USN						
	l			l		

CMR INSTITUTE OF TECHNOLOGY

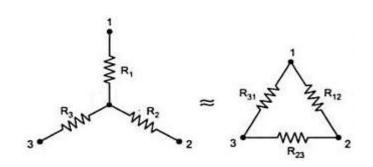
Internal Assesment Test - II

Sub:	: Electric Circuit Analysis								18EE32	
Date:	02/11/2020	Duration:	90 mins	Max Marks:	50	Sem:	3 rd	Branch:	EEE	
	Answer Any FIVE FULL Questions									

Marks/CO/RBT

1. (a) Derive expression for Delta-Star Transformation.

(5)(CO2)(L2)

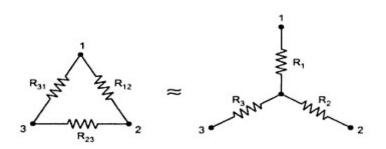

When a circuit cannot be simplified in normal series parallel reduction technique, the star delta transformation technique is used.

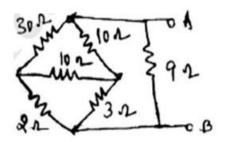
Equations for star-delta transformation:

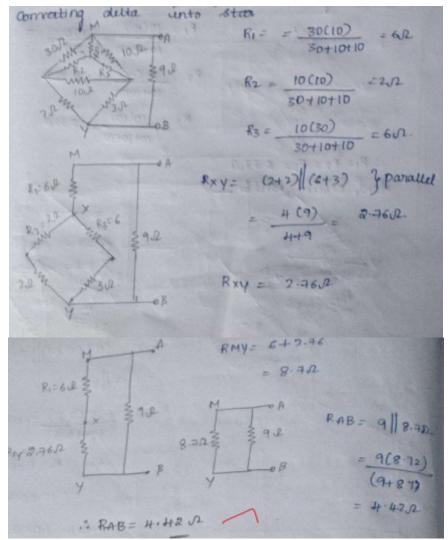
$$R_{12} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

$$R_{23} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_{31} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

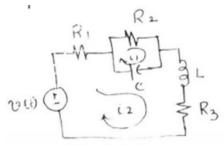


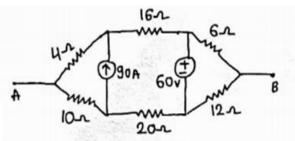

Equations for delta-star transformation:

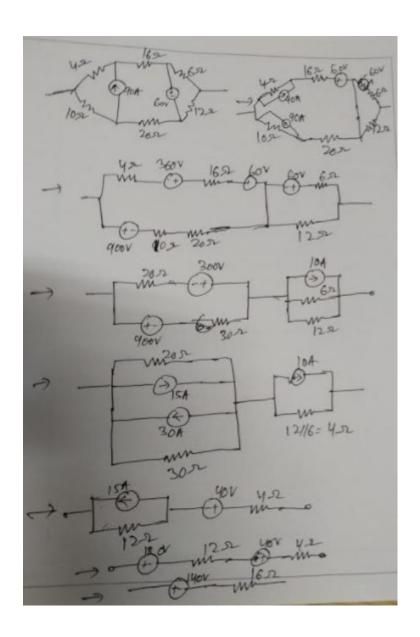

$$\mathbf{R}_{1} = \frac{\mathbf{R}_{12} \mathbf{R}_{31}}{\mathbf{R}_{12} + \mathbf{R}_{23} + \mathbf{R}_{31}}$$

$$\mathbf{R}_{2} = \frac{\mathbf{R}_{23} \mathbf{R}_{12}}{\mathbf{R}_{12} + \mathbf{R}_{23} + \mathbf{R}_{31}}$$

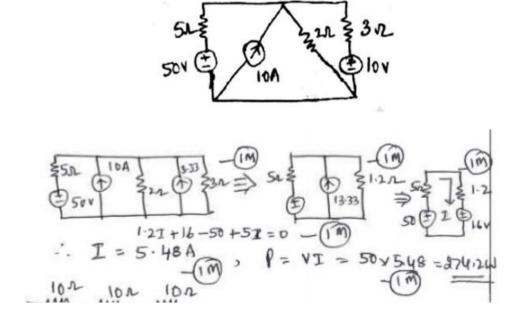
$$\mathbf{R}_{3} = \frac{\mathbf{R}_{31} \mathbf{R}_{23}}{\mathbf{R}_{12} + \mathbf{R}_{23} + \mathbf{R}_{31}}$$

