
USN

Internal Assessment Test 2 – Feb. 2021
Sub: Software Engineering Sub Code: 18CS35 Branch: CSE
Date: 24 -02 -21 Duration: 90 min’s Max Marks: 50 Sem / Sec: III (Diploma Sections) OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. With the help of a sample class model explain the following I. Association and Association end
name II. Qualified association III. Multiplicity IV. Generalization

 [10] CO1 L1

2. (a) Write a class model of windowing system? [04] CO1 L3

 (b) With the help of a class model for credit card accounts explain the Object Constraint Language
(OCL) constructs for traversing the class model.

 [06] CO3 L3

3. Explain the state diagram of a micro oven with the working process. [10] CO3 L3

4. Draw a context model for the MHC-patient management system. How are the interactions
modeled?

 [10] CO3 L3

CI CCI

USN

Internal Assessment Test 2 – Feb. 2021

Sub: Software Engineering Sub
Code: 18CS35 Branch:

Date: 24 -02 -21 Duration: 90 min’s Max
Marks: 50 Sem /

Sec: III (Diploma Sections)

Answer any FIVE FULL Questions MARKS CO

1. With the help of a sample class model explain the following I. Association and Association
end name II. Qualified association III. Multiplicity IV. Generalization

 [10] CO1

2. (a) Write a class model of windowing system? [04] CO1

 (b) With the help of a class model for credit card accounts explain the Object Constraint
Language (OCL) constructs for traversing the class model.

 [06] CO3

3. Explain the state diagram of a micro oven with the working process. [10] CO3

4. Draw a context model for the MHC-patient management system. How are the interactions
modeled?

 [10] CO3

CI CCI

MARKS CO RBT

5. Explain phases of Rational unified process model. [10] CO3 L2

6. Explain open source development in detail. [10] CO3 L1

7. Explain Model driven engineering. Mention its pros and cons.(10M)
.

 [10] CO3 L2

CI CCI

MARKS CO RBT

5. Explain phases of Rational unified process model. [10] CO3 L2

6. Explain open source development in detail. [10] CO3 L1

7. Explain Model driven engineering. Mention its pros and cons.(10M)
.

 [10] CO3 L2

CI CCI

Scheme of evaluation

Qno Questions Marks
distribution

1 Explain following terms Association, Links, Multiplicity,
Sequence, and Bag.

4*2.5M

2a Model of Windowing system 4M
2b Credit card accounts explain the Object Constraint

Language (OCL) constructs for traversing the class
model.

6M

3 State diagram of a microoven with the working process.
Diagram

7M
3M

4 The organization of MHC-PMS (Mental Health Care
Patient Management System)
 goals and features of the system
Diagram

5M

3M
2M

5 Rational unified process model 10M
6 Open source development 10M
7 Model driven engineering

Mention its pros and cons
5M
5M

Solution:
1. I. Association and Association end name

• Associations are the means for establishing relationships among classes.An association is
a description of a group of links with common structure and common semantics.E.g. a
person WorksFor a company. If two classes in a model need to communicate with each
other, there must be link between them, and that can be represented by an association
(connector).

• Associations are inherently bi-directional. The association name is usually read in a
particular direction but the binary association may be traversed in either direction.
Association can be represented by a line between these classes with an arrow indicating
the navigation direction. In case arrow is on the both sides, association has bidirectional

association.

Association connects related classes and is also denoted by a line.Show association names
in italics.

• Association end name Associations have ends. They are called ‘Association Ends’. They
may have names (which often appear in problem descriptions). Use of association end
names is optional. But association end names are useful for traversing associations.

II.Qualified association
• A qualified association is an association in which an attribute called Qualifier the

objects for a ‘many’ association’ end. A qualifier selects among the target objects,
reducing the effective multiplicity from ‘many’ to ‘one’.Both below models are
acceptable but the qualified model adds information.

Adding a qualifier clarifies the class diagram and increases the conveyed information. In this

case, the model including the qualification denotes that the name of a file is unique

within a directory. Example of how a qualified association reduces multiplicity (UML class
diagram).

III.Association classes

An association class is an association that is also a class.Like the links of an association, the
instances of an association class derive identity from instances of the constituent classes. Like
a class, an association class can have attributes and operations and participate in associations.

