
USN

Internal Assessment Test 1 – Feb. 2021

Sub: Software Engineering Sub
Code: 18CS35 Branch: CSE

Date: 06 -02 -
21

Durati
on:

90
min’s

Max
Marks: 50 Sem /

Sec: III (Diploma Sections) OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. What is Software Engineering? Explain Software engineering code of Ethics.
List attributes of good software

 [2+6+2] CO1 L1

2(a) Explain fundamental activities in Software Engineering. [04] CO1 L2

 (b) Explain the organization of Wilderness weather station system. [06] CO5 L3

3. With neat diagram explain any two software development model. Enlist their
pros and cons

 [10] CO1 L3

4. Explain the organization of MHC-PMS (Mental Health Care Patient
Management System) and also lists the goals and features of the system?

 [10] CO5 L3

5. What is object oriented development (OOD)? Explain different stages in OOD. [4+6] CO5 L2

6. Explain following terms Association, Links, Multiplicity, Sequence, Bag. [2X5] CO5 L2

7.
(a)

Car can be manufacture by using following components like engine, gear box,
brake, body and suspension. Its an one-to-one relationship with car for all the
above components except brake and suspension. Based on the requirements one
car may have many brakes and suspensions. Each brake is associated with each
wheel and each wheel is associated with each tire. To have a smooth run on
highways suspension is associated with wheel.
Draw the class diagram by using multiplicity indicators.

 [07] CO5 L3

(b) Draw association diagram for: A secretary can work for one or many managers.

A manager can have many secretaries. Managers can have a group of
secretaries. Some managers might have zero secretaries.

 [03] CO5 L3

Scheme of evaluation
Qno Questions Marks

distribution
1 What is Software Engineering?

Explain Software engineering code of Ethics.
 List attributes of good software

2M
6M
2M

2a Explain fundamental activities in Software Engineering 4M
2b Explain the organization of Wilderness weather station

system.
Diagram

4M

2M
3 Software development model.

diagram

Enlist their pros and cons

2M*2
1M*2
2M*2

4 The organization of MHC-PMS (Mental Health Care 8M

Patient Management System) and also lists the goals and
features of the system

Diagram 2M

5 What is object oriented development (OOD)?
Explain different stages in OOD

4M

6M
6 Explain following terms Association, Links, Multiplicity,

Sequence, Bag.
2*5M

7a Car can be manufacture by using following components
like engine, gear box, brake, body and suspension. Its an
one-to-one relationship with car for all the above
components except brake and suspension. Based on the
requirements one car may have many brakes and
suspensions. Each brake is associated with each wheel and
each wheel is associated with each tire. To have a smooth
run on highways suspension is associated with wheel.
Draw the class diagram by using multiplicity indicators.

7M

7b Draw association diagram for: A secretary can work for
one or many managers. A manager can have many
secretaries. Managers can have a group of secretaries.
Some managers might have zero secretaries

3M

Solution:

1. A software process model is an abstract representation of a process. It presents a description of
a process from some particular perspective. A structured set of activities required to develop a software
system. Many different software processes but all involve:
Specification – defining what the system should do;
Design and implementation – defining the organization of the system and implementing the system;
Validation – checking that it does what the customer wants;
Evolution – changing the system in response to changing customer needs.

Software engineering involves wider responsibilities than simply the application of technical skills. Software
engineers must behave in an honest and ethically responsible way if they are to be respected as professionals.
Ethical behaviour is more than simply upholding the law but involves following a set of principles that are
morally correct.
Issues of professional responsibility
Confidentiality -Engineers should normally respect the confidentiality of their employers or clients
irrespective of whether or not a formal confidentiality agreement has been signed.
Competence - Engineers should not misrepresent their level of competence. They should not knowingly
accept work which is out with their competence.

Intellectual property rights - Engineers should be aware of local laws governing the use of intellectual
property such as patents, copyright, etc. They should be careful to ensure that the intellectual property of
employers and clients is protected.
Computer misuse - Software engineers should not use their technical skills to misuse other people’s
computers. Computer misuse ranges from relatively trivial (game playing on an employer’s machine, say) to
extremely serious (dissemination of viruses).

