
Visvesvaraya Technological University, Belagavi.

PROJECT REPORT
on

Project Report submitted in partial fulfillment of the requirement for the award of

the degree of
Bachelor of Engineering

in
Electronics and Communication Engineering

For the academic year 2019-20

Submitted by

USN Name

 1CR16EC027 Bhavana R Reddy
 1CR16EC052 Hrusna Chakri Shadakshri.V

Under the guidance of

Internal Guide External Guide
Dr. Sharmila K. P Mr.E. Krishna Kishore,
Professor Mr.Rajesh Kumar Garg
Department of ECE
CMRIT, ADA
Bengaluru-560 037. Bengaluru -560 017.

Department of Electronics and Communication Engineering
CMR Institute of Technology, Bengaluru 560 037

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

This is to Certify that the dissertation work NAND Flash Based In-Flight Acquisition And

Recording Unit For Acceleration Sensor Assembly Of Flight Control System carried out by

Bhavana R Reddy, 1CR16EC027, Hrusna Chakri Shadakshri V, 1CR16EC052, bonafide students of

CMRIT in partial fulfillment for the award of Bachelor of Engineering in Electronics and

Communication Engineering of the Visvesvaraya Technological University, Belagavi, during the

academic year 2019-20. It is certified that all corrections/suggestions indicated for internal assessment

have been incorporated in the report deposited in the departmental library. The project report has been

approved as it satisfies the academic requirements in respect of Project work prescribed for the said

degree.

Signature of Guide Signature of HOD Signature of Principal

_________________ _________________ __________________

Dr. Sharmila K. P, Dr. R. Elumalai Dr. Sanjay Jain
Professor, Head of the Department, Principal,
Dept. of ECE., Dept. of ECE., CMRIT,

CMRIT, Bengaluru. CMRIT, Bengaluru. Bengaluru.

External Viva

Name of Examiners Signature & date
1.
2

ACKNOWLEDGEMENT

The satisfaction and euphoria that accompanies the successful completion of any

task would be incomplete without mentioning the people, whose consistent guidance

and encouragement has served as a beacon and crowned my efforts with success.

 We take an opportunity to thank all the distinguished personalities for their

enormous and precious support and encouragement throughout the duration of this

seminar.

We take this opportunity to express our sincere gratitude and respect to CMR

Institute of Technology, Bengaluru for providing us an opportunity to carry out our

project work.

 We express our gratitude to Principal Dr. Sanjay Jain, Principal, CMRIT,

Bengaluru, for having provided me the golden opportunity to undertake this project

work in their esteemed organization.

 We sincerely thank Dr. R. Elumalai, HOD, Department of Electronics and

Communication Engineering, CMR Institute of Technology for the immense

support given to me. We express our warm thanks to our guide Mr. E. Krishna

Kishore & Mr. Rajesh Kumar Garg,

Agency, Bengaluru-17, for their skillful guidance, constant supervision, timely

suggestions and constructive criticism in the successful completion of project work

in time.

We express our gratitude to our project guide Dr. Sharmila K. P, Professor,

Department of Electronics and Communication Engineering, CMRIT, Bengaluru.

for their support, guidance, and suggestions throughout the project work. Their

guidance gave us the environment to enhance our knowledge, skills, and to reach

the pinnacle with sheer determination, dedication, and hard work.

We also extend our thanks to the faculties of Electronics and Communication

Engineering Department who directly or indirectly encouraged us throughout the

course of project work.

 Last but not the least, heartful thanks to our parents and friends for all their

moral support they have given us during the completion of this work.

Department of ECE, CMRIT, Bangalore 2019-20 I

 TABLE OF CONTENTS

CHAPTER 1 1

INTRODUCTION 1

1.1 Requirement of ECC in NAND Flash 2

1.2 Overview of BCH 3

1.3 Motivation 3

1.4 Objectives 4

CHAPTER 2 5

LITERATURE SURVEY 5

2.1 LCA-FCS, DFCC 5

2.2 Accelerometer Sensor Assembly (ASA) 6

2.3 Data Integrity: 7

2.3.1 Data integrity vs. Data security: 7

2.4 Error Control Coding 8

2.4.1 Linear Block Codes 9

2.5 Galois Field (GF): 10

2.5.1 Properties of Galois Field 11

2.5.2 Galois field GF(2) “Binary Field” 11

2.5.3 Extension Fields 12

2.6 BCH Codes 13

2.6.1 BCH Merits: 13

2.6.2 BCH Demerits: 14

2.6.3 Some examples of BCH Applications: 15

2.7 BCH Encoder 15

2.7.1 Code generation: 15

2.7.2 Primitive Polynomials: 16

2.7.3 Minimal Polynomials: 17

Department of ECE, CMRIT, Bangalore 2019-20 II

2.8 BCH Decoder 17

2.8.1 Algebraic Decoding 17

A. Peterson-Gorenstein-Zierler Decoding 17

B. The Berlekamp-Massey Decoding Algorithm 19

C. Sugiyama’s Euclidean Decoding Algorithm 21

2.8.2 Chien Search Algorithms 23

CHAPTER 3 28

HARDWARE 28

3.1 Acquisition and Recording Unit (ARU) 28

3.2 System Initialization 29

3.3 NAND Flash Controller 30

3.1.1 Data integrity for ASA-ARU: 32

3.2 FPGA-ARTIX 7: 32

3.3 NAND Flash Memory 35

3.3.1 Types of NAND: 36

CHAPTER 4 38

SOFTWARE 38

4.1 ECC for NAND Flash 38

4.1.1 Data Recording – NAND Flash 39

4.2 BCH Codes in ASA-ARU Application 40

4.3 BCH Encoder 41

4.3.1 Design and Implementation of Systolic- Array type Binary BCH Encoder 42

A. Generator Polynomial 42

B. Construction of BCH (8191,8139,4) Encoder 43

4.4 BCH Decoder 45

4.4.1 Design and Implementation Binary BCH Decoder 45

A. Galois Field roots generation 45

B. Syndrome calculation 45

Department of ECE, CMRIT, Bangalore 2019-20 III

C. Coefficients of error locator polynomial 46

D. Roots of Λ(ϰ) 47

CHAPTER 5 49

RESULTS 49

5.1 Simulation results of BCH(8191,8139,4) Encoder 49

5.2 Performance Comparison of Conventional and Parallel BCH(63,39,4) Encoder 49

5.3 Simulation Results of BCH Decoder 51

CHAPTER 6 53

APPLICATIONS AND ADVANTAGES 53

6.1 Applications of BCH codes 53

6.1.1 Digital Communications and Storage 53

6.1.2 BCH Codes as Industry Standards 53

6.1.3 BCH Code in image encryption 54

6.1.4 Error-free Communication in NB-IoT 55

6.2 Advantages 56

CHAPTER 7 57

CONCLUSIONS AND SCOPE FOR FUTURE WORK 57

REFERENCES 58

APPENDIX A 59

BCH Encoder: Module definition 59

BCH Encoder: Test Bench 63

APPENDIX B 68

BCH Decoder: Module Definition 68

BCH Decoder: Test Bench 87

APPENDIX C 94

Verification using built-in matlab function: 94

Department of ECE, CMRIT, Bangalore 2019-20 IV

LIST OF FIGURES

Figure 1. ASA interface with DFCC 1

Figure 2.1: Aircraft Flight Control System 5

Figure 2.2: Cantilever Capacitor Output 7

Figure 2.3: Classification of ECC 8

Figure 2.4 Systematic form of codeword of a linear block code 10

Figure 2.5: The Peterson-Gorenstein-Zierler Algorithm Flowchart 19

Figure 2.6: BMA Algorithm with flowchart 20

Figure 2.7(a) : Conventional Chien search circuit 23

Figure 2.7(b) : p-parallel Chien search architecture: direct unfolded version 24

Figure 2.7(c) : p-parallel Chien search architecture: equivalent architecture with shorter

critical path 24

Figure 2.8 Basic components in Chien search architecture(a) MPCNj(b) BTj (c) GBT 25

Figure 2.9 MPCN-based parallel-p Chien search architecture. 26

Figure 2.10 Parallel-p joint syndrome calculator and Chien search with MPCN based

architecture. 27

Figure 3.1 ASA-ARU system interface with ASA-LRU 28

Figure 3.2 ASA-ARU system-Main Control Board 29

Figure 3.3 Controller modules of FPGA 30

Figure 3.4 NAND Flash Controller module 30

Figure 4.1A: NAND FLASH Array Organisation 38

Figure 4.1B: Main area and its division 39

Figure 4.2 Hardware Systolic Array Type BCH Encoder 41

Figure 4.3 Block Flow Diagram of BCH Encoder-Decoder 42

Figure 4.5 Conventional Chien search 47

Figure 4.6 Flow diagram for proposed BCH Decoder 48

Figure 5.1 Simulated waveform for BCH(8191,8139,4) Encoder (message = 2.9230e+47

(in decimal)) 49

Figure 5.2 Serial BCH(63,39,4) Encoder 50

Figure 5.3 Parallel BCH(63,39,4) Encoder 50

Figure 5.4A : Syndrome when no errors in rx 51

Department of ECE, CMRIT, Bangalore 2019-20 V

Figure 5.4B : Syndrome when rx has errors 51

Figure 5.5A: Coefficients when no errors in rx 51

Figure 5.5B: Coefficients when rx has errors 52

Figure 5.6A: Roots when no errors in rx 52

Figure 5.6B: Roots when rx has errors 52

Figure 6.1 (a) Original Lena image;(b) Image by AES;(c) Image by AES-C 54

Figure 6.2 NB-IoT architecture with BCH arrangement 55

LIST OF TABLES

Table 2.1: (a)Modulo-2 addition(XOR) ;(b) Modulo-2 Multiplication (AND) 11

Table 2.2: (a) Addition for GF(4) ={0,1,2,3};(b)Multiplication for GF(4) ={0,1,2,3} 12