IV. Multiplicity

Multiplicity defines the number of objects associated with an instance of the
association.

UML diagrams explicitly list multiplicity at the end of association lines.Intervals are
used to express multiplicity:

Generalization
Deriving a class out of a parent class having some inherited property(from the parent class)
and some new property of the derived class.

The term generalization is for the inheritance in the bottom to the up direction i.e. from
derived class to the parent class. Generalization is the relationship between a class
(superclass) and one or more variations of the class (subclasses).

A superclass holds common attributes, attributes and associations.The subclasses adds
specific attributes, operations, and associations. They inherit the features of their superclass.

Generalization is called a “IS A” relationship

A generalization connects a subclass to its superclass. It denotes an inheritance of attributes
and behavior from the superclass to the subclass and indicates a specialization in the
subclass of the more general superclass.A solid line with a hollow arrowhead that point from
the child to the parent class.

2)
A windowing system is a system for sharing a computer's graphical display presentation
resources among multiple applications at the same time. In a computer that has a graphical
user interface (GUI), you may want to use a number of applications at the same time (this is
called task).

Using a separate window for each application, you can interact with each application and go from
one application to another without having to reinitiate it. Having different information or activities in
multiple windows may also make it easier for you to do your work. A windowing system uses a
window manager to keep track of where each window is located on the display screen and its size
and status. A windowing system doesn't just manage the windows but also other forms of graphical
user interface entities.

3)
 The control software for a very simple microwave oven to illustrate event-driven modeling. Real microwave
ovens Are actually much more complex than this system but the simplified system is easier to understand.
This simple microwave has a switch to select full or half power, a numeric keypad to input the cooking time, a
start/stop button, and an alphanumeric display. I have assumed that the sequence of actions in using the
microwave is: 1. Select the power level (either half power or full power). 2. Input the cooking time using a
numeric keypad.3. Press Start and the food is cooked for the given time. For safety reasons, the oven should
not operate when the door is open and, on completion of cooking, a buzzer is sounded. The oven has a very
simple alphanumeric display that is used to display various alerts and warning messages. In UML state
diagrams, rounded rectangles represent system states. They may include a brief description (following ‘do’) of
the actions taken in that state. The labeled arrows represent stimuli that force a transition from one state to
another. One way to do this is by using the notion of a superstate that encapsulates a number of separate
states. This superstate looks like a single state on a high-level model but is then expanded to show more detail
on a separate diagram. To illustrate this concept, consider the Operation state in Figure. The Operation state
includes a number of sub-states. It shows that operation starts with a status check and that if any problems are
discovered an alarm is indicated and operation is disabled. Cooking involves running the microwave generator
for the specified time; on completion, a buzzer is sounded. If the door is opened during operation, the system
moves to the disabled state.

4) MHC-PMS
• A patient information system to support mental health care is a medical information system
that maintains information about patients suffering from mental health problems and the treatments
that they have received. Most mental health patients do not require dedicated hospital treatment but
need to attend specialist clinics regularly where they can meet a doctor who has detailed knowledge
of their problems. To make it easier for patients to attend, these clinics are not just run in hospitals.
They may also be held in local medical practices or community centres. Mentcare is an information
system that is intended for use in clinics. It makes use of a centralized database of patient
information but has also been designed to run on a PC, so that it may be accessed and used from sites
that do not have secure network connectivity.

When the local systems have secure network access, they use patient information in the database but
they can download and use local copies of patient records when they are disconnected. To generate
management information that allows health service managers to assess performance against local and
government targets.To provide medical staff with timely information to support the treatment of
patients.

Key Features -
• Individual care management
– Clinicians can create records for patients, edit the information in the system, view patient
history, etc. The system supports data summaries so that doctors can quickly learn about the key
problems and treatments that have been prescribed.

