Eighth Semester B.E. Degree Examination, Jan./Feb. 2021 **Control System**

Lime: 3 hrs

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Compare open loop and closed loop control system and give one practical example of each. 1
 - Draw the electrical network based on Torque-current analogy give all the performance equations for the Fig.Q.1(b).

Fig.Q.1(b)

Write block diagram reduction rules.

(04 Marks)

OR

Using the block diagram reduction rules find for the Fig.Q.2(a) 2

(08 Marks)

Obtain the T.F by using Mason's gain formula for the Fig.Q.2(b).

(08 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-2

Find K_1 so that $\epsilon = 0.35$. Find the corresponding time domain specifications for the Fig.Q.3(a). (05 Marks)

- For unity feed back control system with G(S)
 - The static error coefficients i)
 - ii) Steady state error when the input

$$R(s) = \frac{3}{s} + \frac{2}{s^2} + \frac{1}{3s^3}$$

(06 Marks)

Draw the time response curve and define time domain specifications, for second order system for unit step input. (05 Marks)

- Explain the effect of ξ on second order system performance. (04 Marks)
 - Explain the effects of PI and PD controllers on the performance of second order system. (08 Marks)
 - Find K_P and K_V for the system with open loop transfer function as

$$G(s)H(s) = \frac{10(s+2)(s+3)}{s(s+1)(s+4)(s+5)}$$

where input is r(t) = 3 + t.

(04 Marks)

Module-3

Explain basic concept of Root locus.

(03 Marks)

The open loop T.F of unity feedback system is given by

$$G(s) = \frac{K(s+3)}{s(s^2 + 2s + 3)(s+5)(s+6)}$$

Find the value of K of which closed loop system is stable.

(07 Marks)

A unity feedback control system is described by the characteristic equation $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$. Find its stability using R-H criterion. (06 Marks)

- Explain R-H criterion for determining the stability of a system and mention its limitations. (04 Marks)
 - A feedback control system has an open loop transfer function,

$$G(s)H(s) = \frac{K}{s(s+3)(s^2+2s+2)}$$
. Draw the root locus as K varies from 0 to ∞ . (12 Marks)

Module-4

7 a. List the limitations of lead and lag compensations.

(04 Marks)

b. Sketch the Bode plot for the T.F = $\frac{300(s^2 + 2s + 4)}{s(s+10)(s+20)}$ Find, phase margin and gain margin.

(08 Marks)

c. Write a note about gain margin in brief.

(04 Marks)

OR

8 a. Draw the polar plot of $G(s)H(s) = \frac{100}{(s+2)(s+4)(s+8)}$

(08 Marks)

b. Sketch the Nyquist plot for a system with $G(s)H(s) = \frac{10(s+3)}{s(s-1)}$ comment on closed loop stability. (08 Marks)

Module-5

a. Explain the sampling process with the help of unit impulse train.

(06 Marks)

b. What is diagonalization of a matrix explain with suitable example?

(05 Marks)

c. Obtain the state model of the system represented by the differential equation.

$$\frac{d^3y(t)}{dt^3} + 6\frac{d^2y(t)}{dt^2} + 11\frac{dy(t)}{dt} + 10y(t) = 3u(t)$$

(05 Marks)

OR

- 10 a. Define the following terms:
 - i) State variable
 - ii) State space
 - iii) State trajectory.

(06 Marks)

b. Obtain the state model of the given electrical system for the Fig.Q.10(b)

(06 Marks)

R L

Fig.Q.10(b)

c. State the advantages and disadvantages of digital control system.

(04 Marks)