Table 2.3:(a)Addition for GF(4)={0,1,a,b};(b)Multiplication for GF(4)={0,1,a,b} 12

Table 2.4: BCH codes parameters of lengths less than 210-1 14

Table 3.1 Operating Environment of Hardware Description Language 33

Table 3.2 I/O Pin/Device/Package Combinations for Artix-7 FPGAs 34

Table 3.3 Characteristic Comparison of NAND and NOR 36

Table 3.4 Parameteric Comparison of NAND and NOR 37

Table 4.1 Recommended BCH Code 39

Table 4.2 Root Table for GF (213) 45

Table 5.1: Performance comparison of parallel and serial BCH encoder observed in

simulation 50

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 1

Chapter 1

INTRODUCTION

There is need to develop an on-board acquisition unit for interfacing with ASA and assess

the in-fight performance of the unit. The in-flight acquisition and recording unit provide

excitation voltages to four channels of the ASA unit. ASA operated in two modes namely

bit mode and normal mode. During bit mode, ARU provides bit excitation signals to four

channels of ASA and need to acquire bit outputs from the ASA unit. In the normal mode

of operation, all four channels accelerometer sensor outputs are required to acquire

continuously and record them on board. The On-board recorded data need to be

downloaded through a high-speed serial interface after the flight on ground for post flight

performance analysis of the ASA unit. The unit should provide isolated power to all four

channels of ASA. ASA-ARU needs to be compact, lightweight, rugged, low power and

airworthy unit to use along with indigenously developed ASA. The ASA-ARU needs to

provide a similar interface of DFCC to ASA. The existing interface of ASA with DFCC is

given Fig. 1.

Figure 1. ASA interface with DFCC

The ASA-ARU will have FPGA based main control module for BIT excitation generation,

acquisition of BIT output, normal mode sensor output and recording to on-board NAND

flash memory. The Ethernet interface is used for downloading of in-flight recorded data.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 2

The RS 232 interface is planned to monitor system health on ground. There will be separate

power supply module for the generation of four independent voltages to four channels of

ASA.

1.1 Requirement of ECC in NAND Flash

Practically, there exists no channel that is noise free and even a single bit error might lead

to a major setback for a safety critical system of an aircraft, like flight control systems of a

fighter aircraft. Hence, a need for encoding the data along with error correcting and

controlling mechanisms for error-free retrieval at the receiver end arises. The interest for a

completely dependable computerized framework has been quickened by the accessibility

and fast advancement of VLSI innovation, rapid information systems, and capacity of

advanced data.[1] Error control coding schemes are linear codes, categorised into

Convolution codes and Block codes whose examples are Reed-Solomon, BCH (Bose-

Chaudhuri-Hocquenghem) codes, Golay, Cyclic codes, Repetition codes, Polynomial

codes, Hamming codes and non-linear codes. The most straightforward block code being

Hamming codes, is just appropriate for basic error control circuit while BCH, the

generalization of Hamming codes, forms a wide range of effective arbitrary error correcting

cyclic codes that is capable of rectifying multiple errors [2].

The ECC mechanism is implemented in two opposing functions. The first is the encoding

operation and second is the decoding operation where the former adds spare bits and the

latter removes these added bits iteratively [3].

The widely used NAND Flash memory systems are vulnerable to multiple types of errors,

such as, retention errors due to charge leakage, physical errors due to coupling noises, errors

generated due to shift of threshold voltages as the memory density increases and many

more. Thus, the data reliability is of utmost importance for any communication and storage

systems in terms of high operational speed and other aspects. Therefore, to improve data

reliability we use ECC. With the occurrence of random errors, the first preference would

be BCH codes as these are adaptable to wide ranges of code length and possess a versatile

error correcting capability over Reed Solomon as the latter is mostly suitable for handling

burst errors [4].

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 3

1.2 Overview of BCH

A conventional BCH design includes an elementary shift register, the LFSR (linear

feedback shift register), which in correspondence with explicit XOR, computes single

message bit per cycle. Considering the need of circuits with high operational speed, the

BCH serial encoder is replaced with the parallel BCH encoders which process p-bit data at

an instance. Matrix multiplication, CRT based encoding, unfolding method are some of the

parallel processing methods used [5]. In this paper, we employ a BCH encoder with tree-

type systolic array architecture. This architecture does without modifying the generator

polynomial and extra hardware requirement unlike other three methods mentioned above.

Galois Field (GF) is named after Evariste Galois. The existence of a finite count of elements

characterises the GF. Data in vector form in a GF allows mathematical operations to

scramble data easily and effectively. Some of the significant properties of GF are:

• All elements of GF are defined on addition and multiplication and the resultant must

also be an element of GF.

• Addition (a) and subtraction (b) are inversely related (i.e. a+b=0) and similarly,

multiplication(c) and division(d) are inverse to one another (i.e. c*d=1) [6].

A BCH decoding system is designed for correction of errors in the codeword that might

have occurred in the intermediate channel. In the proposed BCH decoder, there are four

sub modules, the GF(213) root table generation, syndrome calculation, computation of

coefficients of error locator polynomial (PGZ (Peterson-Gorenstein-Zierler) Algorithm) [7]

and determining roots of the error locator polynomial(Chien search) [8].

1.3 Motivation

The aerospace systems demand very high level of reliability and safety. Stringent

development process is followed for development for aerospace systems to meets these

requirements. The design and development exposure in aerospace domain will help in

developing systems for all other domains. This has motivated to take up project related

fighter aircraft application. In this aerospace domain, the need for compact, rugged, high

speed data acquisition and on-board storage is becoming crucial for flight test applications.

This in-turn has motivated to take up a Project on “NAND Flash Based In-Flight

Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight Control

System”

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 4

1.4 Objectives

The main objectives of this Project are given bellow:

1. General understanding of LCA-FCS, DFCC, ASA and its sensors.

2. Understanding of ASA in-flight test requirements and its interface.

3. Study of ARU design and development process.

4. Study of NAND Flash interface with FPGA.

5. Implementation of ECC module using VHDL.

6. Functional simulation

7. Verification using in-built MATLAB functions

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 5

 Chapter 2

LITERATURE SURVEY

Extensive literature survey helps in understanding the work already carried in the field of

investigation and also provides the technology trend in the domain to help to home on to

the challenging problem to take up and further investigate as a part of the project.

As a part of literature survey, multiple papers were examined and out of these, few

important papers which are in the area of interest were investigated in detail. The outcome

of the literature survey is given below:

2.1 LCA-FCS, DFCC

Flight control system of an aircraft consists of Flight control computer, Sensors, Cockpit

sensors and actuators as shown in figure 2.1.

Figure. 2.1: Aircraft Flight Control System

LCA flight Control System employees Digital Fly-by-wire flight control system. The heart

of the fly-by-wire flight control system is Digital Flight Control Computer (DFCC).

DFCC interfaces with Accelerometer Sensor Assembly, Rate Sensor assembly, Cockpit

controls like Pilot Stick, Rudder pedals etc., and Direct Drive Valve (DDV) based

Actuators. It contains Flight program with Control Laws.

Fly-by-wire control system, developed in the early 1970’s, is purely electrically signaled

control system, which use computer to process flight control input by pilot/autopilot and

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 6

send corresponding electrical signal to fight control surface actuators. This replaces

mechanical linkage, that is, pilot inputs do not directly move to control surface.

Features:

• Provides safety and reliability

• Reduces pilot work load

• Higher Fuel efficiency

• Overall cost reduction

2.2 Accelerometer Sensor Assembly (ASA)

An accelerometer is an electromechanical device that will measure acceleration forces.

These forces may be static, like the constant force of gravity pulling at your feet, or they

could be dynamic which is caused by moving or vibrating the accelerometer.

FCS of TEJAS uses body acceleration for stabilization and command augmentation. The

body acceleration is obtained by axes accelerometer sensor assembly.

BAE’s ASA VS Indigenous ASA:

- A single LRU, Line Replacement Unit consist of two accelerometer sensors, that is,

 o Lateral axis

 o Normal axis

- These sensors are imported from M/s BAE systems, USA.

- Since few components of BAE –ASA are obsolete (production from vendors has stopped),

ASA is out of production as the alternatives are expensive.

- Thereby, ADA initiated indigenous development of MEMS based ASA.

MEMS (Micro-electromechanical system) devices that have characteristics of very small

size ranges from few micrometres to millimetres combine both mechanical and electrical

components fabricated using IC batch processing technologies.

MEMS-ASA:

- MEMS-ASA consists of three Axes: o Longitudinal axis

o Lateral axis

o Normal axis

- And it is a quadraplex redundant channel. Therefore 12 sensor output data is

available.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 7

- Types:

 o Cantilever capacitor output

 o Proof mass pendulum

Figure.2.2: Cantilever Capacitor Output

2.3 Data Integrity:

➢ Maintaining the data consistent throughout its lifecycle is a matter of protecting it so that

it’s reliable. Uncorrupted data is considered to be whole and then stay unchanged.

➢ Data integrity refers to the fact that data must be reliable and accurate over its entire

lifecycle. Data integrity(uncorrupted) and data security(protection) go hand in hand.

➢ Data is expected to be attributable, legible, contemporaneous, original and accurate

(ALCOA principle).

2.3.1 Data integrity vs. Data security:

Data security refers to the protection of data against unauthorized access or corruption and

is necessary to ensure data integrity. Data integrity[9] is a desired result of data security.

