USNIOITA

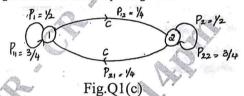
Sixth Semester B.E. Degree Examination, Jan./Feb. 2021

Information Theory and Coding

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.


PART - A

- a. Define the following terminologies:
 - i) Information content of a message
 - ii) Average information content of symbols

iii) Average source information rate.

(03 Marks)

- b. A code is composed of dots and dashes. Assuming that a dash is 3 times long as a dot and one third the probability of occurrence. Calculate:
 - i) Information in Dot and Dash
 - ii) Entropy of dot dash code
 - iii) Average rate of information if a dot lasts for 10msec and this time is allowed between symbols. (07 Marks)
- c. For the Markoff source shown in Fig.Q1(c) calculate:
 - i) Entropy of source
 - ii) Draw tree diagram for 2 symbol sequences
 - iii) Find G_1 and G_2 and G_2 and show that $G_1 > G_2 > H$.

(10 Marks)

- 2 a. Explain the steps involved in generating binary code using Shannon's encoding algorithm.
 (04 Marks)
 - b. The source emits messages consisting of 2 symbols each as per table given below. Design a source encoder using Shannon's encoding algorithm and also find encoder efficiency and code redundancy.

 (06 Marks)

 Message Mi
 AA
 AB
 AC
 CC
 BC
 CA
 BB

 Probability
 9/32
 3/32
 3/32
 1/16
 3/32
 3/32
 9/32

c. Apply Shannon's encoding algorithm to the following messages

S_1	S_2	S_3
0.5	0.3	0.2

- i) Find code efficiency and redundancy
- ii) If the same technique is applied to the 2nd order extension of this source. How much will the code efficiency be improved? (10 Marks)
- 3 a. Define Mutual Information. List all the properties of mutual information. (04 Marks)
 - b. Consider a discrete memoryless source with alphabets (S_0, S_1, S_2) and probabilities [0.75, 0.15, 0.15] for its output.
 - i) Apply Huffman coding procedure for the source and find the average length of the code word
 - ii) Consider the 2nd extension of this source apply Huffman encoding procedure and find the average length of the codeword
 - iii) Find the coding efficiency in both cases.

(10 Marks)

- c. Prove the following:
 - i) Mutual information of the channel is symmetric
 - ii) Mutual information is always positive.

(06 Marks)

- a. A Gaussian channel has a bandwidth of 4KHz and 2 sided noise power spectral density η/2 of 10⁻⁴Watts/Hz. Signal power at the receiver has to be maintained at a level less than or equal to 0.1m Watts. Calculate the capacity of channel. (04 Marks)
 - b. State and prove Shannon Hartley law. Derive an expression for the upper limit on channel capacity as bandwidth tends to ∞. (06 Marks)
 - c. A binary symmetric channel has the following noise matrix with source probabilities of $P(x_1) = \frac{2}{3}$ and $P(x_2) = \frac{1}{3}$

$$P(Y_X) = X_1 \begin{bmatrix} Y_1 & Y_2 \\ \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix}$$

- i) Determine H(X), H(Y), H(X, Y), H(Y/X), H(X/Y) and I(X, Y)
- ii) Find the channel capacity C
- iii) Find channel efficiency and redundancy.

PART-B

5 a. Consider a (6, 3) linear code whose generator matrix is

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- i) Find all code vectors
- ii) Find all the Hamming weights and distances
- iii) Find minimum parity check matrix
- iv) Draw the encoder circuit for the above codes.

(12 Marks)

- b. What is error control coding? What are the methods employed in detecting and correcting errors? (08 Marks)
- 6 a. With neat block diagram explain the operation of encoding using (n k) bit shift register.

 (08 Marks)
 - b. Consider the (15, 11) cyclic code generated by $g(x) = 1 + x + x^4$.
 - i) Device a feedback register encoder for this code
 - ii) Illustrate the encoder procedure with the message vector 1 1 0 0 1 1 0 1 0 1 1 by listing the states of register. (12 Marks)
- 7 Consider the (3, 1, 2) convolution code with $g^{(1)} = (1 \ 1 \ 0)$, $g^{(2)} = (1 \ 0 \ 1)$, $g^{(3)} = (1 \ 1 \ 1)$
 - i) Draw the encoder block diagram
 - ii) Find the generator matrix
 - iii) Find the code word corresponding to the information sequence [1 1 1 0 1] using time domain and transform domain approach. (20 Marks)
- 8 Write short notes on :
 - a. Shortened cyclic codes
 - b. Golay codes
 - c. Burst error correcting codes
 - d. Reed Solomon codes.

(20 Marks)