

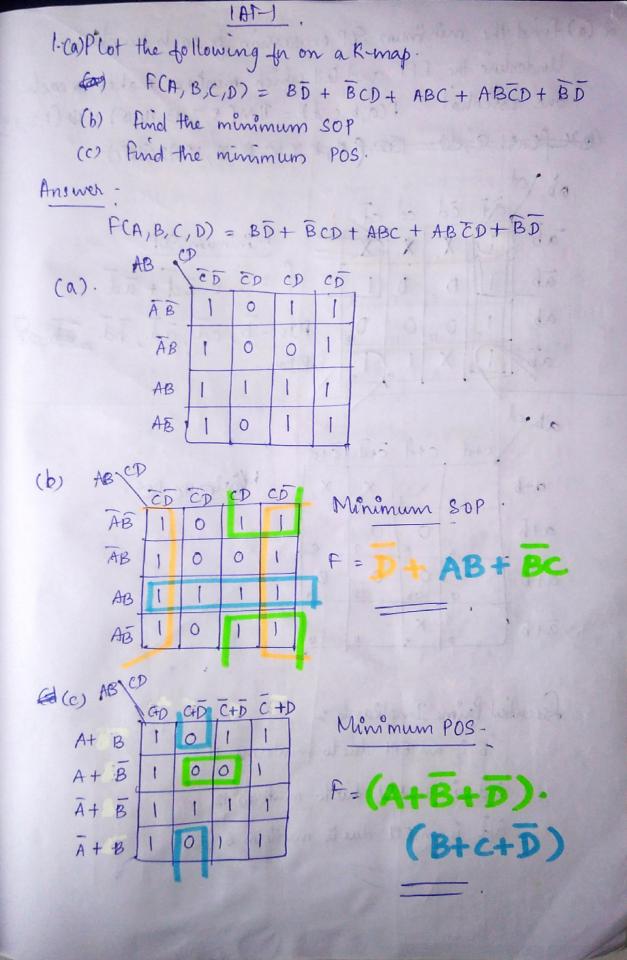
		Int	ernal	Assess	me	nt Test 1 -	- Septemb	er 2020	ACCREDITED	WITH A+ GRAD	E BY NAAC
Su b:	Analog and l	Digital Ele	ectronic			Sub Code:	18CS33	Branch:	ISE		
Date :	11.09.2020Duratio90Max5Sem/Secn:mins $s:$ 0:3 – A, B, C						OBE				
		Ansv	wer any	FIVE	FUI	LL Question	<u>s</u>		MAR KS	СО	RBT
							-				1
1		(A, B, C)	, D) =	BD' +	B'	CD + ABC		D + B'D'	2 M	CO3	L2
	(b) Find th			-					4 M	CO3	L3
	(c) Find th	ne minim	ium pr	oduct	of s	sums.			4 M	CO3	L3
2	 2 (a) Find the minimum SOP expression for the function below. Identify the essential prime implicants in your answer and substantiate with reasons, which minterm makes each one essential. F (a, b, c, d) = Π M (5, 7, 13, 14, 15) . Π D (1, 2, 3, 9) (b) With the help of a flow chart, explain how to determine minimum sum of products using Karnaugh map. How do you identify PIs and EPIs in a given K-map? 				5 M	CO3	L3				
					5 M	CO3	L2				
	Assuming to occur, find a function usi F = A'BC'	a simplif ng K-ma	fied SO	OP and	PC	OS express	ion for the		10 M	CO3	L3
4	For the given function, find any one minimum sum-of-products solution, using Quine Mc-Cluskey method: f(a, b, c, d) = $\sum m (1, 3, 4, 5, 6, 7, 10, 12, 13) + \sum d (2, 9, 15)$					10 M	CO3	L3			
5	Find all the minimum solutions for the given function using Petrick's method: F(a, b, c, d) = $\sum m (2, 4, 5, 6, 9, 10, 11, 12, 13, 15)$						10 M	CO3	L3		
6	Packages arrive at the stockroom and are delivered on carts to offices and laboratories by student employees. The carts and packages are various sizes and shapes. The students are paid according to the carts used. There are five carts and the pay for their use is Cart C1: \$2					10 M	CO3	L4			

