$x(n) = n^2 \left(\frac{1}{2}\right)^n u(n-3)$$
. (08 Marks)

8 a. Using partial fraction method obtain the time domain signal with ROC's given below:

$$X(z) = \frac{\binom{1}{4}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)}$$

ROC:

- i) $|z| > \frac{1}{2}$
- ii) $|z| < \frac{1}{4}$

iii)
$$\frac{1}{4} < |z| < \frac{1}{2}$$
. (12 Marks)

b. A causal system has input x(n) and output y(n) find the impulse response of the system if $x(n) = \delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2)$ and $y(n) = \delta(n) - \frac{3}{4}\delta(n-1)$. (08 Marks)

* F