

17EC43

Fourth Semester B.E. Degree Examination, Jan./Feb. 2021 **Control Systems**

Time: 3 hrs.

BANGAL

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Differentiate between Open loop control system and Closed loop control system. (06 Marks) 1
 - For the mechanical system, shown in fig. Q1(b), write the i) Mechanical network;
 - ii) Differential equations of performance.

(06 Marks)

Obtain the transfer function of the system shown in fig. Q1(c).

Fig.Q1(c)
$$T(t)$$
 $T(t)$ $T(t)$

(08 Marks)

- Explain the block diagram rule regarding: i) Combining blocks in cascade
 - ii) Moving a take off point beyond a block.

(04 Marks)

Determine the transfer function C(s)/R(s) for the block diagram shown in fig. Q2(b), using block diagram reduction techniques.

(08 Marks)

Find C(s) for the following signal flow graph of fig. Q2(c).

(08 Marks)

Module-2

- 3 a. With usual notation, derive an expression for the Peak time (t_p) and Rise time (t_r) of a response of second order system to a unit step input. (06 Marks)
 - b. Explain PI and PID controllers of a control system. (06 Marks)
 - c. A second order control system is represented by a transfer function given below:

 $\frac{Q(s)}{T(s)} = \frac{1}{Js^2 + Bs + K}$, where Q(s) is the proportional output and T(s) is the input torque.

A step unit of 10N-mt is applied to the system and test results are given below:

i) Maximum overshoot is 6% ii) Peak time is 1 sec iii) Steady static value of the output is 0.5 radian. Determine the values of J, F and K. (08 Marks)

OR

- 4 a. Define Steady state error and Static error coefficients with respect to step input, velocity input and acceleration inputs. (06 Marks)
 - b. For a unity feedback system $G(s) = \frac{s(s+1)}{s^2(s+3)(s+10)}$. Determine the type of system, error coefficients and steady state error for input $\gamma(t) = 1 + 3t$. (06 Marks)
 - c. A signal is represented by the equation $\frac{d^2\theta}{dt^2} + 10.\frac{d\theta}{dt} = 150.e$. Where $e = (r-\theta)$ is the actuating signal. Calculate the value of damping ratio, undamped and damped frequency of oscillation. Also determine Open loop transfer function. (08 Marks)

Module-3

5 a. State R – H criterion and discuss its limitation.

(06 Marks)

b. State the different rules for the construction Root locus.

(06 Marks)

c. The open loop transfer function of a unity feedback system is given by

 $G(s) = \frac{K}{s(s+3)(s^2+s+1)}$. Determine the value of K that will cause sustained oscillations in

the closed loop system. Also find the frequency of sustained oscillations. (08 Marks)

OR

- 6 a. A unity feedback control system has $G(s) = \frac{K}{s(s+2)(s+5)}$. Sketch the root locus and show clearly i) Break away points ii) The frequency at which root locus crosses imaginary axis and corresponding value of K. (12 Marks)
 - b. The open loop transfer function of a unity feedback system is given by

 $G(s) = \frac{K(s+1)}{s^3 + as^2 + 2s + 1}$. Determine the value of K and a, so that the system oscillates at a frequency of 2 rad/sec². (08 Marks)

Module-4

7 a. With figure, define the frequency domain specifications.

(06 Marks)

- b. Construct the Bode plot for a unity feedback control system with
 - $G(s) = \frac{10(s+10)}{s(s+2)(s+5)}$. Find the Gain margin and Phase margin. Comment on the stability.

(14 Marks)

2 of 3

OR

- 8 a. Explain Lag lead compensating networks. (06 Marks)
 - b. Given $G(s)H(s) = \frac{12}{s[s+1][s+2]}$. Draw the Polar plot and hence determine if system is stable? (06 Marks)
 - c. The open loop transfer function of a control system is $G(s)H(s) = \frac{1}{s^2(s+2)}$. Sketch the Nyquist plot, Path and asertain the stability. (08 Marks)

Module-5

- 9 a. What is Signal Reconstruction? Explain it with SAMPLE and HOLD circuit. (06 Marks)
 - b. Find the State transition Matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$ (06 Marks)
 - c. Consider the system given by $\ddot{y} + 9\ddot{y} + 26\dot{y} + 24y = 6$ U. Obtain its state model. (08 Marks)

OR

- 10 a. List the properties of State transition matrix. (06 Marks)
 b. Explain Spectrum analysis of Sampling process. (06 Marks)
 - b. Explain Spectrum analysis of Sampling process.c. Obtain the transition matrix Q(t) of the following system
 - $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$ Also obtain the inverse of the transition matrix $\phi^i(t)$. (08 Marks)