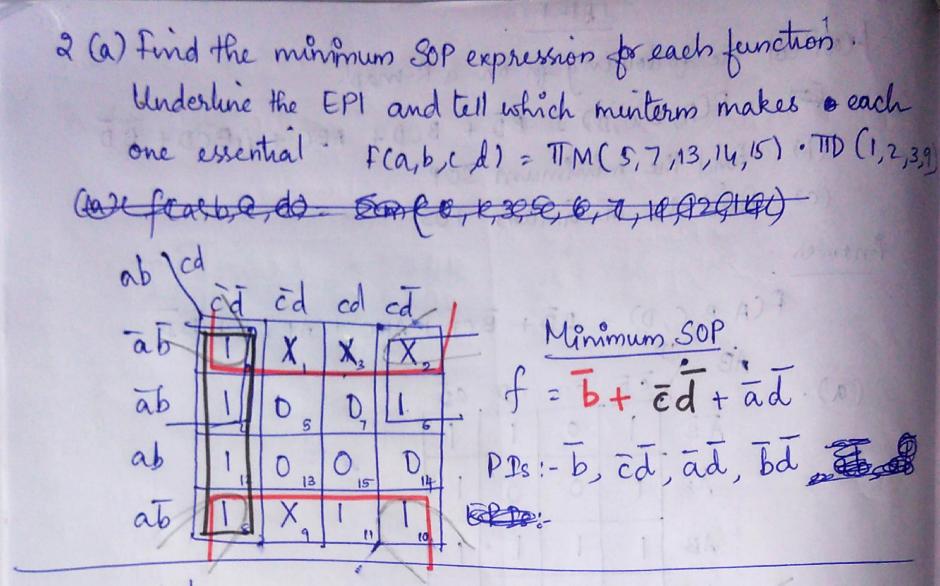
	Cart C2: \$1			
	Cart C3: \$4			
	Cart C4: \$2			
	Cart C5: \$2			
	On a particular day, seven packages arrive, and they can be			
	delivered using the five carts as follows:			
	C1 can be used for packages P1, P3, and P4.			
	C2 can be used for packages P2, P5, and P6.			
	C3 can be used for packages P1, P2, P5, P6, and P7.			
	C4 can be used for packages P3, P6, and P7.			
	C5 can be used for packages P2 and P4.			
	The stockroom manager wants the packages delivered at minimum			
	cost.			
	Using suitable minimization techniques, present a systematic			
	procedure for finding the minimum cost solution.			
7	(a) What is Man Entared Variable method? Explain using			
	(a) What is Map-Entered Variable method? Explain using suitable example.	2 M	CO3	L2
	suitable example.	2 111	005	L2
	(b) Using MEV method, simplify the following function:			
	$f(A, B, C, D, E, F) = \sum m (2, 3, 4, 5, 13, 15) + dc (8, 9, 10, 11) + E$			
	(m, m) + F m7	8 M	CO3	L3
8	(a) Find the minimum SOP expression for the following function			
	using MEV method:			
	$F(A, B, C, D, E, F, G) = \sum m (0, 2, 8, 10) + E (m4, m6) + F (m9, m6)$	8 M	CO3	L3
	m11) + G m3 + dc (1)			
	(b) Discuss the advantages of this method over other methods.	2 M	CO3	L2
			005	L2

<u>Scheme Of Evaluation</u> Internal Assessment Test 1 – Sept.2020

Sub:	Analog and Digital Electronics					Code:	18CS33		
Date:	11/09/2020	Duration:	90mins	Max Marks:	50	Sem:	III	Branch:	ISE

Note: Answer Any Five Questions


Question #	Description	Marks Distribution	Max Marks	
	 a. Plot the following function on a Karnaugh map: F (A, B, C, D) = BD' + B'CD + ABC + ABC'D + B'D' Plot the given terms on the K-map labelling the K-map coordinates correctly. 	2 M		
1	 b. Find the minimum sum of products. Using K-Map for SOP form, calculate minimum SOP expression. 	4 M	10 M	
	 c. Find the minimum product of sums. Using K-Map for POS form, calculate minimum POS expression. 	4 M		
2	 a. Find the minimum SOP expression for the function below. Identify the essential prime implicants in your answer and substantiate with reasons, which minterm makes each one essential. F (a, b, c, d) = Π M (5, 7, 13, 14, 15) . Π D (1, 2, 3, 9) Plot the given function in K-Map Find the minimum SOP solution from the K-map Identify the prime implicants Identify and list out the EPIs mentioning which minterm makes each one essential. 	5M	10 M	
	 With the help of a flow chart, explain how to determine minimum sum of products using Karnaugh map. How do you identify PIs and EPIs in a given K- map? 	5M		