Data security, in other words, is one of several measures which can be employed to

maintain data integrity. Whether it's a case of malicious intent or accidental compromise,

data security plays an important role in maintaining data integrity.

https://blog.globalvisioninc.com/securing-customer-data-over-its-entire-lifecycle/

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 8

2.4 Error Control Coding

In recent years there has been an increasing demand for digital transmission and storage

systems. This demand has been accelerated by the rapid development and availability of

VLSI technology and digital processing. It is frequently the case that a digital system must

be fully reliable, as a single error may shutdown the whole system, or cause unacceptable

corruption of data, e.g. in a bank account . In situations such as this error control must be

employed so that an error may be detected and afterwards corrected. The simplest way of

detecting a single error is a parity checksum [10], which can be implemented using only

exclusive-or gates. But in some applications this method is insufficient and a more

sophisticated error control strategy must be implemented.

If the transmission system transmits data in both directions, an error control strategy may

be determined by detecting an error and then, if an error is occurred, retransmitting the

corrupted data. These systems are called Automatic Repeat Request (ARQ). If transmission

transfers data in only one direction, e.g. in- formation recorded on a compact disk, the only

way to control the error is with Forward Error Correction (FEC). In FEC systems some

redundant data is concatenated with the information data in order to allow for the detection

and correction of the corrupted data without having to retransmit it.

Classification of error control coding schemes[2]:

 Figure.2.3: Classification of ECC

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 9

The two types of linear codes are,

1. Block codes: These codes are referred to as “n” and “k” codes. A block of k data

bits is encoded to become a block of n bits called a code word. In block codes, code

words do not have any dependency on previously encoded messages. NAND Flash

memory devices typically use block codes. Example: RS, Golay, Cyclic codes,

Repetition codes, Polynomial codes.

2. Convolution codes: These codes produce code words that depend on both the data

message and a given number of previously encoded messages. The encoder changes

state with every message processed. Typically, the length of the code word constant.

Example: Systematic codes, Nonsystematic codes.

2.4.1 Linear Block Codes

Error control coding mechanism is done in two inverse operations. The first one is a

mechanism of adding redundancy bits to the message and form a codeword, this operation

called (encoding operation), the second operation is excluding the redundancy bits from the

codeword to achieve the message and this operation called (decoding operation).

These types of codes are called block codes and are denoted by C(n,k). The rate of the code,

R = k/n, where k represents the message bits and n represents the coded bits. Since the

2kmessages are converted into codewords of n bits. This encoding procedure can be

understood as conversion from message vector of k bits located in space of size 2k to a

coded vector of size n bits in a space of size, and 2konly selected to be valid codewords.

Linear block codes [2] are considered to be the most common codes used in channel coding

techniques. In this technique, message words are arranged as blocks of k bits, constituting

a set of 2k possible messages. The encoder takes each block of k bits, and converts it into

a longer block of n > k bits, called the coded bits or the bits of the codeword. In this

procedure there are (n−k) bits that the encoder adds to the message word, which are usually

called redundant bits or parity check bits. As explained in the previous section. The

codewords generated from the encoder is linearly combined as the summation of any two

codeword is an existing codeword so it is called Linear Block Codes.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 10

Figure. 2.4 Systematic form of codeword of a linear block code

Linear block codes are summarized by their symbol alphabets (e.g., binary or ternary) and

parameters (n,m,dmin) where

o n is the length of the codeword, in symbols,

o m is the number of source symbols that will be used for encoding at once,

o dmin is the minimum hamming distance for the code.

There are many types of linear block codes, such as

1. Cyclic codes (e.g., Hamming codes)

2. Repetition codes

3. Parity codes

4. Polynomial codes (e.g., BCH codes)

5. Reed–Solomon codes

6. Algebraic geometric codes

7. Reed–Muller codes

8. Perfect codes

2.5 Galois Field (GF):

In this chapter finite fields[6] and finite field arithmetic operators are introduced. The

definitions and main results underlying finite field theory are presented and it is shown how

to derive extension fields. The various finite field arithmetic operators are reviewed. In

addition, new circuits are presented carrying out frequently used arithmetic operations in

decoders. These operators are shown to have faster operating speeds and lower hardware

requirements than their equivalents and consequently have been used extensively

throughout this project.

https://en.wikipedia.org/wiki/Cyclic_code
https://en.wikipedia.org/wiki/Hamming_code
https://en.wikipedia.org/wiki/Repetition_code
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Polynomial_code
https://en.wikipedia.org/wiki/BCH_code
https://en.wikipedia.org/wiki/Reed-Solomon_error_correction
https://en.wikipedia.org/wiki/Algebraic_geometric_code
https://en.wikipedia.org/wiki/Reed%E2%80%93Muller_code
https://en.wikipedia.org/wiki/Hamming_bound

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 11

2.5.1 Properties of Galois Field

The main properties of a Galois field are:

1. A finite field always contains a finite number of elements and it must be a prime power,

say q = pr, where p is prime and it is unique. In Galois field GF (q), the elements can

take q different values. Field is another algebraic system.

2. All elements of GF are defined on two operations, called addition and multiplication.

3. The result of adding or multiplying two elements from the Galois field must be an

element in the Galois field.

4. Identity of addition “zero” must be exist, such that a + 0 = a for any element a in the

field.

5. Identity of multiplication “one” must be exist, such that a ∗ 1 = a for any element a in

the field.

6. For every element a in the Galois field, there is an inverse of addition element b such

that a + b = 0. This allows the operation of subtraction to be defined as addition of the

inverse.

7. For every non-zero element b in the Galois field, there is an inverse of multiplication

element b-1 such that bb-1= 1. this allows the operation of division to be defined as

multiplication by the inverse.

8. Both addition and multiplication operations should satisfy the commutative,

associative, and distributive laws.

2.5.2 Galois field GF(2) “Binary Field”

The simplest Galois field is GF (2). Its elements are the set {0, 1} under modulo-2 algebra.

The addition and multiplication tables of GF (2) are shown in Tables 2.1(a) and 2.1(b).

Table 2.1: (a)Modulo-2 addition(XOR) ;(b) Modulo-2 Multiplication (AND)

 (a) (b)

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 12

Here is a one-to-one correspondence between any binary number and a poly- nomial with

binary coefficients as every binary number can be presented as a polynomial over GF(2).

A polynomial of degree K over GF(2) has the following general form:

where the coefficient f0,…fk are the elements of GF(2) i.e. it can take only values 0 or 1. A

binary number of (K + 1) bits can be represented as a polynomial of degree K by taking the

coefficients equal to the bits and the exponents of X equal to bit locations. In the polynomial

representation, a multiplication by X represents a shift to the right.

2.5.3 Extension Fields

Finite fields exist for all prime numbers q and for all pm where p is prime and m is a positive

integer. GF(q) is a sub-field of GF(pm) and as such the elements of GF(q) are a sub-set of

the elements of GF(pm) , therefore GF(pm) is an extension field of GF(q).

Table 2.2: (a) Addition for GF(4) ={0,1,2,3};(b)Multiplication for GF(4) ={0,1,2,3}

 (a) (b)

Consider GF (4)={0,1 ,2,3 } in Table 2.2(a) and 2.2(b), which is not a Galois field because

it is of order 4, which is not a prime. The element 2 has no multiplicative inverse and

therefore we cannot divide by 2. Instead, we could define GF (4)={0,1 , a , b } with addition

and multiplication as shown in Table 2.3(a)and 2.3(b).

Now all elements do have additive and multiplicative inverses.

Table 2.3: (a)Addition for GF(4)={0,1,a,b};(b)Multiplication for GF(4)={0,1,a,b}

 (a) (b)

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 13

These extension fields are used to handle non-binary codes where code symbols are

expressed as m -bit binary code symbols, For example, GF(4) consists of four different

two-bit symbols and GF(16) of 16 hexadecimal symbols. To obtain multiplication for

binary, numbers are expressed as polynomials, they are multiplied and divided by the prime

polynomial while the remainders taken as result.

2.6 BCH Codes

BCH codes forms a class of random multiple error-correcting cyclic codes. defined over a

Galois Field (GF) of q elements GF(q), with q=2m. The parameter m corresponds to the

degree of the GF, q is the number of states that takes each component of the GF elements,

and they are related with the codeword length as n=2m-1.

Binary BCH codes are identified by their codeword length n, their message length k, the

maximum error capability of the code is t, and are represented as BCH (n, k, t)

 For any positive integer m >= 3 (where 3≤ m ≤16) and t < 2m −1, there exists a binary

BCH code with the following parameters:

Block length: n = 2m - 1

Number of parity-check digits: n − k - mt

Minimum distance: dmin =2t + 1.

BCH codes are subset of the Block codes. In block codes, the redundancy bits are added to

the original message bits and the resultant longer information bits called “codeword” for

error correction is transmitted. The block codes are implemented as (n, k) codes where n

indicates the codeword and k the original information bits.

2.6.1 BCH Merits:

• It can be decoded using syndrome decoding method

• Highly flexible allowing control over block length and acceptable error thresholds

• Reed Solomon codes are nonlinear BCH codes used in applications such as satellite

communication, compact disk players, DVD’s, disk drives, 2-dimensional bar code

• Low amount of redundancy

• Easy to implement in hardware

• Widely used

The parameters of some useful BCH codes of lengths less than 210-1 are given below:

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 14

Table 2.4: BCH codes parameters of lengths less than 210-1

2.6.2 BCH Demerits:

• Complexity.

• Iterative complex decoding algorithm.