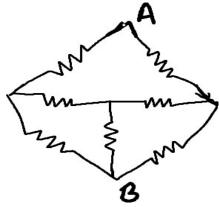


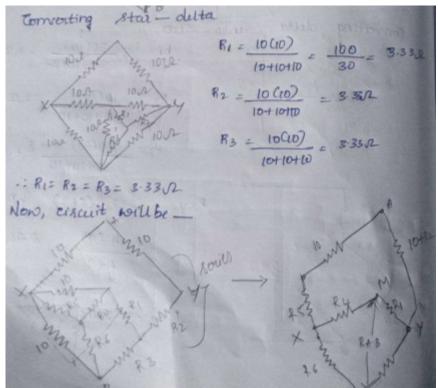



2. (a) Draw the dual of the following circuit.

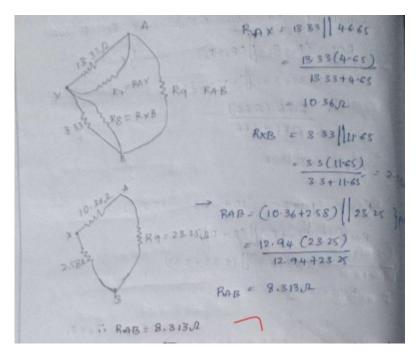
(4)(CO2) (L3)

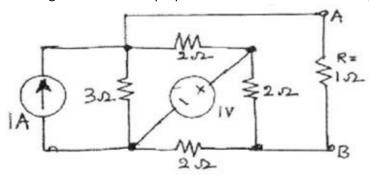

(b) Convert the given circuit into a single voltage source in series with a single resistance using source transformation & shifting. (6)(CO2) (L3)

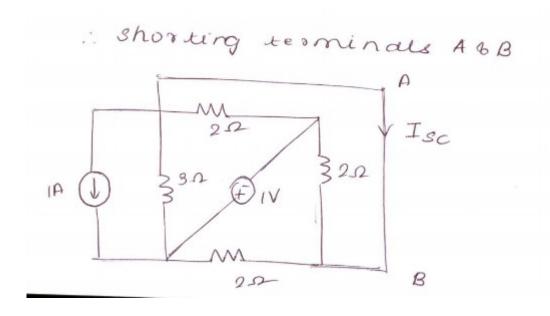


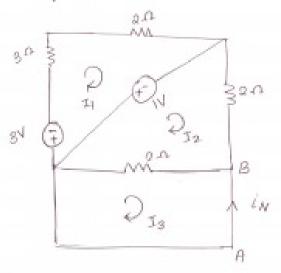


3. (a) Find power delivered by 50V source using source transformation.


(5)(CO2)(L3)







4. Find current in 1Ω resistor using Thevenin's & Superposition Theorem simultaneously. (10)(CO3)(L3)

Using source to ancoon ation.

Applying mesh analysis in logo 1

$$-3 -3I_1 - 2I_1 + I - O$$

$$-5I_1 - 2 = O$$

$$I_1 = -2 + A -$$

Applying much analysis in supply

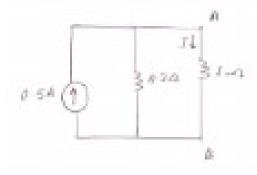
$$-1 - 2I_2 - 2(I_2 - I_3) - 0$$

 $-1 - 4I_2 + 2I_3 = 0 \rightarrow \emptyset$

Applying mesh analysis in loops.