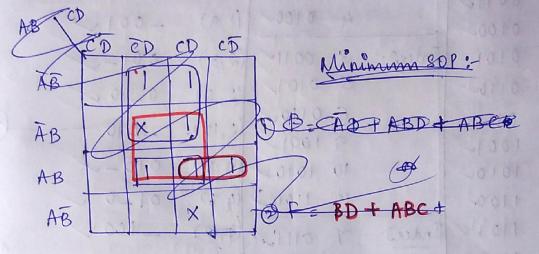

	 Flowchart to get the minimum SOP from a K-map Define a PI and EPI and how to locate them on a K-map Assuming that inputs ABCD = 0101 and ABCD = 1011 		
	never occur, find a simplified SOP and POS expression for		
	the given function using K-maps:		
	F = A'BC'D + A'B'D + A'CD + ABD + ABC		
3	 The inputs which are mentioned as do not occur must be marked as don't cares in the K-map Using a K-map, get the minimum SOP expression Using a separate K-map, get the minimum POS expression 	10 M	10 M
	For the given function, find any one minimum sum-of-		
	products solution, using Quine Mc-Cluskey method:		
	$f(a, b, c, d) = \Sigma m (1, 3, 4, 5, 6, 7, 10, 12, 13) + \Sigma d (2, 9, 10)$		
	15)		
	• Follow the steps as per QM method:		
	• List the binary form of given		
	minterms and don't cares		
	• Categorize them into groups based on		
	their index	10.15	10.14
4	• Compare and combine terms with	10 M	10 M
	only one bit difference from among		
	adjacent groups		
	• Continue the previous step until no		
	more terms can be combined		
	 Identify the PIs and list them out in the PI chart 		
	and only minterms given in the function as columns		

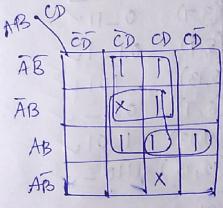
	Mark the mintowers service of her 1		
	• Mark the minterms covered by each		
	PI		
	• Identify the EPI		
	• Find minimum solution for remaining		
	uncovered minterms if any by trial		
	and error method		
	Find all the minimum solutions for the given function using		
	Petrick's method: $F(a, b, c, d) = \Sigma m (2, 4, 5, 6, 9, 10, 11, 12, 12)$		
	13, 15)		
	• Follow the QM method up to getting the PI		
	chart		
	• Identify the EPIs if any. Ignore the EPIs and		
	minterms covered by the EPIs		
	• Label all PI rows except the one with the EPI		
5	as P1, P2 and identify the remaining	5 M + 5 M	10 M
	uncovered minterms		
	• Find a logical function P in terms of P1, P2		
	that is true when all the above said uncovered		
	minterms are covered.		
	• Simply P using the laws (X+Y)(X+Z) =		
	X+YZ and X+XY=X		
	• Identify all possible solutions for the given		
	function and all minimum solutions from this.		
	Packages arrive at the stockroom and are delivered on carts		
	to offices and laboratories by student employees. The carts		
	and packages are various sizes and shapes. The students are		
6	paid according to the carts used. There are five carts and the	10 M	10 M
	pay for their use is		
	Cart C1: \$2		
	Cart C2: \$1		

	Cart C3: \$4		
	Cart C4: \$2		
	Cart C5: \$2		
	On a particular day, seven packages arrive, and they can be		
	delivered using the five carts as follows:		
	C1 can be used for packages P1, P3, and P4.		
	C2 can be used for packages P2, P5, and P6.		
	C3 can be used for packages P1, P2, P5, P6, and P7.		
	C4 can be used for packages P3, P6, and P7.		
	C5 can be used for packages P2 and P4.		
	The stockroom manager wants the packages delivered at		
	minimum cost.		
	Using suitable minimization techniques, present a systematic		
	procedure for finding the minimum cost solution.		
	• Use the Petrick's method to determine the		
	minimum cost solution		
	• Steps are detailed in the previous question's		
	answer.		
	a. What is Map-Entered Variable method? Explain		
	using suitable example.	2 M	
	• Explain the method		
	• Give a simple example to explain this method		
	b. Using MEV method, simplify the following function:		
7	$f(A, B, C, D, E, F) = \Sigma m (2, 3, 4, 5, 13, 15) + dc (8,$		10 M
	9 10, 11) + E (m0, m1) + F m7		
	• Plot the given function on a 4 variable K-map	8 M	
	• Find MS0, MS1 and MS2.		
	• Find the final minimum solution combining		
	the solutions obtained in the previous step		

