- 1. The differential equation with all the initial conditions is specified at one point is called [2 Marks]
 - (A) Boundary Value problem
 - (B) Initial Value problem
 - (C) None of these

Ans: B CO:4 L-1

- 2. The error in approximating solution of initial value problem by Runge-kutta method is [2 Marks]
 - (A) More than Taylor's series method and Modified Euler's method
 - (B) Less than Taylor's series method and Modified Euler's method
 - (C) Equal to Taylor's series method and Modified Euler's method
 - (D) None of These

Ans: B CO:4 L-1

- 3. A differential equation along with initial conditions are prescribed at two or more points is called [2 Marks]
 - (A) Boundary Value problem
 - (B) Initial Value problem
 - (C) None of these

Ans: A CO:5 L-1

- 4. For the DE $\frac{dy}{dx} = 1 + y^2$ with y(0) = 0 then y(0.2) by Runge-Kutta Method is
 - (A)0.2027
 - (B) 0.3012
 - (C) 0.2512
 - (D) None of these

Ans: A CO:4 L-3

- 5. If boundary conditions are not specified for a functional then the extremal is a [2 Marks]
 - (A) Particular Solution of ODE
 - (B) General Solution of ODE
 - (C) Integral Equations
 - (D) None of These

Ans: B CO:5 L-1

- 6. The predictor formula is used to predict the value of y at x_{n+1} and the corrector formula is used to improve the value of y_{n+1} . [2 Marks]
 - (A) True
 - False (B)
 - None (C)

Ans: A CO:4 L-1

- 7. The error in the solution of differential equation increases if the step size h decreases [2 Marks]
 - (A) True
 - False (B)
 - (C) None of these

Ans: B CO:5 L-1

- 8. Which of the following methods are called multistep methods? [2 Marks]
 - Taylor's series method and Runge-kutta method (A)
 - Modified Euler's method and Milne's method
 - Adams-Bash forth method and Milne's method (C)
 - All of the above (D)

Ans: C CO:4 L-1

9. Euler's equation to find extremal of the functional is [2 Marks]

(A)
$$\frac{\partial f}{\partial x} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$

(B)
$$\frac{\partial f}{\partial y} - \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y'} \right) = 0$$
(C)
$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0$$

(C)
$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0$$

(D)
$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$

Ans: D CO:5 L-1

- 10. The extremal of the functional $\int_{x_2}^{x_1} (y^2 + x^2 y') dx$ is [2 Marks]
 - (A) y = -x
 - (B) $y = x^2$
 - (C) y = x
 - (D) None of the above

Ans: C CO:5 L-3

- 11. Given $\frac{dy}{dx} = \log_{10}(x + y)$, y(0) = 1, using modified Euler's method, an approximate value of y(0.2), is
 - (A) 1.0626
 - (B) 0.3421
 - (C) 1.0082
 - (D) 0.0625

[4 Marks]

Ans: C CO:4 L-1

- 12. Given $\frac{dy}{dx} = xy^{\frac{1}{3}}$, y(1) = 1, using modified 4th order Runge-Kutta method, an approximate value of y(1.1), is
 - (A) 1.1068
 - (B) 0.1078
 - (C)0.1008
 - (D)2.1068

[4 Marks]

Ans: A CO:4 L-3

13. Given $\frac{dy}{dx} = x - y^2$, and the initial values as in the table below, using

X	0	0.1	0.2	0.3
y	1	0.9117	0.8494	0.8061

Adam's-Bashforth predictor-corrector method, an approximate value of y(0.4) is [4 Marks]

- (A)0.7785
- (B) 0.6684
- (C) 0.7001
- (D)none

Ans: A CO:4 L-3

14. The extremal of the functional $\int_0^1 \left[y + x^2 + \frac{{y'}^2}{4}\right] dx, y(0) = 0, y(1) = 0$ is extremized as

$$(A)y = 4(x^2 - x)$$

(B)
$$y = 3(x^2 - x)$$

(C)
$$y = 2(x^2 - x)$$

(D) $y = x^2 - x$

[4 Marks]

CO:5 L-3 Ans: D

15. On the interval [0,1], let y be an extremal of the functional

$$I(y) = \int_0^1 \frac{\sqrt{1+2y'^2}}{x} dx$$
, when $y(0) = 1$, $y(1) = 2$. Then for some arbitrary constant c, y satisfies

$$(A)y'^2(2-c^2x^2) = c^2x^2$$

(B)
$${y'}^2(2 + c^2x^2) = c^2y^2$$

(C)
$$y'^2(1 - c^2x^2) = c^2x^2$$

$$(D)y'^2(1+c^2x^2) = c^2x^2$$

[4 Marks]

Ans: A CO:5 L-3

16. Given $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$, y(0) = 1, y(0.1) = 0.995, y(0.2) = 0.9802, y(0.3) = 0.956, y'(0) = 0, y'(0.1) = -0.0995, y'(0.2) = -0.196,y'(0.3) = -0.2863. Then by Milne's method, an approximate value of y(0.4) is

- (A) -0.3692
- (B) 0.9232
- (C) -0.7754
- (D) None of these

[5 Marks]

Ans: B CO:5 L-3

17. The extremal of the functional $I(y) = \int_0^{\frac{\pi}{2}} [y^2 - {y'}^2 - 2y \sin x] dx$,

$$y(0) = 0$$
, $y\left(\frac{\pi}{2}\right) = 1$ is given by

$$(A)y = \sin x - \frac{x}{2}\cos x$$

(A)
$$y = \sin x - \frac{x}{2}\cos x$$

(B) $y = \sin x - \frac{x-\pi}{2}\cos x$

$$(C) y = \sin x - x^2 \cos x$$

(D)
$$y = (x - \frac{\pi}{2} + 1) \sin x - x \cos x$$

[5 Marks]

CO:5 L-3 Ans: A

Answers

1 B	2 B	3 A	4 B
5 B	6 A	7 B	8 C
9 D	10 C	11 C	12 A
13 A	14 D	15 A	16 B
17 A			