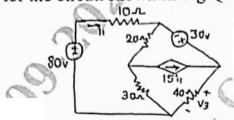
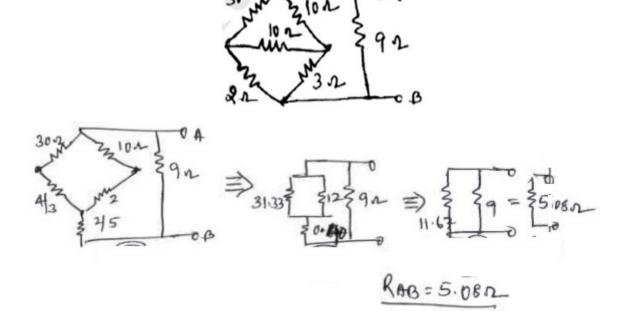
USN					

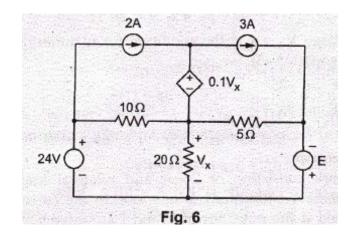

CMR INSTITUTE OFTECHNOLOGY

Internal Assesment Test - II

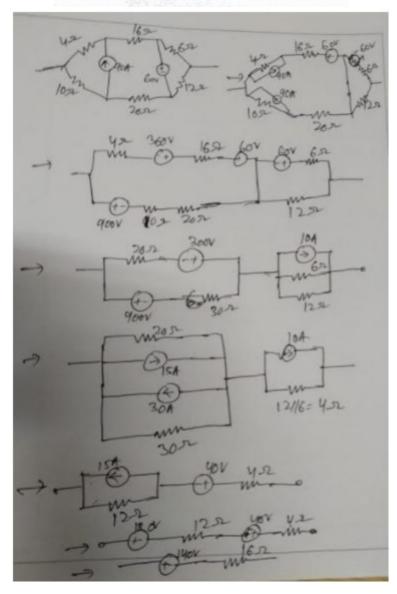
Sub:	Electric Circuit Analysis								18EE32		
Date:	17/02/2021	Duration:	90 mins	Max Marks:	50	Sem:	3 rd	Branch:	EEE		
	Answer Any FIVE FULL Questions										

Marks/CO/RBT


1. (
Determine voltage V₃ for the circuit shown in Fig.Q1(a), using Mesh analysis method.


(5)(CO1)(L3)

(b) Find the equivalent resistance R_{AB} using Delta-Star Transformation.


(5)(CO2)(L3)

2. (a) Use node equations to determine what value of 'E' will cause Vx to be zero for the network shown in fig. (5)(CO2)(L3)

(b) Convert the given circuit into a single voltage source in series with a single resistance using source transformation & shifting. (5)(CO2)(L3)

3. a) For the network shown in Fig. 2 determine the node voltages V1, V2, V3and V4 using nodal analysis. (5)(CO2)(L3)

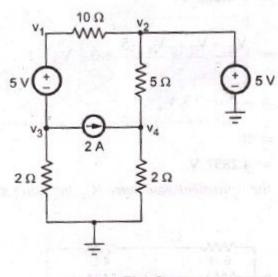
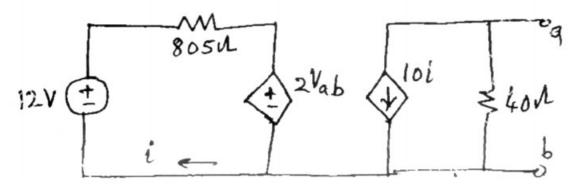
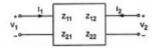



Fig. 2

(b) Find Thevenin's & Norton's equivalent circuit for the given network.