$$-\mathcal{Q} \subset J_{\mathcal{B}}^{-}J_{\mathcal{B}}) = 0$$

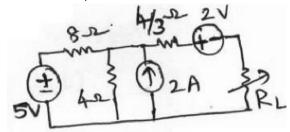
 $-\mathcal{Q} J_{\mathcal{B}}^{-}+\mathcal{Q} J_{\mathcal{Q}}^{-} = 0$
 $J_{\mathcal{B}}^{-}=J_{\mathcal{Q}}^{-}$


$$-I - HI_S + 2I_S + 0$$

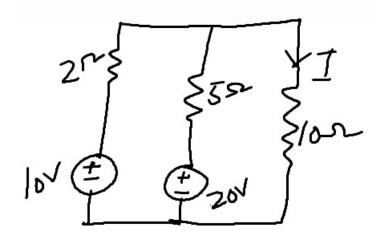
 $-I - RI_S - 0$
 $-I + RI_S$
 $I_S - -I + -0SA$
Alt Knock $I_N - -I_S - I_S - I_S$

$$\frac{R_{K}}{R_{W}} = (3112) + (2112)$$

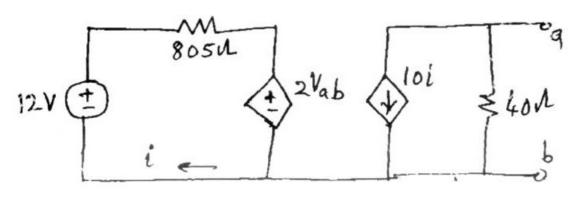
$$\frac{342}{3+2} + \frac{282}{2+2}$$


$$\frac{6}{5} + 1 - \frac{11}{5} - \frac{823}{2+2}$$

5. (a) Find the value of R_L for which maximum power is delivered to it.


(6)(CO3)(L3)

$$R_T = R_L = 9 \frac{8(4)}{9+4} + \frac{4}{3} = \frac{32}{12} + \frac{4}{3}$$

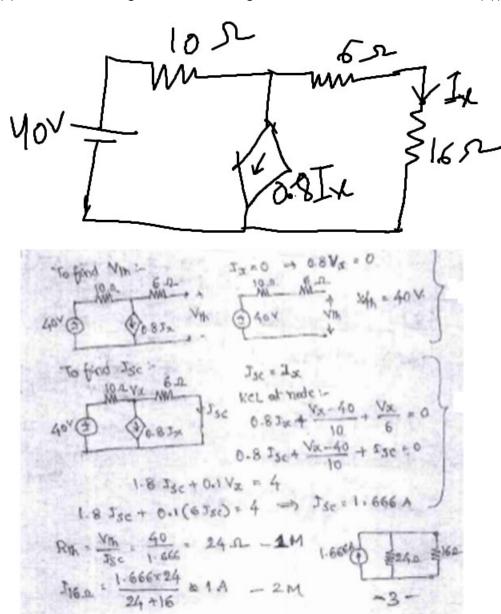

(b) Find current through I using Millman's Theorem.

(4)(CO3) (L3)

6. Find Thevenin's & Norton's equivalent circuit for the given network.

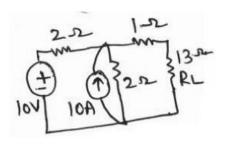
(10)(CO3) (L3)

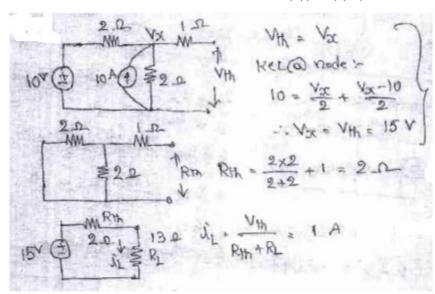
Apply KVL to loop 1


$$12 - 805i - 2Vab = 0$$
 $805i + 2Vab = 12 - (1)$

Apply KVL to loop 2.

 $Vab = 40(-10i)$
 $i = -Vab - (2)$
 400


Sub (2) in (1)


 $800(-Vab) + 2Vab = 12$
 $-2.0125^{4} + 2Vab = 12$
 $-0.0125 Vab = 12$
 $Vac - Vab = -960V$
 $i = -Vab - 400$
 $i = -(-960) = 2.4 A$
 $i = -(-960) = 3.4 A$

(b) Find current through R_L using Thevenin's Theorem

(5)(CO3)(L3)

