GBCS SCHEME

USN

17EE34

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. For the clipper limit shown in Fig Q1(a). Find V₀, sketch the V₀ waveform and also draw the transfer characteristics

Dated SR Vo

Fig Ol(a)

(07 Marks)

b. With a neat circuit diagram, explain the operation fixed bias circuit.

(07 Marks)

c. What is biasing of a transistor? Explain the requirements of biasing circuits.

(06 Marks)

OF

- 2 a. Find the operating point for the voltage divider bias circuit with $\beta=80$ and $V_{BE}=0.6V$. Find the new operating point when β changes to 100 and V_{BE} changes to 0.25V. Consider, $V_{CC}=15V$, $R_1=100K\Omega$, $R_2=18K\Omega$, $R_c=4.7K\Omega$ and $R_E=1K\Omega$. (10 Marks)
 - b. Obtain the expression for stability factor (S_{Ico}) for collector to base bias circuit. (05 Marks)
 - c. Explain the operation of a transistor as a switch.

(05 Marks)

Module-2

- a. Define h-parameters. Obtain the expression for current gain, voltage gain, input resistance and output resistance for CE configuration of BJT using h-parameters. (10 Marks)
 - b. For the emitter follower circuit shown in Fig Q3(b). Calculate z_i , z_o , A_v and A_i . Take the h-parameter of the transistor to be $h_{ie} = 1.1 \text{K}\Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 50$, $h_{oe} = 24 \,\mu\text{A/v}$

(06 Marks)

c. A transistor in CE mode has h-parameters, $h_{ie} = 1100\Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 99$ and $h_{oe} = 25 \mu \text{A/v}$. Determine equivalent CB parameters. (04 Marks)

OR

4 a. For the common base circuit shown in Fig Q4(a), the transistor parameters are $h_{ib} = 22\Omega$, $h_{rb} = 2.9 \times 10^4$, $h_{fb} = -0.98$ and $h_{ob} = 0.49$ μ A/v. Calculate the values of the input resistance, output resistance, current gain and voltage gain for the given circuit.

b. State and prove Miller's theorem.

Module-3

5 a. Explain the need for cascading amplifier. Draw and explain block diagram of n-stage cascaded amplifier. (06 Marks)

b. Compare the different types coupling methods used in multistage amplifiers. (08 Marks)

c. With the help of a neat circuit diagram, explain the working of a Darlington emitter follower. (06 Marks)

OR

6 a. Define Negative and Positive feedback. With the help of block diagram, explain the concept of feedback amplifier. (07 Marks)

b. Derive the expression for Z_{if} and Z_{of} for a voltage series feedback amplifier. (08 Marks)

c. An amplifier having a voltage gain of 60dB uses 1/20th of it output in negative feedback. Calculate to the gain with feedback, the percentage change in gain without and with feedback consequent on 50% change in g_m (transfer or mutual conductance). (05 Marks)

Module-4

7 a. Explain the operation of a class-B push pull power amplifier. Prove that the maximum efficiency of a class - B configuration is 78.5%. (10 Marks)

b. State and explain Barkhausen criterion for sustained Oscillations. (05 Marks)

c. Explain the features of power amplifiers.

(05 Marks)

OR

8 a. Draw the circuit of wein bridge oscillator and derive an expression for frequency of oscillator. (10 Marks)

b. Explain the operation of class A transformer coupled power amplifier and prove that the maximum efficiency is 50%. (10 Marks)

Module-5

9 a. Discus the construction, working and characteristics of an n-channel JFET. (10 Marks)

b. Give the comparison between the following:

i) BJT and FET ii) JFET and MOSFET iii) D-MOSFET and E-MOSFET. (10 Marks)

OR

10 a. Discuss the construction, working and characteristics of an enhancement type MOSFET [E-MOSFET]. (10 Marks)

b. With necessary equivalent circuit, obtain the expression for voltage gain, input impedance and output impedance of a Fixed biased common source – JFET amplifier. (10 Marks)