(5)(CO2)(L3)


```
Apply KVL to loop 1
12 - 805i - 2Nab = 0
805i + 2Vab = 12 - (1)
Apply KVL to loop 2.
Nab = 40(-10i)
i = -Vab - (2)
800 \left( -Vab \right) + 2Vab = 12
-2.0125 + 2Vab = 12
-0.0125 Vab = 12
Vac *Vab = -960V
i = -Vab - (-960) = 2.4 A
400
i_{40} = 10i = 10 \times 2.4 = 24 A \cdot (A to b)
```

4. Describe about Z-parameter & draw its equivalent circuit. Derive the relationship between Z & ABCD parameters. (10)(CO3)(L3)

Two port network parameters:

Z parameters

It is also called as impedance parameters or open circuit parameters.

The Z parameters equations are obtained by considering I_1 and I_2 of the network as independent variables and V_1 and V_2 are the dependent variables. The impedance parameters are obtained by expressing voltages at two ports in terms of currents at two ports.

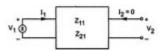
$$V_1 = f_1(I_1,I_2)$$

$$V_2 = f_2(I_1,I_2)$$

In equation form

$$V_1 = Z_{11} I_1 + Z_{12} I_2$$

 $V_2 = Z_{21} I_1 + Z_{22} I_2$

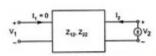

In matrix form

$$\begin{bmatrix} V \\ \end{bmatrix} = \begin{bmatrix} Z \\ \end{bmatrix} \begin{bmatrix} I \end{bmatrix}$$

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} & | I_1 \\ Z_{21} & Z_{22} & | I_1 \end{bmatrix}$$

Individual Z parameters

Sub I₂=0 (Output port is open circuited)



$$V_1 = Z_{11} I_1$$

$$V_2 = Z_{21}I$$

$$Z_{2i} = \frac{V_2}{I_1}$$

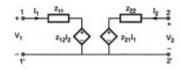
Sub I₁=0(Input port is open circuited)

$$I_1 = Z_{12}I_2$$

$$V_2 = Z_{22}$$

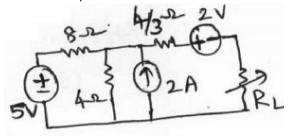
$$Z_{22} = \frac{V_2}{I_2}$$

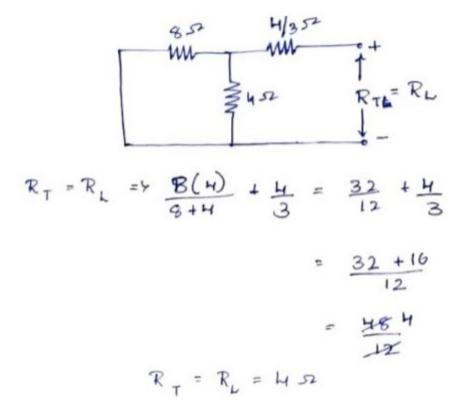
Z₁₁=Open circuit input driving point impedance


Z₂₂=Open circuit output driving point impedance

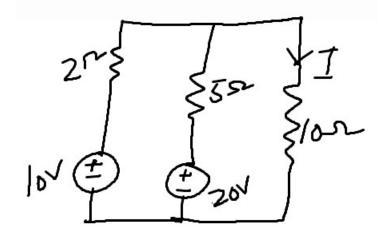
Z₁₂=Open circuit forward transfer impedance

Z₂₁=Open circuit reverse transfer impedance


Where Z_{11} , Z_{12} , Z_{21} and Z_{22} are called as impedance parameters. These parameters are defined only when the current in any one of the port is zero.


Equivalent Circuit

5. (a) Find the value of R_L for which maximum power is delivered to it.


(6)(CO3)(L3)

(b) Find currentl using Millman's Theorem.

(4)(CO3)(L3)

6. a) Determine the line currents and total power supplied to a delta connected load of $Z_{ab} = 10 \angle 60^{\circ} \Omega$, $Z_{bc} = 20 \angle 90^{\circ} \Omega$ and $Z_{ca} = 25 \angle 30^{\circ} \Omega$. Assume a 3 phase, 400 V, ABC system.

