Eighth Semester B.E. Degree Examination, Jan./Feb. 2021

System Modeling and Simulation

Time: 3-hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. List any five circumstances, when simulation is appropriate tool and when it is not an appropriate tool. (10 Marks)
 - b. Briefly explain areas of application of simulation.

(05 Marks)

c. Mention different types of simulation models with examples.

(05 Marks)

- 2 a. Describe queueing system with respect to arrival and service mechanism, system capacity and queue discipline. (06 Marks)
 - b. Write the flow diagram for service just completed and unit entering system flow diagram.

 (06 Marks)
 - c. The newsstand buys the papers for 33 cents each and sells them for 50 cents each. Newspapers not sold at the end of the day are sold as scrap for 5 cents each. Newspapers can be purchased in bundles of 10. Thus, the newsstand can buy 50, 60 and so on. There are three types of news days: "good", "fair" and "poor, they have the probabilities 0.35, 0.45 and 0.20 respectively. The distribution of newspapers demanded on each of these days is given in Table.1. Simulate this system for 6 days and recording profit from sales each day for purchase of 70 newspapers.

Demand P	robabilit	y Distri	bution
Demand	Good	Fair	Poor
40	0.03	0.10	0.44
50	0.05	0.18	0.22
60 🦠	0.15	0.40	0.16
70	0.20	0.20	0.12
80	0.35	0.08	0.06
90	0.15	0.04	0.00
100	0.07	0.00	0.00

Table.1: Distribution of News papers demanded per day

Random digits for type of news day: 58, 17, 21, 45, 43, 36

Random digits for demand: 93, 63, 31, 19, 91, 75

(08 Marks)

3 a. Explain event Scheduling Algorithm.

(08 Marks)

- b. Consider a single server queueing system with arrival and service details as:
 - Inter arrival time 1 1 6 3 7 5 2 4 1 ...

Service times 4 2 5 4 1 5 4 1 4...

Prepare a table using event scheduling algorithm. Stop simulation when clock reaches 6 mins. Find total busy time and maximum queue length. (12 Marks)

- 4 a. Explain the following continuous distribution:
 - (i) Uniform distribution
 - (ii) Exponential distribution

(10 Marks)

b. Explain the characteristics of queueing system.

(10 Marks)

(10 Marks) (10 Marks)

$\overline{\mathbf{A} - \mathbf{T} \mathbf{A} \mathbf{A} \mathbf{A}}$

(10 Marks)	(ii) Confidence-Interval Estimation			
	(i) Point estimation			
	. Write short notes on:	'q		
ion. (10 Marks)	Explain output analysis for terminating simulat	e.	L	
(10 Marks)				
$[1.11 = {}_{2,0.0}^{2}X]$, 1, 2, 5, 5, 5, 7, 8, 01, 71, 91	size = 100 and observed frequency $O_i = 12$, 10,			
	C-II	q		
nput model. (10 Marks)	Explain the steps in the development of useful i	g'	9	
(10 Marks)	random number.			
ned linear congruential method for generating	Explain linear congruential method and combin	q		
(10 Marks)	generating random numbers.			
the number of important consideration for	T T	e.	2	

a. With a neat diagram, explain model building, verification and validation.
b. Explain the iterative process of calibrating a model.