GBCS SCHEME

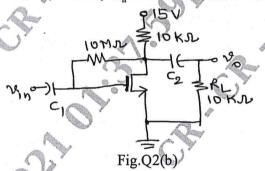
USN 18EC42

Fourth Semester B.E. Degree Examination, Jan./Feb. 2021 Analog Circuits

Time: 3 hrs. // Max. Marks: 100

BANGANOTE: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1


- a. What is meant by biasing? Explain the need for biasing and the stability of Q-point with respect to BJT. (04 Marks)
 - b. Design a voltage divider bias network to operate a BJT at $V_{CE} = 6$ V and $I_C = 4$ mA. Use $V_{CC} = 12$ V, $V_E = V_{CC}/4$ and the current through the voltage-divider resistors as $I_E/10$. Assume $\beta = 100$ and $V_{BE} = 0.7$ V. (08 Marks)
 - c. For a BJT amplifier circuit, obtain the expressions for small-signal collector current, transconductance and voltage gain. (08 Marks)

OR

2 a. A MOSFET having $V_t = 1.5$ V, W = 10 μm , L = 1 μm , $K'_n = 200$ $\mu A/V^2$ and $\lambda = 0$ has to be biased at $I_D = 5$ mA. Design a drain-to-gate feedback bias network using $V_{DD} = 10$ V.

(08 Marks)

b. For the circuit shown in Fig.Q2(b), determine the small-signal voltage gain, input resistance and output resistance. Assume $V_t = 1.5 \text{ V}$, $K'_z \text{W}/\text{L} = 0.25 \text{ mA/V}^2$ and $V_A = 50 \text{ V}$.

(12 Marks)

Module-2

- 3 a. Define the terms input resistance, output resistance, voltage gain and overall voltage gain of an amplifier. (04 Marks)
 - b. Analyze the circuit of common-drain amplifier, and derive the expressions for no-load voltage gain, overall voltage gain, input resistance and output resistance. (10 Marks)
 - c. An n-channel MOSFET has $t_{ox}=10$ nm, w=10 µm, L=1 µm and $L_{ov}=0.05$ µm. calculate the values of C_{ox} , C_{gs} and C_{gd} when the transistor is operating in its saturation region. Assume $\epsilon_{ox}=34.53$ pF/m. (06 Marks)

OR

- 4 a. Draw the high-frequency model of MOSFET used in computer analysis, and the simplified model used in manual analysis. (04 Marks)
 - b. A common-source amplifier has signal resistance $R_{sig} = 10 \text{ K}\Omega$, gate resistance $R_G = 10 \text{ M}\Omega$, drain resistance $R_D = 15 \text{ K}\Omega$, load $R_L = 15 \text{ K}\Omega$, $r_0 = 150 \text{ K}\Omega$, $g_m = 10 \text{ mA/V}$, $C_{gs} = 1 \text{ pF}$, $C_{gd} = 0.4 \text{ pF}$, coupling capacitor $C_1 = C_2 = 1 \text{ \muF}$ and bypass capacitor $C_s = 1 \text{ \muF}$. Determine the maximum gain in dB and bandwidth of the amplifier. (08 Marks)
 - c. Draw the circuit of MOSFET based RC phase-shift oscillator and explain its operation.

(08 Marks)

Module-3

5 a. List the advantages of negative feedback in amplifiers.

(04 Marks)

- b. An amplifier has open-loop gain A = 10,000. Find the feedback factor β required to get the closed-loop gain $A_F = 10$, Now if A decreases by 20%, determine the corresponding decrease in A_F . (06 Marks)
- c. Draw the diagram of series-series feedback amplifier (trans-conductance amplifier) and derive the expressions for closed-loop voltage gain, input resistance and output resistance.

 (10 Marks)

OR

- 6 a. Define a power amplifier. Classify power amplifiers based on the location of Q-point, conduction angle, efficiency and applications. (08 Marks)
 - b. What is cross-over distortion? How can it be eliminated?

(04 Marks)

c. A complementary symmetry push-pull amplifier is operated using $V_{CC} = 10 \text{ V}$ to deliver power to a load $R_L = 5 \Omega$. Calculate the maximum power output and the power ratings of the transistors.

Module-4

- 7 a. Draw the circuit of non-inverting amplifier and derive the expressions for exact gain, ideal gain, input resistance and output resistance. (10 Marks)
 - b. What is meant by virtual ground? Explain.

(04 Marks)

c. An inverting amplifier with feedback resistor $R_f = 4.7 \text{ K}\Omega$ and the input resistor $R_i = 1 \text{ K}\Omega$ is fed with 5V peak-to-peak sinusoidal of frequency 1 kHz. Draw the input and output waveforms. (06 Marks)

OR

- 8 a. Design an op-amp circuit with three input voltage V_1 , V_2 and V_3 such that to get an output of $V_0 = -(0.5V_1 + V_2 + 2V_3)$. (08 Marks)
 - b. What is meant by offset-nulling? How is it done in 741C op-amp?

(04 Marks)

c. Determine the bandwidth of the amplifier shown in Fig.Q8(c) if the unity-gain bandwidth of the op-amp is 1 MHz.

Module-5

- 9 a. With circuit diagram and waveform, explain the working of binary-weighted resistors 4-bit digital-to-analog converter. (08 Marks)
 - b. In a R-2R Digital-to-Analog converter, $R_f = 12 \text{ K}\Omega$, $R = 5 \text{ K}\Omega$, calculate the output voltage when only the LSB is ON, and the output voltage when all the four bits are ON. Assume reference voltage is +5V. (04 Marks)
 - c. Explain the working of positive half-wave precision rectifier using op-amp and a single diode. (08 Marks)

OR

- 10 a. A second-order low-pass filter is to be designed to have cutoff frequency 1.6 kHz and passband gain 1.586. Design and draw the circuit. (07 Marks)
 - b. Draw the circuit of first order wide band-pass filter and explain operation. (08 Marks)
 - c. Design a circuit using 555 timer to get a mono-shot pulse of width 10 ms. Choose $C = 1 \mu F$. (05 Marks)