Eight Principles of Ethics –
PUBLIC - Software engineers shall act consistently with the public interest.
CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best interests of their
client and employer consistent with the public interest.
PRODUCT - Software engineers shall ensure that their products and related modifications meet the highest
professional standards possible.
JUDGMENT - Software engineers shall maintain integrity and independence in their professional judgment.
MANAGEMENT - Software engineering managers and leaders shall subscribe to and promote an ethical
approach to the management of software development and maintenance.

PROFESSION - Software engineers shall advance the integrity and reputation of the profession consistent
with the public interest.
COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues. SELF - Software
engineers shall participate in lifelong learning regarding the practice of their profession and shall promote an
ethical approach to the practice of the profession.

List attributes:characteristicription

Maintainability
Software should be written in such a way so that it can evolve to meet the changing needs of customers.
This is a critical attribute because software change is an inevitable requirement of a changing business
environment.
Dependability and security
Software dependability includes a range of characteristics including reliability, security and safety.
Dependable software should not cause physical or economic damage in the event of system failure.
Malicious users should not be able to access or damage the system.
Efficiency
Software should not make wasteful use of system resources such as memory and processor cycles.
Efficiency therefore includes responsiveness, processing time, memory utilisation, etc.
Acceptability
Software must be acceptable to the type of users for which it is designed. This means that it must be
understandable, usable and compatible with other systems that they use.

2a) Explain fundamental activities in Software Engineering
Some fundamental principles apply to all types of software system, irrespective of the development
techniques or types used:
a. Systems should be developed using a managed and understood development process. Of course,
different processes are used for different types of software.
b. Dependability and performance are important for all types of system.
c. Understanding and managing the software specification and requirements (what the software should do)
are important.
d. Where appropriate, you should reuse software that has already been developed rather than write new

software.

2b) Wilderness weather station
Setting the system boundaries helps you decide what features are implemented
in the system being designed and what features are in other associated systems. In
this case, you need to decide how functionality is distributed between the control
system for all of the weather stations, and the embedded software in the weather
station itself.
System context models and interaction models present complementary views of
the relationships between a system and its environment:
1. A system context model is a structural model that demonstrates the other systems
in the environment of the system being developed.
2. An interaction model is a dynamic model that shows how the system interacts
with its environment as it is used.
The context model of a system may be represented using associations. Associations
simply show that there are some relationships between the entities involved in the
association. The nature of the relationships is now specified. You may therefore document
the environment of the system using a simple block diagram, showing the entities

in the system and their associations. This is illustrated in Figure, which shows that
the systems in the environment of each weather station are a weather information system,
an onboard satellite system, and a control system. The cardinality information on
the link shows that there is one control system but several weather stations, one satellite,
and one general weather information system.
When you model the interactions of a system with its environment you should use
an abstract approach that does not include too much detail. One way to do this is to
use a use case model.

The systems in the environment of each weather station are a weather information system, an
onboard satellite system, and a control system. The cardinality information on the link shows
that there is one control system but several weather stations, one satellite, and one general
weather information system.
When you model the interactions of a system with its environment you should use an abstract
approach that does not include too much detail. One way to do this is to use a use case model.

3)
Incremental Model is a process of software development where requirements are broken down
into multiple standalone modules of software development cycle. Incremental development is
done in steps from analysis design, implementation, testing/verification, maintenance.
Benefits –
The cost of accommodating changing customer requirements is reduced.
– The amount of analysis and documentation that has to be redone is much less than is
required with the waterfall model.
It is easier to get customer feedback on the development work that has been done.
– Customers can comment on demonstrations of the software and see how much has
been implemented.
More rapid delivery and deployment of useful software to the customer is possible.
– Customers are able to use and gain value from the software earlier than is possible
with a waterfall process.

Problems –
• The process is not visible.
– Managers need regular deliverables to measure progress. If systems are developed
quickly, it is not cost-effective to produce documents that reflect every version of the system.
• System structure tends to degrade as new increments are added.
– Unless time and money is spent on refactoring to improve the software, regular change
tends to corrupt its structure. Incorporating further software changes becomes increasingly
difficult and costly.

