```
1.The function f(x) = x^2 - 1 in (-\pi, \pi) is
```

a)odd

b) even

c) both odd and even

d) neither odd nor even

Answer: b CO1, L1

2. The function f(x) = x - 1 in $(-\pi, \pi)$ is

a)odd

b) even

c) both odd and even

d) neither odd nor even

Answer:d CO1, L1

3.The function $f(x) = \sin x$ in $(-\pi, \pi)$ is

a)odd

b) even

c) both odd and even

d) neither odd nor even

Answer: a CO1, L1

4. The function f(x) = 0 in $(-\pi, \pi)$ is

a)odd

b) even

c) both odd and even

d) neither odd nor even

Answer: c CO1, L2

5. Which of the following functions will have $b_n = 0$ in its Fourier series?

a)
$$f(x) = x$$
 in (-1,1)

b) $f(x) = kx^2$ in $(-\pi, \pi)$ where k is a constant

c)
$$f(x) = x + x^2$$
 in $(-\pi, \pi)$

d) $f(x) = \exp(-ax) in(-\pi,\pi)$

Answer: b CO1, L2

6. Which of the following functions will have $a_n = 0$ in its Fourier series?

a)
$$f(x) = x \sin x \, in (-\pi, \pi)$$

b)
$$f(x) = |x| in(-\pi,\pi)$$

c)
$$f(x) = x \cos x \ in (-\pi, \pi))$$

d) $f(x) = \cosh(ax))in(-\pi,\pi)$

Answer: c CO1, L2

7. The value of a_0 in the Fourier series of $f(x) = |\sin x|$ is

a) $\frac{1}{\pi}$ b) $\frac{2}{\pi}$ c) $\frac{4}{\pi}$ d) $\frac{8}{\pi}$

Answer: c CO1, L2

8. A function which is symmetric with respect to the y axis is called as

a)odd

b)even

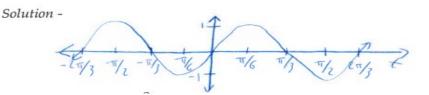
c)both odd and even

d)neither odd nor even

Answer : b(even) CO1, L1

9. In harmonic analysis, the constant term and the nth harmonic of a function defined in $(0,2\pi)$ is

a)
$$a_0$$
 and $a_n \cos(nx) + b_n \sin(nx)$


b)
$$\frac{a_0}{2}$$
 and $a_n \cos(nx) + b_n \sin(nx)$

C) a_0 and $a_n \cos(nx)$

d) a_0 and $b_n \sin(nx)$

Answer: b CO1, L1

10.

a)For the above graph, the function is $f(t) = \sin(3t)$ and the period is $\frac{2\pi}{3}$. b)For the above graph, the function is $f(t) = \cos(3t)$ and the period is $\frac{2\pi}{3}$. c)For the above graph, the function is $f(t) = \sin(3t)$ and the period is $\frac{\pi}{3}$.

d)none of the above

Answer: a CO1, L2

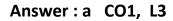
11. The value of a_n in the Fourier expansion of $f(x) = \exp(-ax)in(-\pi,\pi)$ is

$$\mathsf{a})\frac{2a(-1)^n}{\pi(a^2+n^2)}\sinh(a\pi)$$

b)
$$\frac{2n(-1)^n}{\pi(a^2+n^2)}\cosh(a\pi)$$

c)none of the above

Answer: a CO1, L3


12. The value of b_n in the Fourier expansion of

$$f(x) = \begin{pmatrix} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{pmatrix}$$
 is
a) $\frac{4k}{n\pi}$, *n* is odd
b) $\frac{2k}{n\pi}$
c) 0
d) None of the above

Answer: a CO1, L3

13. The half range sine series of f(x) = x in $(0, \pi)$ is

a)
$$x = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$

b) $x = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cos(nx)$
c) $x = 4\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$
d) none of the above

14. The half range cosine series of $f(x) = (x-1)^2$ in (0,1) is

a)
$$\frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$$

b)
$$\frac{2}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$$

c)
$$\frac{2}{3} + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$$

d) none of the above

Answer: a or d CO1, L3

15.The Fourier series expansion of $f(x) = x \cos x$ in $(0, 2\pi)$ is a) $x \cos x = \pi + \frac{1}{2} \sin x + 2 \sum_{n=1}^{\infty} \frac{n}{1 - n^2} \sin(nx)$ b) $x \cos x = \pi \cos x - \frac{1}{2} \sin x + 2 \sum_{n=1}^{\infty} \frac{n}{1 - n^2} \sin(nx)$ c) $x \cos x = \pi \sin x - \frac{1}{2} \cos x + 2 \sum_{n=1}^{\infty} \frac{n}{1 - n^2} \sin(nx)$ d none of the above

Answer: b CO1, L3

16. The Fourier series representing the function

$$f(x) = \begin{pmatrix} 0, & -2 < x < 0\\ a, & 0 < x < 2 \end{cases}$$
 is
a) $a \left\{ \frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(1 - (-1)^n \right) \sin\left(\frac{n\pi x}{2}\right) \right\}$
b) $a \left\{ \frac{1}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(1 - (-1)^n \right) \sin\left(\frac{n\pi x}{2}\right) \right\}$
c) $a \left\{ \frac{1}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(1 - (-1)^n \right) \cos\left(\frac{n\pi x}{2}\right) \right\}$

d)none of the above

Answer: a CO1, L3