• Decoder cannot decide whether decoded package is false or not.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 15

2.6.3 Some examples of BCH Applications:

• (511,493) BCH code is used in ITU-T Rec.H.261video codec for video

conferencing and video phone

• (40,32) BCH is used in ATM (Asynchronous Transfer Mode) it is a shorten cyclic

code that can correct 1-bit or 2-bit error

• ECC in NAND Flash memory for reliable data storage

2.7 BCH Encoder

An encoder is a device, circuit, transducer, software program, or algorithm that converts

the information from one format or code to another, for the purposes of standardisation,

speed or compressions. A simple encoder assigns binary code to an active input line. The

BCH encoder block creates a BCH code with message length k and codeword length n. The

input must contain exactly k elements. n must have the form 2m-1 where m is an integer

greater than or equal to 3.

2.7.1 Code generation:

To generate all the field elements a primitive polynomial in Galois Field :

In order to obtain the generator polynomial[6] of the BCH code we need and auxiliary

polynomial called primitive polynomial. The generator polynomial is the polynomial of

lowest degree over GF(2) withα, α2, α3,…., α2t as roots. Let mi(x) be the minimal

polynomial of αi. Then, must be the least common multiple (LCM) of)m(x)1, m2(x), ….,

m2t(x) .That is

g(x)= LCM{m1(x),m2(x),… ,m2t(x)}

A simplification is possible because every even power of a primitive element has the same

minimal polynomial as some odd power of the element, halving the number of factors in

the polynomial. Then

g(x)= LCM{m1(x),m3(x),… ,m2t-1(x)}

Hence, every even power of  in the sequence has the same minimal polynomial as some

preceding odd power of in the sequence. As a result, the generator polynomial g(x) of the

binary t-error-correcting BCH code of length 2m-1 can be reduced to

g(x)= LCM{ϕ1(x),ϕ3(x),… ,ϕ2t-1(x)}

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 16

The generator polynomial is g(x) = 1+g1x+g2x2+g3x3+. . . . +gn-k-1xn-k-1

Code word c(x) = cn-1xn-1+cn-2xn-2+ . . .+c1x+c0

Data polynomial, d(x) = dk-1xk-1+dk-2xk-2++d1x+d0

C(x) =d(x).g(x)

2.7.2 Primitive Polynomials:

A primitive polynomial is a polynomial that generates all elements of an extension field

from a base field. Primitive polynomials are also irreducible polynomials. For any prime

or prime power q and any positive integer n, there exists a primitive polynomial of degree

n over GF(q).

The primitive polynomial for various value of m is shown in table:

Table 2.5: Primitive polynomials for 3≤ m≤ 20

M Primitive Polynomial

3 1+x+x3

4 1+x+ x4

5 1+ x2 + x5

6 1+x+ x6

 7 1+ x3 + x7

8 1+ x2 + x3 + x4 + x8

9 1+ x4 + x9

10 1+ x3 + x10

11 1+ x2 + x11

12 1+x+ x4 + x6 + x12

13 1+ x+x3+ x4 + x13

14 1+x+ x6 + x10 + x14

15 1+x+ x15

16 1+x+ x3 + x12 + x16

17 1+ x3 + x17

18 1+ x7 + x18

19 1+ x+ x2 + x5 + x19

20 1+ x3 + x20

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 17

There are

Primitive polynomials over GF(q), where Φ(n) is the totient function. A polynomial of

degree n over the finite field GF(2) is primitive if it has polynomial order 2n – 1.

2.7.3 Minimal Polynomials:

The even powers minimal polynomials are duplicates of odd powers minimal polynomials,

so we only use the first two minimal polynomials corresponding to odd powers of the

primitive element.

2.8 BCH Decoder

A BCH decoding system is designed for the correction of errors in the codeword. Some of

the popular methods used for decoding are PGZ (Peterson-Gorenstein-Zierler) Algorithm ,

Berlekamp-Massey (BMA) algorithm and Euclidean (EA) algorithm. There are different

Chien search algorithms for fast encoding like the Conventional p-parallel - Chien

architecture, MPCN-based parallel architecture , Joint Chien Search & Syndrome-

Calculator Architecture.

2.8.1 Algebraic Decoding

A. Peterson-Gorenstein-Zierler Decoding

If there are ν errors, then the syndrome relationships (3) for j = 1,2,...,n − k provide n − k

equations involving the 2ν unknowns σ(i) and eσ(i) for i = 1,2,...,ν. Since these equations are

nonlinear, solving for these unknowns requires a clever trick. For , let

 be any degree-t polynomial that satisfies Λ(0) = 1 and Λ(β−σ(i)) = 0 for i =

1,...,ν. Then, the coefficients of Λ(x) have a linear relationship with the syndromes. This can

be seen by summing the equation

for i = 1,...,ν with the coefficients . For k = t + 1,t + 2,...,2t, this gives

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 18

 (1)

The derivation implies that any polynomial Λ(x) with constant term 1 and roots at β−σ(i)

(i.e., the inverse of α to the error location) for i = 1,...ν must satisfy this equation. The

minimal-degree polynomial Λ(x) that satisfies these conditions is called the error-locator

polynomial. It is easy to see that it must have one root at each location and is, therefore, the

degree-ν polynomial defined by

 .

This polynomial allows the error position to be revealed by factoring Λ(x).

Since Λ0 = 1, (1) defines the linear system

 (2)

where the i-th row is given by the equation for k = t + i. If t = ν, then this matrix will be

invertible because there is a unique solution. If it is not invertible, one can sequentially

reduce t by 1 until the matrix becomes invertible. After solving for the error-locator

polynomial, one can evaluate it at all points in to determine the error locations. An

efficient method of doing this is called a Chien search.

For binary BCH codes, the error magnitudes must be 1. After correcting the “errors”,

one must also check that the resulting vector is a codeword by reducing it modulo g(x). If

it is not a codeword, then the decoder should declare a detected error. For non-binary codes,

one can solve for the error magnitudes using the error locations and the implied frequency-

domain parity-check matrix[7]. For fixed error locations, one can write the first ν

syndromes as linear functions of the error magnitudes using

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 19

 .

Figure 2.5: The Peterson-Gorenstein-Zierler Algorithm Flowchart

B. The Berlekamp-Massey Decoding Algorithm

While the PGZ algorithm is conceptually simple, it can require the inversion of an i × i

matrix for i = 1,2,...,t in the worst case. Since each inversion has a complexity of roughly

i3/2 operations, this approach leads to a worst case complexity of roughly t4/6 operations.

The Berlekamp-Massey algorithm [11] starts with the observation that (1) can be rewritten,

for j = t + 1,t + 2,...,n − k, as

This implies that the syndrome sequence S1,S2,... can be generated by a linear feedback shift

register (LFSR) with coefficients Λ1,Λ2,...,Λt. The shortest LFSR that generates the

syndrome sequence is unique and corresponds to t = ν and gives the error-locator

polynomial.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 20

The trick is to solve recursively for a sequence of LFSRs that generate the initial part of the

syndrome sequence. Let the connection polynomial of a length-Lk minimal length LFSR

that generates the first k elements of the syndrome be

To be precise, we say that Λ[k](x) generates the first k elements if

for j = Lk + 1,...,k. In particular, the shift register is initialized to contain the first Lk elements,

S1,S2,...,SLk. Then, the j-th clock outputs Sj and computes Sj+Lk from S1,S2,...,SLk. This also

introduces a subtle distinction between Lk and the degree of Λ[k](x).

Figure 2.6: BMA Algorithm with flowchart

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 21

C. Sugiyama’s Euclidean Decoding Algorithm

An alternative approach is to use the Euclidean algorithm[12] to find the error-locator

polynomial. To describe this, the syndrome is first extended to a semi-infinite sequence

(S1,S2,...) by defining

 , (3)

for j ∈ {1,2,...} and noting that the two definitions coincide for j = 1,2,...,n − k. The extended

syndrome function is defined to be

It is important here to comment on the meaning of infinite sums over finite fields. Unlike

the continuous case, no two distinct points can be considered close to one another.

Therefore, convergence in the limit is the same as eventual equality. Thus, the second and

third equalities do not hold for evaluations but instead imply that the (infinite) power series

expansions of the two expressions match term by term.

The error-evaluator polynomial is given by

It is easy to see that Ω(x) has degree at most ν − 1. The polynomial Ω(x) is called the error-

evaluator polynomial because

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 22

where, using the product rule, the formal derivative of Λ(x) is given by

.

Using Ω(x), one can compute the error magnitudes using

 . (4)

This approach is known as Forney’s method.

The decoder is required to compute both the error-locator and error-evaluator polynomials

from the finite syndrome polynomial . Since Se(x) = S(x) + x2tw(x), for

some w(x), we find that

Ω(x) = Λ(x)Se(x) = Λ(x)S(x) + Λ(x)x2tw(x)

and deg(Ω(x)) < ν. Thus, we arrive at the key equation for RS decoding which is given by

Ω(x) ≡ Λ(x)S(x) mod x2t.

In fact, if ν ≤ t, then any degree-ν polynomial Θ(x) that satisfies deg

must also satisfy Θ(x) = cΛ(x) [4, Prop. 6.1]. Therefore, this equation can also be used to

find error-locator and error-evaluator polynomials.

The extended Euclidean algorithm (EEA) computes the greatest common divisor of two

elements a1,a2 from a Euclidean domain E (e.g., a ring of polynomials over a field) and

coefficients u,v ∈ E such that a0u + a1v = gcd(a1,a2). The algorithm proceeds by dividing aj

by aj+1 so that aj = aj+1qj+1 + aj+2 with quotient qj+1 and remainder aj+2. Each step of the

Euclidean algorithm works because the division implies that gcd(aj,aj+1) = gcd(aj+1,aj+2).

