USNE OF TEC

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Operations Research

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

- 1 a. Define Operations Research. Briefly explain the phases of Operations Research. (08 Marks)
 - b. Solve the following LPP by graphical method:

 $Minimize Z = 20x_1 + 10x_2$

Subject to $x_1 + 2x_2 \le 40$

 $3x_1 + x_2 \ge 30$

 $4x_1 + 3x_2 \ge 60$ and

 $x_1 \ge 0, x_2 \ge 0$

(06 Marks)

c. The following table gives data for a Linear Programming Problem where the objective is to maximize the profit from allocating 3 resources to 2 non negative activities. Formulate the LPP model for this problem.

(06 Marks)

Resource	Resource Rec	Availability	
	Activity 1		
. 4	2	1	10
2	3	3	20
∌ 3	2	4	20
Profit/unit	20 •	30	

- 2 a. Explain the special cases that arise in the use of simplex method.
- (10 Marks)
- b. Solve the following LPP using simplex method in tabular form.

Maximize Z = x + 1.5y

Subject to $x + 2y \le 160$

 $3x + 2y \le 240$ and

$$x \ge 0, y \ge 0$$

(10 Marks)

3 a. Explain two phase technique to solve LPP in simplex method.

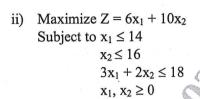
(06 Marks)

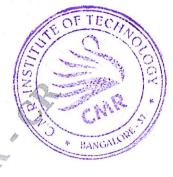
b. Use Big-M method to solve the following LPP

Maximize $Z = 2x_1 + x_2$

Subject to $3x_1 + x_2 = 3$

 $4x_1 + 3x_2 \ge 6$


 $x_1 + 2x_2 \le 3$


(14 Marks)

- Explain the computational procedure of revised simplex method in standard form. (10 Marks)
 - Explain the relation between the solution of the primal and the dual.

(06 Marks)

- c. Find the dual of the following problems:
 - i) Maximize $Z = x_1 + 2x_2 + x_3$ Subject to $2x_1 + x_2 - x_3 \le 2$ $-2x_1 + x_2 - 5x_3 \ge -6$ $4x_1 + x_2 + x_3 \le 6$ $x_1, x_2, x_3 \ge 0$

(04 Marks)

(08 Marks)

PART – B

- Write the procedure for sensitivity analysis.
 - Use dual simplex method to solve the following:

Maximize $Z = -2x_1 - 3x_2$

Subject to $x_1 + x_2 \ge 2$

 $2x_1 + x_2 \le 10$ $x_1 + x_2 \le 8$ $x_1 \ge 0 \quad x_2 \ge 0$

(12 Marks)

- Write different steps in Hungarian Algorithm to solve an assignment problem. 6 (08 Marks)
 - Obtain optimal solution of transportation problem using the data given below. Use Vogel's b. approximation method to obtain an initial basic feasible solution. (12 Marks)

7	D_1	D_2	D_3	D ₄	Supply
S_1	19	30	50	10	7
S ₂	70	30	40	60	9
S ₃	40	8	70	20	18
Demand	5	8	7	14	34

Solve the game whose pay off matrix is given below:

	Pl	aye	r B	
A	3	2	4	0
Dlave	3	4	2	4
Player A	4	2	4	0
A .	0	4	0	8
40%				

(10 Marks)

Use graphical method to solve the following game:

	Player B				
4	A	B_1	B_2	B_3	B_4
Player A	A_1	2	2	3	-2
	A_2	4	3	2	6

(10 Marks)

Explain genetic algorithm and simulate annealing algorithm.

(12 Marks)

Explain in detail the minimum spanning free with constraints.

(08 Marks)