18EE34

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. What is bias stabilization? Explain with help of load line the effect of variation of V_{CC}, I_B, on Q-point of a transistor. (10 Marks)
 - b. For the emitter bias network shown in Fig Q1(b)

Fig Q1(b)

Determine following: i) I_B ii) I_C

iii) V_{CE} iv) V_{C} v) V_{E}

(10 Marks)

OR

- a. With circuit diagram and explain the voltage divider Biasing circuit. Also derive the I_B and V_{CE}.

 (10 Marks)
 - b. Draw and explain the double ended diode clipper circuit.

(05 Marks)

c. Draw a simple +ve damper circuit and explain its operation.

(05 Marks)

Module-2

3 a. State and prove miller's theorem.

(06 Marks)

b. Compare the characteristics of CE, CC, CB configuration.

(04 Marks)

c. Derive the expression for A_V, Z_i and Z_o of the voltage divider bias circuit using hybrid model. (10 Marks)

OR

- 4 a. Starting from the fundamentals, define h-parameters and obtain h-parameter equivalent circuit of common emitter configuration. (10 Marks)
 - b. Transistor used in RC coupled CE amplifiers with fixed bias has $h_{ie}=1k\Omega,\ h_{fe}=60,\ h_{ve}=15\mu\text{A/V},\ h_{re}=2\times10^{-4},$ circuit has $R_s=1k\Omega,\ R_B=56k\Omega,\ R_C=10k\Omega$ and $R_L=10k\Omega.$ Find $A_I,\ A_{IS},\ Z_{in}$ and $Z_o.$ (10 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3

- 5 a. Explain the operation of cascade connections with the help of neat diagram. (10 Marks)
 b. Draw the circuit of Darlington emitter follower with voltage divider bias calculate input
 - b. Draw the circuit of Darlington emitter follower with voltage divider bias calculate input impedance, voltage gain and output impedance. Take $\beta_1 = \beta_2 = 100$, $R_1 = R_2 = 100$ k Ω , $R_E = 5$ k Ω , Take $r_e = 0.1$ k Ω . (10 Marks)

OR

- 6 a. What are the advantages of negative feedback in amplifiers? (06 Marks)b. Draw the block diagram and explain the concept of feedback. (04 Marks)
 - c. Derive an expression for Z_i and A_i for a Darlington emitter follower circuits. (10 Marks)

Module-4

- 7 a. With a neat diagram, explain the different types of power amplifiers. (10 Marks)
 - b. With a circuit diagram, explain the transformer coupled class A amplifier. Also derive the expression R'₁. (10 Marks)

OR

- a. With a neat diagram, explain the wein bridge oscillator circuits. (10 Marks)
 - b. In a Hartley oscillator $L_1 = 20\mu H$, $L_2 = 2mH$ and C is variable. Find the range of C if frequency is to be varied from 1MHz to 2.5MHz. Neglect mutual inductance. (08 Marks)
 - c. Comparison between RC phase shift and wein bridge oscillator. (02 Marks)

Module-5

- 9 a. With a neat diagram, explain the construction of n-channel JFET. (10 Marks)
 - b. Derive an expression for saturation drain current of n-channel JFET. (10 Marks)

OR

- 10 a. Mention the different between BJT and FET.
- (06 Marks)
- b. A JFET has $g_m = 6mV$ at $V_{GS} = -1V$. Find I_{DSS} if pinch-off voltage $V_P = -2.5V$. (04 Marks)
- c. Explain construction, working and characteristics of n-channel depletion type MOSFET.

(10 Marks)

