USN					

Internal Assessment Test 2 – Nov. 2020

Sub:	Discrete Matl	hematical Str	ructures			Sub Code:	18CS36	Branch	: CS	& IS	
Date:	05/11/2020	Duration:	90 minutes	Max Marks:	50	Sem /Sec:	III A	B & C	<u> </u>	OE	BE
								N	IARK S	СО	RB T
1	If a tree has 202 (a) 2020 (b)	20 vertices, v 2019 (c) 4			es of	the vertices	?		[01]	CO5	
2	In a tree with reach, which of	+s vertices, i	f r vertices a		ices a	and s vertices	s have degree 4		[01]	CO5	L1
3	A classroom co 4 outlets. Conn least number of (a) 10 (b) 8	ections are r f cords neede	nade by usin	g extension cor	ds th	at have 4 out			[02]	CO5	L2
4	Given the prefi given by		(c) 1, 0, 1	(d) 0, 1, 0	, the v	value of x, y,	z are respectiv	vely	[01]	CO5	L1
5	Obtain an optir for the message	nal prefix co	. , , ,		SAL	ACCEPTEI	D. Indicate the	code	[05]	CO5	L3
6	If the truth valu		ement p->(q-	->r) is 0 then th	e trut	h values of p	o, q, r are		[01]	CO1	L1
		,		(d) 1, 0, 0							
7	For any propos $[(p \lor q) \land \{(p \land Tautology)\}]$	$\rightarrow r) \land (q - 1)$	$\rightarrow r)\}] \rightarrow r$ is	a		l) None			[03]	CO1	L3
8	For any propos equivalent to (a) p (b) q	itions p, q, r				,	→~ q)]is logica	ally	[03]	CO1	L3
9	Prove the logi	_	_	$q) \wedge [\sim q \wedge (r \vee$	~ q)	$]\Leftrightarrow\sim (q\vee p)$	·)		[05]	CO1	L3
10	The dual of p	$\phi \leftrightarrow q$ is							[02]	CO1	L2
	(a) $p \leftrightarrow q$	(b) $(\sim p \lor q)$	$(\neg q \lor p)$) (c) (~ <i>p</i> ^	$q)_{\vee}$	$(\sim q \wedge p)$ (d) None				
11	Check whether $p \to r$ $r \to s$ $t \lor \sim s$ $\sim t \lor u$ $\sim u$ $\vdots \sim p$	er the follov	ving argume	ent is valid or	not.				[05]	COI	L3

12	Let $p(x) = x^2 - 7x + 10 = 0$, $q(x) = x^2 - 2x - 3 = 0$, $r(x < 0)$. Set of all integers is the universe. The truth or falsity of the following statements respectively are: (i) $\forall x, p(x) \rightarrow \sim r(x)$ (ii) $\forall x, q(x) \rightarrow r(x)$ (iii) $\exists x, p(x) \rightarrow r(x)$	[03]	CO1	L2
13	The negation of the statement "if x is a real number where $x^2 > 16 then x < -4 ext{ or } x > 4 ext{ is:}$ (a) If x is a real number where $x^2 < 16 then x > -4 ext{ and } x < 4$. (b) For some real number x, $x^2 > 16 ext{ and } x \ge -4 ext{ and } x \le 4$. (c) For some real number x, $x^2 > 16 ext{ and } x > -4 ext{ or } x < 4$ (d) If x is a real number where $x \le 16 then x \ge -4 ext{ or } x \le 4$.	[03]	CO1	L2
14	The universe is the set of all non-zero integers. The truth value of the following statements respectively are: (i) $\exists x, \forall y, [xy=1]$ (ii) $\exists x, \exists y, [(3x-y=17) \land (2x+4y=3)]$ (a) 0, 0 (b) 0, 1 (c) 1, 0 (d) 1, 1	[03]	CO1	L2
15	Test the validity of the following argument: an intelligent boy. Therefore, Ravi is lazy. (a) Valid (b) Invalid Some intelligent boys are lazy. Ravi is	[02]	CO1	L1
16	Write the following in symbolic form: None of my friends are perfect. (a) $\exists x, F(x) \land \sim P(x)$ (b) $\exists x, \sim F(x) \land P(x)$ © $\exists x, \sim F(x) \land \sim P(x)$ (d) $\sim \exists x, F(x) \land P(x)$	[02]	CO1	L1
17	P and Q are two logical propositions. Which of the following are equivalent? (a) $P \lor \sim Q$ (b) $\sim (\sim P \land Q)$ (c) $(P \land Q) \lor (P \land \sim Q) \lor (\sim P \land \sim Q)$ (d) $(P \land Q) \lor (P \land \sim Q) \lor (\sim P \land Q)$	[03]	CO1	L2
18	Is the following true or false? $\{ [P \lor (Q \lor R)] \land \sim Q \} \Rightarrow (P \lor R)$ (a) True (b) False	[03]	CO1	L1
19	"If a triangle is not isosceles then it is not equilateral" is equivalent to (a) If a triangle is not equilateral then it is not isosceles. (b) If a triangle is isosceles then it is equilateral. (c) A triangle is isosceles and it is not equilateral. (d) If a triangle is equilateral then it is isosceles.	[02]	CO1	L1