(5)(CO5)(L3)

$$V_{L} = V_{ph} = 400U$$

$$V_{bc} = 400U, V_{bc} = 400U^{-120}, V_{ca} = 400U^{120}V$$

$$Phake unweath$$

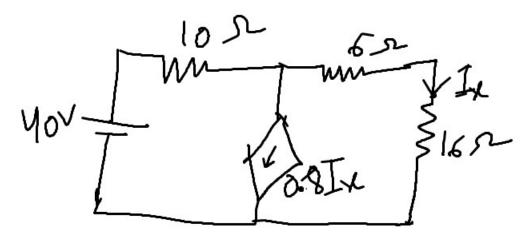
$$T_{ab} = \frac{V_{ab}}{2ab} = \frac{400U^{6}}{10U^{6}} = 40U^{-120}A$$

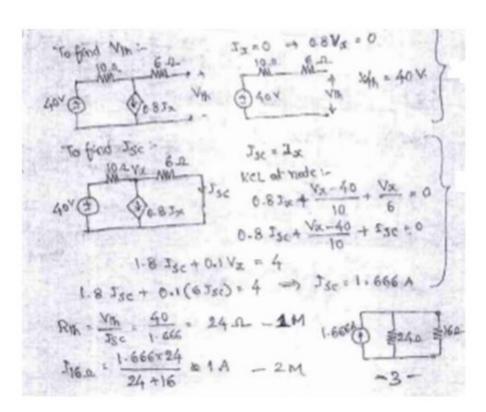
$$T_{bc} = \frac{V_{bc}}{2bc} = \frac{400U^{-120}}{20U^{6}} = 10U^{-210}A$$

$$T_{ca} = \frac{V_{ca}}{2ca} = \frac{400U^{120}}{25U^{30}} = 16U^{90}A$$

$$T_{ca} = 54.45U^{-68}.45, T_{bc} = 58.173U^{24}.88 T_{c} = 16.316U^{-13}$$

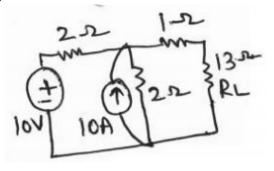
$$I = 8ab + 8bc + 8c + 7ea = 13.542 KW$$


Determine the line currents in an unbalanced star connected load supplied from a symmetrical 3 phase, 440 V system. The branch impedances are $Z_R=4\angle30^{0}\Omega$, $Z_Y=10\angle45^{0}\Omega$ and $Z_B=10\angle60^{0}\Omega$. The phase sequence is RYB.

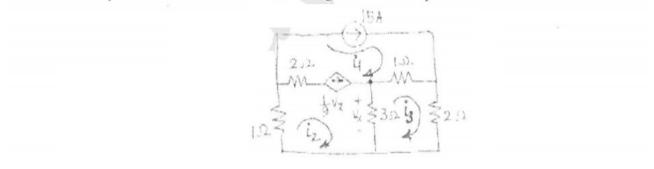

(5)(CO5)(L3)

10(a)
$$-\frac{7a}{4}$$

15 kop!

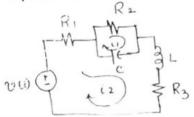

 $-(4/30) \cdot i_1 - (10/45') \cdot i_1 + V_{RY}$
 $+ (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot i_2 = 0$
 $+ \sqrt{10} \cdot 1_1 + (0/45') \cdot i_1 + (0/45') \cdot$

(b) Find current through R_L using Thevenin's Theorem


(5)(CO3)(L3)

8. a)

Find the loop currents i₁, i₂ and i₃ using Mesh analysis for the network shown



(5)(CO1)(L3)

doopequations: superfesh (comprising of
$$060$$
) loops gets open circuites open circuites $i_1 = 15 \text{ A}$; $i_2 = 15 \text{ A}$; $i_3 = 0$ for 168 B $i_4 = 15 \text{ A}$; $i_4 = \frac{1}{9} \text{ A}$; $i_5 = 17 \text{ A}$ and $i_6 = 11 \text{ A}$.

b)

Write the equilibrium equations using KVL for the network shown in Fig.Q.2(b). Draw its dual and also write its equilibrium equations.

(5)(CO2)(L3)