4) MHC-PMS
• A patient information system to support mental health care is a medical information
system that maintains information about patients suffering from mental health problems and the

treatments that they have received. Most mental health patients do not require dedicated
hospital treatment but need to attend specialist clinics regularly where they can meet a doctor
who has detailed knowledge of their problems. To make it easier for patients to attend, these
clinics are not just run in hospitals. They may also be held in local medical practices or
community centres. Mentcare is an information system that is intended for use in clinics. It
makes use of a centralized database of patient information but has also been designed to run on
a PC, so that it may be accessed and used from sites that do not have secure network
connectivity.

When the local systems have secure network access, they use patient information in the
database but they can download and use local copies of patient records when they are
disconnected. To generate management information that allows health service managers to
assess performance against local and government targets.To provide medical staff with timely
information to support the treatment of patients.

Key Features -
• Individual care management
– Clinicians can create records for patients, edit the information in the system, view
patient history, etc. The system supports data summaries so that doctors can quickly learn about
the key problems and treatments that have been prescribed.
• Patient monitoring
 – The system monitors the records of patients that are involved in treatment and issues
warnings if possible problems are detected.
• Administrative reporting
The system generates monthly management reports showing the number of patients treated at
each clinic, the number of patients who have entered and left the care system, number of
patients sectioned, the drugs prescribed and their costs, etc

Q5. What is object oriented development (OOD)? Explain different stages in OOD.
The process for OO development and graphical notation for representing OO concepts consists
of building a model of an application and then adding details to it during design. The
methodology has the following stages:

System conception : Software development begins with business analysis or
users conceiving an application and formulating tentative requirements

Analysis : The analyst must work with the requestor to understand the
problem, because problem statements are rarely complete or correct. The analysis model is a
precise abstraction of what the desired system must do, not how it will be done. It should not
contain implementation decisions.The analysis model has 2 parts:
• Domain model - a description of the real-world objects reflected within the system Eg:
Domain objects for a stock broker
• Application – model - a description of the parts of the application system itself that are
visible to the user.
Eg:- Application might include stock, bond, trade and commission.
Application objects might control the execution of trades and present the results.

System design: The development teams devise a high – level strategy – the system
architecture for solving the application problem.

Class design : The class designer adds details to the analysis model in accordance with
the system design strategy. The focus of class design is the data structures and algorithms
needed to implement each class.

Implementation : Implementers translate the classes and relationships developed
during class design into particular programming language, database or hardware. During
implementation, it is important to follow good software engineering practice so that traceability
to the design is apparent and so that the system remains flexible and extensible.

Q6. Explain following terms Association, Links, Multiplicity, Sequence, Bag.
1. I. Association and Association end name

• Associations are the means for establishing relationships among classes.An association is a
description of a group of links with common structure and common semantics.E.g. a person WorksFor
a company. If two classes in a model need to communicate with each other, there must be link
between them, and that can be represented by an association (connector).

• Associations are inherently bi-directional. The association name is usually read in a particular
direction but the binary association may be traversed in either direction. Association can be
represented by a line between these classes with an arrow indicating the navigation direction. In
case arrow is on the both sides, association has bidirectional association.

Association connects related classes and is also denoted by a line.Show association names in italics.

• Association end name Associations have ends. They are called ‘Association Ends’. They may have
names (which often appear in problem descriptions). Use of association end names is optional. But
association end names are useful for traversing associations.

II. Qualified association
• A qualified association is an association in which an attribute called Qualifier the objects for a ‘many’

association’ end. A qualifier selects among the target objects, reducing the effective multiplicity from
‘many’ to ‘one’.Both below models are acceptable but the qualified model adds information.

Adding a qualifier clarifies the class diagram and increases the conveyed information. In this case, the model
including the qualification denotes that the name of a file is unique

within a directory. Example of how a qualified association reduces multiplicity (UML class diagram).

III. Association classes

An association class is an association that is also a class.Like the links of an association, the instances of an
association class derive identity from instances of the constituent classes. Like a class, an association class can
have attributes and operations and participate in associations.

IV. Multiplicity

Multiplicity defines the number of objects associated with an instance of the association.

UML diagrams explicitly list multiplicity at the end of association lines.Intervals are used to
express multiplicity:

7a)

7b)
Analyzing and validating associations
• A secretary can work for one or many managers
• A manager can have many secretaries
• Managers can have a group of secretaries
• Some managers might have zero secretaries.