	a. Find the minimum SOP expression for the following		
	function using MEV method: F (A, B, C, D, E, F, G)		
	$=\Sigma m (0, 2, 8, 10) + E (m4, m6) + F (m9, m11) + G$		
	m3 + dc (1)	8 M	
	• Plot the given function on a 4 variable K-map		
	• Find MS0, MS1, MS2 and MS3.		
8	• Find the final minimum solution combining		10 M
	the solutions obtained in the previous step		
	b. Discuss the advantages of this method over other		
	methods		
	• State the advantages of MEV method over	2 M	
	using K-map or QM method in terms of		
	complexity, time etc.		

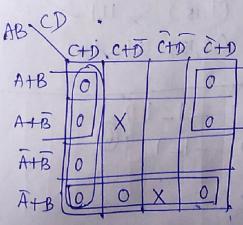
Essential Prime Implicanto: D is an EPI due to minterne 11 èd is an EPI due to mintern 12. ad is an EPI due to menterno 6.


ATA


A.A.

A+A

A+A

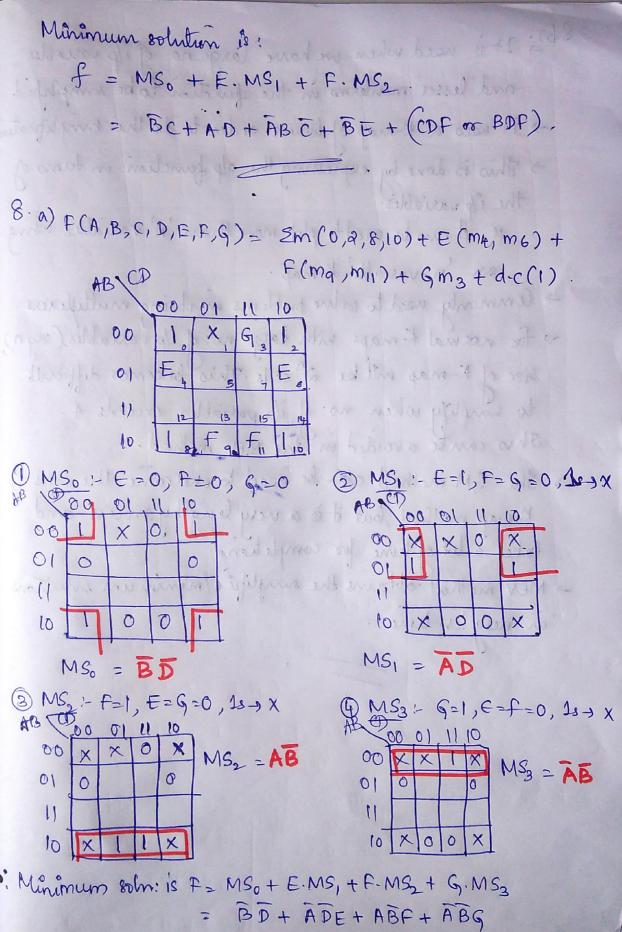

3. Assuming that ilps ABCD = 0101 and ABCD = 1011 rever occur, find a simplified SOP + POS expression for the given for using Kimaps: F= ABCD + ABD + ACD + ABD + ABC.

Minimum SOP!

F = AD + BD + ABC

Mihimum POS :-F = (A+D) (A+B) (C+D)

H. QM method: f(a,b,c,d) = Em(1,3,4,5,6,7,10,12,13) + Ed(2,9,15) Column 2 Column] Columno 00-11 (1,3) Index 1: 1 00010 0001 1 0_01 (1, 5)0010 2 00100 2 -001 (1,9) 3 0011 0100-4 001-2 4 0100-(2,3) 3 0011-Index2: 01010 5 0_10 . 5 0101/ (2,6) 6 0110 _010. 0110 6 (2,10): 7 0111 1001 0.10 --9 (415) 9 1001 1010 -10 01-0 10100 1100- (4,6) 10 12 _ 1.00 m 0111- (412) 12 1100-7 1104 Inder3: 13 1101_ (3, 7)0-11-13 1111 15 01-12 (5,7) 15-1111 Index4: 5,13) _ 1010 (6,7)011-Column3 12012 (9,13) (1,3,5,7) 0_. (12,13) 110 --- $(\mathbf{\tilde{I}})$ (1, 5, 3, 7)_ 11] . (1,15) (1,5,9,13) _01 2 (13,15) 11-1-(1,9,5,13) -010 (2,3,6,7) (5,7,13,15) - 1 - 1(5,13,7,15) - 1 - 13 6 (2,6,3,7) 0-1 (4,5,6,7) 01_ (4) (41,5,12,13) _10_ (4,6,5,7) 01--(41,12,5,13) - 10