For polynomials, the Euclidean algorithm terminates when aj = 0. This always occurs

because deg(a2) < deg(a1) holds by assumption and deg(aj+2) < deg(aj+1) holds by

induction.

The extended algorithm also computes uj,vj recursively so that aj = uja1 + vja2. Starting from

a3 = a1 − q2a2 (i.e., u3 = 1 and v3 = −q2), we have the recursion

aj+2 = aj − qj+1aj+1 = (uja1 + vja2) − qj+1 (uj+1a1 + vj+1a2).

This gives the recursions uj+2 = uj − qj+1uj+1 and vj+2 = vj − qj+1vj+1 starting from u3 = 1 and v3

= −q2.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 23

The decoding the RS codes is accomplished using a partial application of the EEA

algorithm to compute . The extended part of the algorithm generates a

sequence of relationships of the form uj(x)x2t + vj(x)S(x) = aj(x),

where the degree of aj(x) is decreasing with j. Let j∗ be the first step where deg(aj(x)) < t

and stop the algorithm at this point. Viewing the above relationship as a congruence modulo

x2t gives vj(x)S(x) ≡ aj(x) mod x2t,and we see that vj∗(x) and aj∗(x) satisfy the key equation

with deg(aj∗(x)) < t. In this case, the polynomials vj∗(x),aj∗(x) must also satisfy

vj(x) = cΛ(x)

aj(x) = cΩ(x),

for some constant c. This means that we can run the EEA until the remainder term has

degree less than t. After that, we can solve for c using c = vj(0) and compute Λ(x),Ω(x).

After the error-locator and error-evaluator polynomials are known, decoding proceeds by

factoring Λ(x) to find the error locations and then using (4) to compute the error

magnitudes.

2.8.2 Chien Search Algorithms

Once Λ(x) is found, the decoder searches for error locations by checking whether Λ(αi) =

0 for 0 ≤ i ≤ (n − 1), which is normally achieved by Chien search. A conventional serial

Chien search architecture is shown in Fig. 2.7(a), and

where 0 ≤ i ≤ (n − 1). All the multiplexers select Λ(x) in the first clock cycle, then select

the registered data afterwards.

Figure 2.7(a) : Conventional Chien search circuit

Since all the n possible locations have to be evaluated for the Λ(x), it takes n clock cycles

to complete the Chien search process. To speed up this process, parallel Chien search

architecture that evaluates several locations per clock cycle is essential. Two different

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 24

possible architectures [13] with parallel factor p are depicted in Fig. 2.7(b) and Fig. 2.7(c)

, where Fig. 2.7(b) actually is just a direct unfolded version of Fig. 2.7(a) with an unfolding

factor of p.

As both designs can reduce the number of clock cycles searching for error locations from

n down to [n/p], they also share similar hardware complexity. Denoting the parallel factor

as p, both designs have the exactly same (p × t) constant finite field multipliers (FFM), p t-

input m-bit finite field adders(FFA),p m-bit registers and p m-bit multiplexers. However,

the critical path of Fig. 2.6(b) is (Tmux+ p ×Tm+ Ta) while it is only (Tmux+Tm+Ta) for

Fig. 2.7(c), where Tmux,Tm and Ta stand for the critical path of multiplexer, FFM and t-

input m-bit FFA, respectively. Obviously, once the parallel factor p is greater than 1, much

faster clock speed could be achieved for the design in Fig. 2.7(c) than that in Fig.2.7(b).

For example, assuming Tm is dominant, critical path of Fig. 2.7(c) is p times shorter.

Figure 2.7(b) : p-parallel Chien search architecture: direct unfolded version

Figure 2.7(c) : p-parallel Chien search architecture: equivalent architecture with shorter

critical path

Fig. 2.8 shows the architectures of three basis components, including the jth MPCN, the jth

BT, and the GBT. The jth MPCN MPCNj shown in Fig. 2.8(a) executes modulo operation

with divisor Mj(x). It is constructed by the combinational circuit of the linear feedback shift

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 25

register with the connectionm polynomial Mj(x). Each binary element mkj in Fig. 2.8(a) is

the kth coefficient ofMj(x), indicating the wire connection. In the jth BT shown in Fig.

2.8(b), each αk l is a binary element and can be represented whether the wire is connected

or not. Fig. 2.8(c) illustrates the block diagram of the GBT. The additions are first executed

with all the coefficients of Dj(x) for j = 1 ∼ t (total mt bits), and the similar operations as a

BT are applied with basis α0 ∼ αmt.

Figure 2.8 Basic components in Chien search architecture. (a) MPCNj. (b) BTj . (c) GBT.

 In the MPCN-based parallel-p Chien search architecture shown in Fig. 2.9, the coefficients

of Λ(x) are applied to the IBTs for transforming the operating basis. The transformed values

are evaluated with minimal polynomials for obtaining the Chien search results. All the

multiplexers select the outputs of IBTs in the first cycle and then select the register data

afterward. Searching from the (N − 1)th to zeroth location, the proposed design checks p

locations at each cycle. In each row, mt-bit data are fed into a GBT to examine the error

locations. An error is found at the (N + r − p(τ + 1) − 1)th location if the output of the rth-

row GBT is equal to zero at the τ th cycle. MPCN Chien search architecture utilizes p × t

MPCNs to replace p × t CFFMs. Notice that the XOR gate count requirement of one MPCN

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 26

is at most m − 1, which is much smaller than that of one CFFM. Therefore, it is area

efficient to apply the MPCNs, particularly in the large parallelism conditions.

Figure 2.9 MPCN-based parallel-p Chien search architecture.

The MPCN-based architecture can merge the syndrome calculator and the Chien search in

the same hardware with small overhead. Fig. 2.10 illustrates parallel-p joint syndrome

calculator and Chien search with the MPCN-based architecture. The syndrome calculator

and Chien search phases are determined by the SEL signal. When the SEL signal is high,

the jth syndrome value is formulated as

The partial remainder stored in the register is multiplied by xp and accumulated with the

received symbols. After all the received symbols are processed, BTj transforms the

accumulated result to the jth syndrome value. In contrast with Fig. 2.9, t BTs are applied

instead of one GBT in the first row to evaluate individual syndrome value. Note that the

FFA in Fig. 2.10 is only a 1-bit operation because each coefficient of R(x) is a binary value.

Therefore, except for the difference between the BT and the GBT, the overhead of the

supporting syndrome calculation is only p NAND and p × t XOR gates.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 27

Figure 2.10 Parallel-p joint syndrome calculator and Chien search with MPCN based

architecture.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 28

Chapter 3

HARDWARE

3.1 Acquisition and Recording Unit (ARU)

Figure 3.1 ASA-ARU system interface with ASA-LRU

The main objective of ASA-ARU is used to store the 12 Accelerometer Sensors data. The

data is stored in the digital but the sensors outputs are analog. So, to convert analog to

digital ADC’s are required. ASA has 12 sensor outputs. Hence, two ADC’s are used.

NAND FLASH is used to store the acquired data. RTC with on-board memory is used for

time-stamp and storing data. To retrieve the data from the NAND FLASH Ethernet is used.

RS232 is used to retrieve the data from the RTC. ASA-ARU uses ADC, NAND FLASH,

RTC, Ethernet physical layer and RS232 transceiver.

The ASA-ARU will acquire and record the 12-accelerometer sensors data of ASA

continuously. The recorded data can be later retrieved for analysis purpose at ground. The

ASA-ARU contains RS-232 interface, which shall be used to debug the system and

Ethernet interface for data retrieval.

The objective of the ASA-ARU is used to store the 12 Accelerometer Sensor Data, store in

NAND FLASH Memory during Flight, retrieve the data from NAND FLASH Memory and

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 29

send to Rugged Laptop through Ethernet and RS232 during POST flight. In ASA-ARU,

FPGA is communicating with ADC, RTC Memory, NAND FLASH Memory, Ethernet

Physical Layer and RS232 Driver. The below sections gives the related information

regarding System Initialization, Power on Self Test, Mode Identification, Acquisition

Mode, Retrieval Mode, Inside FPGA modules, FPGA Constraints and Safety

Considerations.

3.2 System Initialization

ASA-ARU has ADC, NAND FLASH Memory, RTC with on-board Memory, Ethernet

Physical Layer and RS232 transceiver. Each one is initialized using FPGA sub Modules

such as Data Acquisition Controller, NAND FLASH Controller and RTC SPI Controller,

Ethernet Controller, UART Controller and all these modules are controlled by the Top

Module.

Figure 3.2 ASA-ARU system-Main Control Board

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 30

Figure 3.3 Controller modules of FPGA

Figure 3.4 NAND Flash Controller module

3.3 NAND Flash Controller

Top module will enables operations like page read, page write, reset operation, readID

(manufacture ID) operation and block erase operation.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 31

1. Once FPGA_RESET_n is deasserted, POST operation will starts automatically.

Check flash health status .

2. Check flash health is good and ASA-ARU health is good, go for the mode

identification operation else exit the function.

3. If Acquisition mode (mode=0), It enables the bad block checking operation by

making signal BB_FSM_en = 1, else Retrieval Mode (mode=1). In retrieval mode it

enables the bad blocks read operation from the RTC controller by making

BB_retrieval_FSM_en = 1.

4. During Acquisition mode:

i. If BB_FSM_en = 1 it enables the bad block checking operation by making

page_BB_read_en =1. This signal enables the bad block page read operation. Read

1st location of NF spare memory data. check for BB if block is bad block update the

BB‘s address into BB_FIFO memory. Check for all blocks (4096); once completion

of this operation enables the BB_opr_comp BB_opr_comp it. Enable the program

operation by making progm_FSM_en = 1 .

ii. Once Progm_FSM_en = 1, Read NF write completed page address from the RTC

then read acquisition data from the DAQ controller. Assign page completion

address to NF page_address and block completion address to NF block_address.