• Patient monitoring
 – The system monitors the records of patients that are involved in treatment and issues
warnings if possible problems are detected.
• Administrative reporting
The system generates monthly management reports showing the number of patients treated at each
clinic, the number of patients who have entered and left the care system, number of patients
sectioned, the drugs prescribed and their costs, etc

5) RUP
The Rational Unified Process (RUP) (Krutchen, 2003) is an example of a modern
process model that has been derived from work on the UML and the associated Unified
Software Development Process (Rumbaugh, et al., 1999; Arlow and Neustadt, 2005).
The RUP recognizes that conventional process models present a single view of
the process. In contrast, the RUP is normally described from three perspectives:
1. A dynamic perspective, which shows the phases of the model over time.
2. A static perspective, which shows the process activities that are enacted.
3. A practice perspective, which suggests good practices to be used during the process.
The phases in the RUP. These are:
1. Inception The goal of the inception phase is to establish a business case for the
system. You should identify all external entities (people and systems) that will interact with the
system and define these interactions. You then use this information
to assess the contribution that the system makes to the business. If this
contribution is minor, then the project may be cancelled after this phase.
2. Elaboration The goals of the elaboration phase are to develop an understanding
of the problem domain, establish an architectural framework for the system,
develop the project plan, and identify key project risks. On completion of this
phase you should have a requirements model for the system, which may be a set
of UML use-cases, an architectural description, and a development plan for the
software.
3. Construction The construction phase involves system design, programming, and
testing. Parts of the system are developed in parallel and integrated during this
phase. On completion of this phase, you should have a working software system
and associated documentation that is ready for delivery to users.
4. Transition The final phase of the RUP is concerned with moving the system
from the development community to the user community and making it work in
a real environment. This is something that is ignored in most software process
models but is, in fact, an expensive and sometimes problematic activity. On
completion of this phase, you should have a documented software system that is
working correctly in its operational environment.

6. Explain open source development in detail.
 Open source development is an approach to software development in which the source code of a

software system is published and volunteers are invited to participate in the development process
 Its roots are in the Free Software Foundation (www.fsf.org), which advocates that source code

should not be proprietary but rather should always be available for users to examine and modify as
they wish.

 Open source software extended this idea by using the Internet to recruit a much larger population of
volunteer developers. Many of them are also users of the code.

 The best-known open source product is, of course, the Linux operating system which is widely used
as a server system and, increasingly, as a desktop environment.

 Other important open source products are Java, the Apache web server and the mySQL database
management system.

 Issues:
 Should the product that is being developed make use of open source components?
 Should an open source approach be used for the software’s development?

Open source business
 More and more product companies are using an open source approach to development.
 Their business model is not reliant on selling a software product but on selling support for that

product.
 They believe that involving the open source community will allow software to be developed more

cheaply, more quickly and will create a community of users for the software.
Open source licensing

 A fundamental principle of open-source development is that source code should be freely available,
this does not mean that anyone can do as they wish with that code.

 Legally, the developer of the code (either a company or an individual) still owns the code.
They can place restrictions on how it is used by including legally binding conditions in an
open source software license.

 Some open source developers believe that if an open source component is used to develop a
new system, then that system should also be open source.

 Others are willing to allow their code to be used without this restriction. The developed
systems may be proprietary and sold as closed source systems.

License models
 The GNU General Public License (GPL). This is a so-called ‘reciprocal’ license that means that if

you use open source software that is licensed under the GPL license, then you must make that
software open source.

 The GNU Lesser General Public License (LGPL) is a variant of the GPL license where you can write
components that link to open source code without having to publish the source of these components.

 The Berkley Standard Distribution (BSD) License. This is a non-reciprocal license, which means you
are not obliged to re-publish any changes or modifications made to open source code. You can
include the code in proprietary systems that are sold.

7. Model-driven engineering (MDE) is an approach to software development where models rather
than programs are the principal outputs of the development process.
The programs that execute on a hardware/software platform are then generated automatically from
the models.
Proponents of MDE argue that this raises the level of abstraction in software engineering so that
engineers no longer have to be concerned with programming language details or the specifics of
execution platforms
Usage of model-driven engineering

 Model-driven engineering is still at an early stage of development, and it is unclear whether or not it
will have a significant effect on software engineering practice.

 Pros
 Allows systems to be considered at higher levels of abstraction
 Generating code automatically means that it is cheaper to adapt systems to new platforms.

 Cons
 Models for abstraction and not necessarily right for implementation.
 Savings from generating code may be outweighed by the costs of developing translators for

new platforms.
 Model-driven architecture (MDA) was the precursor of more general model-driven engineering
 MDA is a model-focused approach to software design and implementation that uses a subset of UML

models to describe a system.
 Models at different levels of abstraction are created. From a high-level, platform independent model,

it is possible, in principle, to generate a working program without manual intervention.