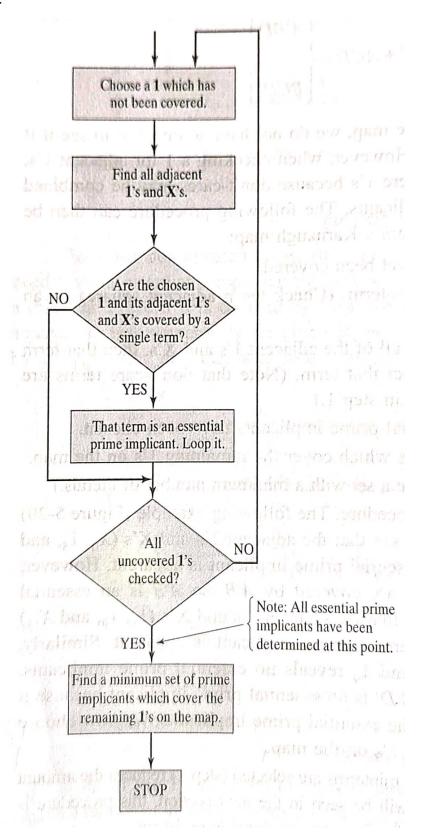

$$\begin{array}{c|c} Plchad\\ \hline Pls & \hline m_1 & \hline m_2 & \hline m_3 & \hline m_5 & \hline m_6 & \hline m_1 & \hline m_{10} & \hline m_{12} & \hline m_{13} \\ \hline \hline R_{C}\overline{B} \\ (g_1(0)) \\ \hline \overline{A} p \\ (l,3,5,7) \\ \hline \overline{A} p \\ (l,3,5,7) \\ \hline \overline{A} p \\ (l,3,6,7) \\ \hline \overline{A} p \\ (l,5,q_1|2) \\ \hline \overline{A} p \\ (h,5,q_1|2) \\ \hline \overline{A} p \\ (h,5,q_1|2,13) \\ \hline \overline{B} p \\ (h,5,q_1|2,13) \\ \hline \overline{B} p \\ (h,5,q_1|3,15) \\ \hline \overline{B} p \\ (h,5,q$$

5. Petrick's method. Fla, b, c, d 2. Em (2, 4, 5, 6, 9, 10, 11, 12, B, 15) Columno | Column ! Column3 0-10-0 2 (2,6) 0010/ Index1: 2 0010/ -010-0 4 4 0100V 01000 (2,10) (415) 010-V 5 0101~ Indexa: 5 0101~ 6 01-0-3 0110-6 0110 (A16) 9 1001 1001 (4112) -100 9 10 10100 to. 1010 Y 11 1011 (5,13) -1010 12 1100 12 1100 (9,11) 10-1-1101 Inda3! 11 1011 13 (9,13) 1-01~ 15 1111 13 11010 (10,11) 101-Index4 15 1111 (12,13) 110--(11,15)Column3 1-112 (4,5,12,13) -10-7 (13,15) 11-1-6 (A112,5,13) -10-0 PD (9,6) 0-10 ACD . (9,11,13,15). 1--12 (2,10) _010 BCD (9,13,11,15) 1--10 (+1,6) 01_0 ABD (10,11) 101- ABC (415,12,13) - 10- BC AD (9,11,13,15) 1--1

Plchaet PLJ. m2 m5 m6 mg m10 MH min M12 M13 M15 ACD 81 X (2, b)× BCD X P2 (2,10) Х ABD P3 X (4,6) ABC Py X X (10,11) BC \bigotimes X (\times) EPI X (4,5,12,13) /AD EPI (9,11,13,15) X x EPIS: BC, AD Remaining menterno to be conered are m2, M6 & m10 $M_2 \rightarrow (P_1 + P_2)$; $M_6 \rightarrow (P_1 + P_3)$; $M_{10} \rightarrow (P_2 + P_4)$ •. $P = (P_1 + P_2)(P_1 + P_3)(P_2 + P_4)$ (X+Y) (X+Z) = X+YZ $=(P_1+P_2P_3)(P_2+P_4)$ X+XY =X $z P_1 P_2 + P_1 P_4 + P_2 P_3 + P_2 P_3 P_4$ 4 possible solutions; 3 minimum solutions (), @ 4 3 $0 \rightarrow P_1 P_2 \rightarrow \widehat{A} C \overline{D} + \widehat{B} C \overline{D}$ 1 ACD+BCD+BC+ Ap: $9 \rightarrow P_1 P_4 \rightarrow AC\overline{D} + ABC 2 \overline{A}C\overline{D} + ABC + BC + AD$ $\rightarrow \hat{B}C\bar{D} + \hat{A}B\bar{D}$ $\hat{B}C\bar{D} + \hat{A}B\bar{D} + B\bar{C} + AD$ > P2P3