Check if daq_stop = 0 send DAQ_FIFO_rd_data along with

DAQ_FIFO_data_valid signal and page_write_en=1. Wait for write_complete=1

once write_complete=1, check NF page and block address with completed page and

block address if it not equal compare current address with bad block address if it

not equal go for DAQ_stop check and repeat the process up to daq_stop = 1 else

updated the NF address in the BB_FIFO memory and compare next BB address

with NF address.

iii. Once daq_stop=1, read session data from RTC controller and send to NF on last

two pages.

5. During Retrieval mode:

i. BB management operation :- If BB_retrival_FSM_en = 1 read BB’s address

from RTC and store into BB_FIFO memory. Once stored the all BB’s into

BB_FIFO it generate BB_FIFO_filled = 1. BB_FIFO_filled it Enable the read

operation by making read_FSM_en = 1.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 32

ii. Once read_FSM_en = 1, read BB address from DAQ controller and store into

BB_FIFO. Compare BB address with NF block address, if address are equal

increment NF address by 1 and compare with BB address else address are

different read data from NF by send Page_read_en = 1. Wait for

Read_complete=1 repeat the process .

iii. Once page complete address and NF block and page address are equal read last

two blocks first page data by enabling page_read_en =1.

iv. After reading last two blocks 1st page data generate erase_FSM_en = 1 .

v. Once erase_FSM_en = 1, it will wait for the NF_block_erase_en = 1. Once

NF_block_erase_en = 1, compares NF block address with BB block address if

both are equal increment NF block address by 1 and compare with next BB

address else both address are not equal erase NF block repeat the process.

3.1.1 Data integrity for ASA-ARU:

The data recorded in-flight is fed to the actuators which then leads to the smooth

functioning of the flight without any turbulence. The slightest change in this data, would

lead to a large deviation from the original position, causing the flight to topple in the worst

case. Thus, to avoid such disasters, the data from the accelerometer has to be accurate and

reliable throughout the whole process of giving an input, processing and providing the

feedback for the normal functioning of the whole system.

3.2 FPGA-ARTIX 7:

➢ FPGA hardware: FPGA[14] is the main data processing hardware of the system. It is

used for controlling various functions of the ASA-ARU such as POST analysis, Mode

Identification, Data Acquisition Controlling, recording data into NAND Flash memory,

retrieving data from NAND Flash memory, Transmitting retrieved data to GSE via

Ethernet Interface and UART Controller.

➢ FPGA Clock: A 25 MHz clock is used for FPGA operations and peripherals controlling.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 33

➢ Artix-7 FPGAs are available in -3, -2, -1, -1LI, and -2L speed grades, with -3 having

the highest performance. The Artix-7 FPGAs predominantly operate at a 1.0V core

voltage.

➢ FPGA is used as a controller in ASA-ARU system. FPGA hardware used in ASA-ARU

system is XC7A100T-2FTG256I - ARTIX 7 FPGA. Artix 7 FPGA Hardware

Description Language (HDL) developed in the 'VHDL' language. The operating

environment details of the HDL are given in the below Table.

➢ VHDL coding standard followed for Artix 7 FPGA is “VHDL coding standards for

programmable hardware used in the development of software system of LCA”.

Table 3.1 Operating Environment of Hardware Description Language

Sl. No Platform Details

1 Firmware type Hardware Description Language (HDL)

 FPGA Artix7- XC7A100T-2FTG256I

 (Simulation, (ISE Design Suit 14.6,

2 Synthesis, ISE Design Suit 14.6(XST),

 Implementation, ISE Design Suit 14.6,

 Download) iMPACT (or) Vivado Tools 2014.2

3 IDE for Firmware ISE Design Suit 14.6 (or) Vivado Tool 2014.2

4 Programming Language “VHDL” Language

5 GSE Software LabWindow\CVI

6 GSE Software Language ‘C’ Language

7 Windows OS 7 or high

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 34

OVERVIEW:

• Artix-7 address the complete range of system requirements, ranging from low

cost, small form factor, cost-sensitive, high-volume applications to ultra high-

end connectivity bandwidth, logic capacity and signal processing capability for

the most demanding high-performance applications. Artix-7 Optimized for

lowest cost and power with small form-factor packaging for the highest volume

applications.

Table 3.2 I/O Pin/Device/Package Combinations for Artix-7 FPGAs

a. CLBs, Slices, and LUTs:

Some key features of the CLB architecture include:

1. Real 6-input look-up tables (LUTs)

2. Memory capability within the LUT

3. Register and shift register functionality

The LUTs in Artix-7 can be configured as either one 6-input LUT (64-bit ROMs) with one

output, or as two 5-input LUTs (32-bit ROMs) with separate outputs but common addresses

or logic inputs. Each LUT output can optionally be registered in a flip-flop. Four such LUTs

and their eight flip-flops as well as multiplexers and arithmetic carry logic form a slice, and

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 35

two slices form a configurable logic block (CLB). Four of the eight flip-flops per slice (one

per LUT) can optionally be configured as latches.

Between 25–50% of all slices can also use their LUTs as distributed 64-bit RAM or as 32-

bit shift registers (SRL32) or as two SRL16s. Modern synthesis tools take advantage of

these highly efficient logic, arithmetic, and memory features.

b. Block RAM:

Some of the key features of the block RAM include:

1. Dual-port 36 Kb block RAM with port widths of up to 72

2. Programmable FIFO logic

3. Built-in optional error correction circuitry

Artix-7 has between 135 and 4860 dual-port block RAMs, each storing 36 Kb. Each block

RAM has two completely independent ports that share nothing but the stored data.

3.3 NAND Flash Memory

➢ NAND is the most popular type of flash storage memory for USB flash drives,

memory cards, and SSDs. It is used in some of the best SSDs in the market today.

➢ This flash memory technology is non-volatile chip-based storage, and unlike

DRAM does not require a persistent power source. NAND cell arrays store 1, 2, 3,

or 4 bits of data. When the NAND SSD or card is detached from a power source,

metal-oxide semiconductors called floating-gate transistors (FGT) provide

electrical charges to the memory cells, and data remains intact.

➢ It stores data in memory cell arrays that are defined by transistors. Each transistor

has two gates instead of one, like an electrical switch where the current flows

between two points. A floating gate and a control gate control the energy flow in a

flash memory cell. The control gate captures electrons and moves them as needed

into the floating gate.

➢ NAND flash development concentrates on reducing the size of the chips while

maintaining or increasing their capacity. This reduces bit costs and increases

https://www.enterprisestorageforum.com/storage-hardware/flash-storage-memory-guide.html
https://www.enterprisestorageforum.com/storage-hardware/ssd-in-enterprise-storage-environments.html
https://www.enterprisestorageforum.com/products/best-ssd-buying-guide-best-and-fastest-ssds.html

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 36

density. Another feature is connecting cells in series of FTGs, which takes less takes

less space than parallel connections and further reduces NAND flash costs.

3.3.1 Types of NAND:

The most common types of NAND are between cells containing 1, 2, or 3 bits a cell. We

call these SLC, MLC, and TLC. 3D NAND is also gaining ground and high-performance,

high density environments[15].

❖ SLC: Single-Level Cell stores 1 bit in each cell.

❖ MLC: Multi-Level Cell stores 2 bits per cell.

❖ eMLC: Enterprise Multi-Level Cell increases MLC endurance

❖ TLC: Triple-Level Cell stores 3 bits per cell. However, advances in 3D NAND and

sophisticated controllers are positioning TLC to perform in read-heavy enterprise

applications.

❖ QLC: Quad-Level Cells store 4 bits per cell. However, increasing density by storing

more bits per cell has serious disadvantages. The more bits per cell, the more often

writes and erasures occur in the cell, which decreases endurance. Voltage is also an

issue in QLCs, since voltage changes cause instability in surrounding cells.

❖ 3D NAND: Flash manufacturers are on a mission to decrease cell sizes in order to pack

more chips and thus more capacity on a NAND device. However, shrinking cells using

the above cell level technologies resulted in cell to cell interference, which reduced data

integrity in NAND flash.

Table 3.3 Characteristic Comparison of NAND and NOR

 Characteristic NAND Flash NOR (Q-Flash)

Random access read 25 µs (first byte) .12µs

 .03µs each for remaining 2111 bytes

Sustained read speed 23 MB/s (x8) or 20.5 MB/s (x8) or

(sector basis) 37 MB/s (x16) 41MB/s (x16)

Random write speed ~300µs/2112 bytes 180µs/32 bytes

Sustained write speed (sector basis) 5 MB/s .178 MB/s

https://www.enterprisestorageforum.com/storage-hardware/slc-vs-mlc-vs-tlc-nand-flash.html

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 37

Table 3.4 Parameteric Comparison of NAND and NOR

Erase block size 128KB 128K8

Erase time per block (typ) 2ms 750ms

PARAMETER NAND NOR

Deployment More widely used Moderately used

Memory cell

connections
The cells are connected in

series, do not allow direct

writes to individual

memory cells.

The cells are connected in

parallel, the system can

write and read to

individual memory cells

Read performance Reads are slower since it

supports page and block

access, not random access.

Allows random access to

any memory address. This

allows the system to read

bytes independently of

pages and blocks.

Write and erasure

performance

Writes and erasures are

faster in NAND with its

smaller cell sizes.

Writes and erasures are

slower on NOR’s larger

cells.