	Course Outcomes	Modules	P01	PO2	PO3	P04	P05	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PS04
CO 1	Examine the correctness of an argument using propositional and predicate logic and truth table.	1	2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO 2	Solve problems using counting techniques and combinatorics in the context of discrete probabilities.	1	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO 3	Solve problems involving relations and functions and their properties.	1	2	-	-	-	-	-	-	-	-	-	-	-	1	-	1	1
CO 4	Construct proofs using direct proof, proof by contradiction, and proof by cases and mathematical induction.	.75	2	2	-	-	-	-	-	-	-	-	-	-	1	-	1	1
CO 5	Explain and differentiate graphs and trees.	1	1	-	-	2	-	-	-	-	-	-	-	-	1	2	1	1
CO 6	Solve problems involving recurrence relations.	.25	2	-	1	2	-	-	-	-	-	-	-	-	1	-	1	1

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

	C	CORRELATION LEVELS								
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation					
PO2	Problem analysis	PO8	Ethics	1	Slight/Low					
PO3	Design/development of solutions	2	Moderate/ Medium							
PO4	Conduct investigations of complex problems	3 Substantial/ High								
PO5	Modern tool usage	PO11	Project management and finance							
PO6	The Engineer and society	PO12	Life-long learning							
PSO1	Develop applications using different stacks of web and programming technologies.									
PSO2	Develop secured and distributed applications on a network.									
PSO3	Apply software engineering methods to design, develop, test and manage software systems.									
PSO4	Develop intelligent applications for	business	and industry.							

IAT-2, DMS (SOLUTION), 2020

- 1) n = 2020, ... no. of edges = 2020-1 = 2019 ... The sum of the degree of the vertices = 2x2019
- (2) By Handshaking property (2x1) + 4s = 2(2+s-1) 2+4s = 21+2s-2 $\Rightarrow 2 = 2s+2 \Rightarrow 2s = 2-2$
- (3) m = 4, p = 25 $\therefore No. of internal vertices is <math display="block">Q = \frac{b-1}{m-1} = 8$
 - : No. of extension cords is 9-1= 7.
- 4. x=1, y=1, z=0, otherwise for the other choices the given code won't be a frefix code.
- (8) $[(p\rightarrow q) \land (p\rightarrow 7q)] \equiv (7p \lor q) \land (7p \lor 7q)$ $\equiv 7p \lor (q \land 7q)$ (Distributine law) $\equiv 7p \lor F$ (Inverse law) $\equiv 7p$ (Identity)
- 9. $(p \rightarrow q) \wedge [7q \wedge (k \vee 7q)] \equiv (7p \vee q) \wedge [7q]$ (Absorption law) $= (7p \wedge 7q) \vee (q \wedge 7q) \quad (Distributive)$ $= (7p \wedge 7q) \vee F \quad (Junesse)$ $= 7(p \vee q) \vee F \quad (De-Morgan's law)$ $= 7(q \vee p) \quad (Jdentity & commutative)$
- (10) $b \leftrightarrow q = (b \rightarrow q) \wedge (q \rightarrow b) = (7bvq) \wedge (7q v b)$ Its dual is: $(7b \wedge q) v (7q \wedge b)$

(1)
$$p \rightarrow s$$
 $p \rightarrow s$ (Syllogism in 1st & 2nd)

 $s \rightarrow s$ $\Rightarrow s \rightarrow t$ (commutative & $p \rightarrow 2 = 7pvq$)

 $t \lor \tau s$ $t \rightarrow u$ (")

 $7u$ $7u$ $7u$
 $\Rightarrow p \rightarrow t$ (Syllogism in 1^{st} & $2nd$)

 $t \rightarrow u$
 $\Rightarrow p \rightarrow u$ (Syllogism in 1^{st} & $2nd$)

 $\Rightarrow \frac{7u}{7u}$ (Syllo, in $1st$ & $2nd$)

 $\Rightarrow \frac{7u}{7u}$ (Modus Yollons)