T.a) MEV Method ! Sm I Am I sea -> Modified form of K-map method. -> Used when we have large no: of i/p variables and lesser minterms in the function that reeds to be Simplified--> Can be used to simplify keyseps such functions using a K-map of lower order, like a Avaerable K-map. -> This is done by writing the output interms of the input. Variables. b) $f(A, B, C, D, E, F) = \Sigma m(2, 3, 4, 5, 13, 15) + dc(8, 9, 10, 11) +$ E(mo, mi) + f-m- . ABYCD CD CD CD AB E E I I 2 () MSo := E=0, F=0 - 19, 1 P.) (P. 18. AB CD 00 01 11 10 MSo = BC + AD + ABC (3) MS2: E=0, F=1, 18→X 01110 AB 00 01 11 10 00 00 X (2) MS1: - E=1, F=0, 15 → X 00 01 11 10 00 11 × × $MS_1 = B$

MS = CD or BD


862; It is used when we have large no: of ils variables and lesse minterno in the function to be somplified. -> It uses a k-map of lower order to do the smplipleation > This is done by expressing the old formetion in terms of the ip variables. ie, it can be need to plot more than 'n' variables using an 'n-variable K-map. -> Commonly used to solve problems involving multiplexers -> for normal K-maps with tagge no: of ilp variables (says) size of K-map mil be 2' cells . This becomes difficult to simplify when no: of ils variables exceeds 4-This can be avoided in the MEV method. -> She QM method can be used to onercome the cons of K-map method, but it is a very lengthy process and takes a lot of time for completion. -> MEV method obtains the singlified / minimum solutions on neggless time

 $C = (c_1 + c_3)(c_2 + c_3 + c_5)(c_1 + c_4)(c_1 + c_5)(c_2 + c_3).$ $(c_2 + c_3 + c_4)(c_3 + c_4).$

- $= (C_{1} + C_{3} C_{4}) (C_{2} + C_{3} + C_{4} (C_{5}) + (C_{3} + C_{2} C_{4}) (C_{4} + C_{3} + C_{3} C_{4}) (C_{4} + C_{3} + C_{3} C_{4}) (C_{4} + C_{3} +$
- $= c_{1}c_{2}c_{3} + c_{1}c_{2}c_{3}c_{5} + c_{1}c_{2}c_{4} + c_{1}c_{2}c_{4}c_{5} + c_{1}c_{3}c_{4}c_{5} + c_{1}c_{3}c_{4}c_{5} + c_{1}c_{2}c_{4}c_{5} + c_{1}c_{2}c_{5}c_{4}c_{5} + c_{1}c_{2}c_{5}c_{5} + c_{1}c_{2}c_{5}c_{5} + c_{1}c_{2}c_{5}c_{5} +$

= CIC2C3 + CIC2Cy + CIC3 + CIC3C4C5 + $C_{1}C_{3}C_{4} + C_{3}C_{4}C_{5}$. $= C_{1}C_{3} + C_{1}C_{2}C_{4} + C_{1}C_{3}C_{4} + C_{3}C_{4}C_{5}$ $C_{1}C_{3} + C_{1}C_{2}C_{4} + C_{3}C_{4}C_{5}$. () (2) (3)... > 3 possible costs, out of which 1 is minimum. ie, c1 c3 combination. . The minimum cost solution is \$ c1+c3 " A combination of CI (\$2) and GI (\$4) mill ensure minimum cost as well as get all packets delivered -

Prime Implicants – Any implicant group that cannot be combined with another similar implicant group to form a larger group is a Prime implicant. If a pair is not part of a quad or if a quad is not part of an octet, or if an octet cannot be combined with another octet, then the pair, quad and octet respectively are PIs.

Essential Prime Implicants – If there is any minterm that is covered by only one PI group, then that PI is an essential PI.