Endurance NAND cells typically have

98% good bits when

shipped, and end-users

know to expect additional

bit failures over the cell’s

lifetime.

NAND manufacturers

usually add error correcting

code (ECC)

NOR cells have 100%

known good blocks over the

life of the cell. NOR does

not need any error

correcting code (ECC).

Density Ranges between 1Gb to

16Gb.

Ranges from 64MB to 2Gb

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 38

Chapter 4

SOFTWARE

4.1 ECC for NAND Flash

Due to the Manufacturing issues, usage and environmental factors, data stored in NAND

FLASH may not return its data value as written. However, the probability for this happing

is very small. ECC is the good way to recover the wrong value from the remaining good

data bits. NAND FLASH manufactures recommended using ECC for NAND FLASH

would give better performance with reducing bit errors. ECC is implemented either

hardware or software. Implementation of ECC through software reduces the hardware

components and power. For software, various Algorithms are used to find ECC such as

Hamming Algorithm, Reed Solomon Algorithm, BCH Algorithm, for two bit error

detection and one bit error correction done by Hamming Algorithm, for multiple error

detection and correction by Reed Solomon Algorithm and BCH Algorithm.

Each page in NAND FLASH is divided into Main area and Spare area as shown in Fig.4.1A.

Main area consists of 2048 bytes and spare area consists of 128 bytes. Calculated ECC

values are stored in Spare area. The main area is divided into four chunks. Each chunk is

512 bytes as shown in Figure 4.1B . Calculate ECC for each chunk and store in Spare area.

Spansion recommended[16] 4-bit ECC for each 512 bytes data.

Figure 4.1A: NAND FLASH Array Organisation

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 39

 Figure 4.1B: Main area and its division

Table 4.1 Recommended BCH Code

4.1.1 Data Recording – NAND Flash

Functional Requirements:

It has to store the 12 channels data into NAND Flash.

240 minutes of the ADC sampled data has to store in NAND Flash.

Design approach:

Memory size required for storing data with 640 samples/sec:

1 samples/sec for 1 channel = 2 bytes = 16 bits/sec

640 samples/sec for 1 channel =640*16 = 10,240 bits/sec

640 samples/sec for 12 channels = 12 * 10240 = 1,22,880 bits/sec

640 samples/minutes for 12 channels = 60 * 122880 = 73,72,800 bits/sec

640 samples/240minutes for 12 channels = 240 * 7372800 =1,76,94,72,000bits/sec

 ≈ 1770 Mbits

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 40

So, Finally 4 Gbits NAND Flash selected based on above calculations -

S34ML04G200TFI000.

4.2 BCH Codes in ASA-ARU Application

S34ML04G200TFI000 NAND FLASH requires 4-bit ECC per (512 bytes + 52 bits) of

data, which is 4148 bits. BCH code requires 52 parity bits.

We have,

n = 4096 (data area) + 52 (parity bits) ≤ 2m – 1 → m = 13

GF of ‘w’ elements GF(w), w=2m are used to characterise BCH codes. The GF degree is

given by m, the quantity of states taking each integrant over GF elements is given by w,

and codeword length is given by n=2m-1.

BCH (n, k, t) is the binary BCH code representation. The terms n, t and k give the

codeword-length, maximum error capability of the code and message-length respectively

[17].

For any non-negative numeral, m ≥ 3 (where 3≤ m ≤16) and also t < 2m −1, BCH code of

given specifications exists [17]:

Codeword-length: n = 2m - 1

Message-length: k ≥ n − mt

Minimum distance: dmin ≥ 2t + 1.

The MLC flash memories organisation for which the BCH encoder is implemented is as

shown in Figure 4.1A. There are two planes each having 4096 blocks and each block

consists of 64 pages. Each page has a main area of 2048 bytes and 128 spare bytes. The

main area is further broken down into chunks each of size 512 bytes and calculated ECC

for each chunk is stored in Spare area as shown in Figure 4.1B.

Based on the above specifications of memory, below are the parameters for binary BCH

code:

As we saw, 1 chunk=512B=4096 bits (212), block length,

n ≥ 2m-1. Thus, considering m=13, we get n=8191. For a 4-bit error correcting BCH code,

t=4. Using the above values in the following equation, k>n-mt, we get k= 8139. Therefore,

the parity check (n-k) bits = 52bits.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 41

4.3 BCH Encoder

Inputs of BCH Encoder are clock, reset, input data valid, 8-bit data. Outputs from BCH

Encoder are 8-bit parity data with parity data valid.

SYSTOLIC ARRAY STRUCTURE

Figure 4.2 Hardware Systolic Array Type BCH Encoder

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 42

Figure 4.3 Block Flow Diagram of BCH Encoder-Decoder

The BFD of BCH encoder is as shown in Figure 4.3. The design of proposed encoder

follows these stages.

4.3.1 Design and Implementation of Systolic- Array type Binary BCH

Encoder

A. Generator Polynomial

The codeword(n-bit) in BCH(n,k,t) is (Cxn-1, Cxn-2, … , Cx0),

Cxi ∈ GF(2), (0≤i≤n-1) and message(k-bit) is (mk-1 ,mk-2, …, m0), mi ∈ GF(2), (0≤i≤k-1).

Generator polynomial, g(ϰ) is of (n-k) degree. The expression, cx(ϰ) = m(ϰ)g(ϰ) gives the

encoding of BCH codes in terms of g(ϰ).

g(ϰ) = gn-k-1 ϰ
 n-k-1 +. . . +g3 ϰ

 3+g2 ϰ
 2+g1 ϰ +1

cx(ϰ) = cxn-1 ϰ
 n-1+cxn-2 ϰ

 n-2+ . . . +cx1 ϰ +cx0

m(ϰ) = mk-1 ϰ
 k-1+mk-2 ϰ

 k-2+ . . . +m1 ϰ +m0

lowest degree polynomial of over GF(2) with roots as β, β2, β3,…., β2t (also known as

primitive elements) is known as generator polynomial [6]. Let fi(ϰ) be the minimal

polynomial of αi. Then, g(ϰ) is give as:

g(ϰ) = LCM{f1(ϰ), f2(ϰ), …., f2t(ϰ)} (1)

The conjugate roots of g(ϰ) have same minimal polynomials .i.e. β i = (βi՛)2w, fi(ϰ) = fi՛ (ϰ),

where i = i՛ *2w for w ≥ 1, thus for a BCH code with t-error rectification, g(ϰ) in eqn.(1)

can be turndown to:

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 43

g(ϰ) = LCM{f1(ϰ), f3(ϰ), …., f2t -1(ϰ)} (2)

For BCH (8191,8139,4), the primitive polynomial for GF(213) is given as

 p(ϰ) = ϰ 13 + ϰ 4 + ϰ 3 + ϰ +1. (3)

The minimal polynomials for GF (213) in binary BCH codes are:

f1(ϰ) = ϰ13 + ϰ4 + ϰ3 + ϰ +1

f3(ϰ) = ϰ13 + ϰ10 + ϰ9 + ϰ7 + ϰ5 + ϰ4 + 1

f5(ϰ) = ϰ13 + ϰ11 + ϰ8 + ϰ7 + ϰ4 + ϰ + 1

f7(ϰ) = ϰ13 + ϰ10 + ϰ9+ ϰ8 + ϰ6 + ϰ3 + ϰ2 + ϰ + 1

Therefore from eqn. (2) and (4), g(ϰ) is computed as:

g(ϰ) = LCM (f1(ϰ), f3(ϰ), f5(ϰ), f7(ϰ)), where

g(ϰ) = ϰ52 + ϰ50 + ϰ46 + ϰ44 + ϰ41 + ϰ37 + ϰ36 + ϰ30 + ϰ25 + ϰ24 + ϰ23 + ϰ21 + ϰ19 + ϰ17 + ϰ16

+ ϰ15 + ϰ10 + ϰ9 + ϰ7 + ϰ5 + ϰ3 + ϰ+1 (5)

B. Construction of BCH (8191,8139,4) Encoder

 The proposed BCH encoder is nearly an equivalent of the traditional serial BCH encoder

in which the yield of XOR situated furthest to the right acts an input to remaining XORs in

addition to first register but the difference being, the further stages input is taken from the

previous stage output. Each of the horizontal lines in Figure. 3 are considered as parallel

factor j, where 0th stage is the first and (j-1) is the last stage. In each stage, the orientation

of the XOR gates is an imitation of the preliminary stage but the contribution to each stage

is from the preceding stage [6]. This procedure majorly operates on shifting mechanism.

The (j-1th) stage output is fed as input to the (0th) stage, and is rehashed sequentially once

the XOR operation is completed.

The procedure to calculate the parity bits for 512 bytes is as follows. Let ‘P’ is the parity

bits consists of 52 bits, named as P0, P1, …, P5, P6, . . . , P49, P50, P51 and ‘i’ is the input

bits consisting of 8 bits named as i0, i1, i2, . . . ,i6, i7.Initially parity bits ‘P’ are set to zeros.

The first input byte data is loaded in i register which is 8-bit register connected to hardware

systolic array type BCH Encoder when enable is high. Now the parity bits ‘P’ value is

changed according to the ‘i’ register and Hardware digital circuit. The parity bits output for

the input byte are input to the next byte in the field of parity bits ‘P’. The next input byte is

loaded in i register.

(4)

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 44

The parity bits ‘P’ corresponding data ‘i’ are calculated. Continue to load the input bytes

and the preceding parity bits till 512 bytes are completed. After completion, parity bits for

the 512 bytes are available in the parity bit register.