(12)
$$\forall \alpha, \beta(\alpha) \rightarrow 7\lambda(\alpha)$$
 T (: $\alpha = 2, 5$)
$$\forall \alpha, q(\alpha) \rightarrow \lambda(\alpha)$$
 F (: $\alpha = 3$)
$$\exists \alpha, \beta(\alpha) \rightarrow \lambda(\alpha)$$
 F (: $\alpha = 2, 5$ both are positive)

(13)
$$p(x): x^2 > 16$$
, $q(x): x < 4$, $g(x): x > 4$

Symbolic form is

 $\forall x \in R, \ p \to (q \lor R)$

The negation is

 $\exists x \in R, \ 7 \not \in p(x) \to q(x) \lor R(x) \not \in P \to q = 7p \lor q$
 $\equiv \exists x \in R, \ 7(7p(x)) \lor (q(x) \lor R(x)) \Rightarrow p \to q = 7p \lor q$
 $\equiv \exists x \in R, \ p(x) \land 7q(x) \land 7L(x) \not \in De \ Morgan's \ f \ double \ neg.$

(ii)
$$\exists x \exists y, [xy=1]$$
, T , $(x=1, y=1)$
 $\exists x \exists y [(3x-y=17) \land (2x+4y=3)]$, F
 $x = \frac{71}{14} \notin X$

(15.) Syon. form
$$\exists x, \beta(x) \land q(x)$$
 Invalid, as for first primise $\frac{\beta(a)}{\therefore g(a)}$ \Rightarrow can be other than a .

$$(7) (p n q) v (p n \sim q) v (\sim p n \sim q)$$

$$= [p n (q v \sim q)] v (\sim p n \sim q) \quad (Distributive)$$

$$= (p n T) v (\sim p n \sim q) \quad (Johntity)$$

$$= (p v \sim p) n (p v \sim q) \quad (Distributive)$$

$$= T n (p v \sim q) \quad (Johntity)$$

$$= T n (p v \sim q) \quad (Johntity)$$

$$= p v \sim q \quad (Johntity)$$

$$= p v \sim q \quad (Johntity)$$

$$= p v \sim q \quad (De-Morgan's law)$$

	<u>(1)</u>			(2)		(3)	•		
	þ	9	2	qvr	79	1 v2	3×79	pvr	
	1	1	1	I	0	1	0		
	1	1	0	1	0	1	0	1 1	
	1	0	1	L	1	1	\bigcirc	>	
	1	0	0	0	1	1	\bigcirc —	→	
	0	l	1	1	0	1	0	1	
	0	1	0	1	0	1	0	0	
	٥	0	1	1	ı	1	\bigcirc	ا د	
	٥	0	0	0	1	0	$\frac{\cdot}{\circ}$	0	
1	-	l l						<u> </u>	

whenever { pv(qvx)}179 is 1, pvz is 1.

: {pv(qvr)}179 > pvr

	{pr(qra)}t / prot												
7.)	þ	2	٨	prq O	β→2 ②	9→r 3	② 13 ④	(1) A(4) (5)	€ → 2				
	1	1	1	1	1	1	1	1	1	Γ			
	1	1	0	1	0	0	0	0	1				
	1	0	1	1	1	1	1 ,	1	1				
	1	0	0	1	0	1	0	0	1				
	0	1	1	1	1	1	1	1	1				
	0	1	0	1	1	0	0	0	1				
	0	0	1	0	1	1	1	0	1				
	0	0	0	0	1 .	1	1	0	1				

Since-the given compound proposition is alway 1 irrespective of what the truth values of its components are.

PROPOSAL ACCEPTED P:3; R:1; O:2; S:1; A:2; L:1; П:1; с:2, E:2, Т:1, D:1 Skanging The letters with weights in non-decreasing order R(1) $\dot{S}(1)$ $\dot{L}(1)$ $\dot{D}(1)$ $\dot{T}(1)$ $\dot{D}(1)$ $\dot{O}(2)$ $\dot{A}(2)$ $\dot{C}(2)$ $\dot{E}(2)$ $\dot{P}(3)$ L(1) \Box (1) T(1) D(1) \bigwedge O(2) \dot{A} (2) \dot{C} (2) \dot{E} (2) \dot{P} (3) R(1) S(1) $\gamma_{1}(2)$ $\rho(2) \dot{\rho}(2) \dot{\rho}(2) \dot{\rho}(3)$ L(1) $\Box(1)$ R(1) S(1) $V_{2}(2)$ $V_{1}(2)$ 0(2) A(2) C(2) E(2) P(3) T(1) D(1) L(1) D(1) R(1) S(1)V,(2) 0(2) A(2) C(2) E(2) P(3)T(1) D(1) L(1) $\Box(1)$