One major advantage of systolic array type architecture is that the stages can be changed to

any number causing no effect on the complexity of the circuit as the stages are just replicas

of the first. Hence, in the proposed BCH encoder implemented for the reliability of storage

of data in NAND Flash memory, this architecture provides the ease of encoding the 2048

bytes of main area without increasing hardware design and thus preferred for high speed

applications with maximum reutilisation of modules.

Once the message is encoded successfully, the information bits, along with the parity bits

are now ready to enter the storage area. Once stored, the data can be retrieved into the buffer

byte-wise and the decoding process is initiated.

Figure 4.4 Flow diagram for proposed BCH Encoder

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 45

4.4 BCH Decoder

Inputs of BCH Decoder are clock, reset, data (stored data + parity data), data valid.

Outputs from BCH Decoder are No of errors, valid error enables, Error byte location,

Error bit location

4.4.1 Design and Implementation Binary BCH Decoder

A. Galois Field roots generation

The root table generation is the primary stage for decoding. The values of roots initially are

0, β0 and β. Raising β to increasing powers, we get β2, β3, . . ., β11 and β12 as the following

roots to initial vales. When β13 is encountered, knowing p(ϰ) from eqn. (3), we get,

β13 = β4+ β3+ β+ 1. (6)

The primitive polynomial, p(ϰ) aids in generating elements for the extension field

(GF(2m)) from base field (GF(2)). Any power beyond 13 (i.e β14 to β8190) is reduced using

eqn. (6).

B. Syndrome calculation

Once the βi is generated, the phase two is calculation of the syndromes(ჽi). The indication

of the received code being valid or not is given by this syndrome computation, that is, if

syndrome is zero(ჽi = 0), the received codeword is error-free.

Table 4.2 Root Table for GF (213)

Coefficients Root values

β0 0000000000001

β1 0000000000010

. .

β12 1000000000000

β13 0000000011011

. .

β8190 1000000001101

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 46

Received codeword, rx(ϰ) is the syndrome module’s input. The rx(ϰ) may be erroneous

with a pattern er(ϰ).

rx(ϰ) = cx(ϰ) + er(ϰ) (7)

The received codeword is:

rx(ϰ) = rx0 + rx1ϰ + . . . + rxn-1ϰn-1 (8)

Transmitted codeword is given by:

cx(ϰ) = cx0 + cx1ϰ + . . . + cxn-1ϰn-1 (9)

The error pattern is:

er(ϰ) = er0 + er1ϰ + . . . + ern-1ϰn-1 (10)

Syndrome ჽi can be computed by:

ჽi = rx(βi)

rx(β i) = rx0 + rx1 β i+ rx2 β2i + rx3 β3i + . . . + rxn-1 β(n-1) i (11)

where 1≤ i ≤ 2t-1 and β is the primitive element of GF(213).

C. Coefficients of error locator polynomial

Some of the popular methods used for decoding are PGZ (Peterson-Gorenstein-Zierler)

Algorithm [7], Berlekamp- Massey (BMA) algorithm [11] and Euclidean (EA)

algorithm[12].

Among these, the most effortless way to comprehend a BCH decoder is by using the PGZ

algorithm for any error correction capacity(t), that is, any decoder can be realised without

the requirement of algebraic computation with high level of difficulty.

The error locator polynomial is defined as:

λ (β i) = λ0 + λ1β i +λ2β2i +λ3β3i +λ4β4i + … +λtβt i (12)

Here, we use the PGZ Algorithm to determine the λ(βi) coefficients, i.e. the Eigen values

from the determinant of the Λ1, Λ2 ,..., Λv of polynomial,

Λ(ϰ) = 1+ Λ1ϰ+ Λ2ϰ2 + . . . + Λvϰv (13)

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 47

For 4-bit(v=4) error correction, the following equations are used to calculate the eigen

values:

Λ1 = ჽ1 (14)

Λ2 =
ჽ1(ჽ7+ჽ

1

 7)+ჽ3(ჽ5+ჽ
1

 5)

ჽ3(ჽ3+ჽ
1

 3)+ჽ1(ჽ5+ჽ
1

 5)
 (15)

Λ3 = (ჽ
3

+ ჽ
1

 3) + ჽ1Λ2 (16)

 Λ4 =
(ჽ5+ჽ3ჽ1

 2)+𝛬2(ჽ3+ჽ
1

 3)

ჽ1
 (17)

Newton’s Identities [11] are used to verify the generated Eigen values (Λv) with the below

set of equations:

ჽ1 + Λ1 = 0

ჽ2 + Λ1ჽ1 + 2Λ2 = 0

.

.

.

ჽv + Λ1ჽv-1 + . . . + Λv-1ჽ1 +vΛv = 0

ჽv+1 + Λ1ჽv + . . . + Λv-1ჽ2 + Λvჽ1 = 0

.

.

.

ჽ2t + Λ1ჽ2t-1 + . . . + Λv-1ჽ2t-v+1 + Λvჽ2t-v = 0

D. Roots of Λ(ϰ)

Once the coefficients, Λv are computed, Polynomial, Λ(ϰ) roots are to be determined which

indicates the reciprocal of error location.

There are different Chien search algorithms for fast encoding like the Conventional p-

parallel - Chien architecture , MPCN-based parallel architecture [13], Joint Chien Search

& Syndrome-Calculator Architecture .

Figure 4.5 Conventional Chien search

(18)

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 48

The hardware implementation of Chien search block [8] used proposed decoder for

determining the roots of Λ(ϰ) is shown in Figure. 5.

Λ(ϰ) = Λtϰt + Λt -1ϰt -1 + . . . + Λ1ϰ + Λ0 (19)

Element βi is root of Λ(ϰ) if the below condition is

satisfied:

Λ(β i) = Λtβ i t + Λt -1β i (t -1) + . . . + Λ1β i + Λ0 = 0 (20)

Knowing, Λ0 = 1

Λ(β i) -1 = Λtβ i t + Λt -1β i (t -1) + . . . + Λ1β i = -1 (21)

For element β(i+1) :

Λ(β i+1) -1 = Λtβ(i+1) t + Λt -1β(i+1)(t -1) + . . . + Λ1β i+1 (22)

Λ(β i+1) -1 = Λtβ itβt + Λt -1β i(t -1)βt -1+ . . . + Λ1β iβ (23)

Value of Λ(βi+1) is computed from previous Λ(βi) values. The eqn. (23), when iteratively

executed, yields the roots of Λ(ϰ) .

As mentioned earlier, the inverse roots now obtained are reciprocated to determine the bit

locations at which the error occurred while transmission. Based on the error correcting

capacity(t), those number of bits will be corrected.

Figure 4.6 Flow diagram for proposed BCH Decoder

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 49

Chapter 5

RESULTS

5.1 Simulation results of BCH(8191,8139,4) Encoder

The proposed Encoder is simulated in Xilinx ISE version 14.7 using VHDL. The simulation

waveform result for parallel BCH(8191,8139,4) encoder is shown in Figure 5.1.

The clock period for the waveform simulation is 10ns.

The number of clock cycles utilised to generate 52 bit parity for 8139 input bits is 1018

cycles.

Figure 5.1 Simulated waveform for BCH(8191,8139,4) Encoder (message = 2.9230e+47

(in decimal))

Considering the conventional BCH encoder (Serial BCH encoder), it is observed that clock

cycles required for computing the 52 parity bits for 8139 input bits would be

(8139+52)cycles. When compared to the proposed parallel BCH encoder, the former takes

nearly 8 times longer thus making the proposed design more suitable for high speed

operations.

5.2 Performance Comparison of Conventional and Parallel BCH(63,39,4)

Encoder

To further show the advantage of parallel BCH encoders over the conventional enoders, let

us consider BCH(63,39,4) encoder.

Figure 5.2 shows serial BCH(63,39,4) encoder. The clock period is taken as 100ns. Thus,

to generate 24- bit parity for 39 input bits, 39 clock cycles will be utilised along with an

extra of 24 cycles to output the 24 parity bits from the register in hardware.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 50

Figure 5.2 Serial BCH(63,39,4) Encoder

Figure 5.3 Parallel BCH(63,39,4) Encoder

Figure 5.3 shows parallel BCH(63,39,4) encoder. The clock period is taken as 50ns. Thus,

to generate 24- bit parity for 39 input bits, 4 clock cycles will be utilised with no extra

cycles required to read the parity.

The comparison summary is shown in Table 5.1.

Table 5.1: Performance comparison of parallel and serial BCH encoder observed in

simulation

 Serial BCH

(63,39,4)

Encoder

Parallel BCH

(63,39,4)

Encoder

Clock period 100ns 50ns

Message Bits 39 39

Parity bits 24 24

Clock Cycle

utilization-parity

computation

39 4

Clock Cycle

utilization – to

output parity bits

24 0

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 51

5.3 Simulation Results of BCH Decoder

Once the process of encoding is completed, the received codeword (message + parity bits)

are fed to the decoding system designed. The received codeword (rx) is now fed byte wise

and the root table is obtained. Later, the codeword is used to calculate the syndrome. As

seen in Figure 5.4A, an error-free codeword generates ჽi =0. When errors are introduced

(considering 4 bits of error), it is observed that the syndrome is computed accordingly (ჽi ≠

0) as in Figure 5.4B.

Figure 5.4A : Syndrome when no errors in rx

Figure 5.4B : Syndrome when rx has errors

The coefficients, Λv are calculated in correspondence with the syndrome generated above.

Therefore, when ჽi =0, Λv =0 as well when no errors in rx as shown in Figure 5.5A and

when (ჽi ≠ 0), the Λv generated are as shown in Figure 5.5B.

Figure 5.5A: Coefficients when no errors in rx

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 52

Figure 5.5B: Coefficients when rx has errors

The roots are computed from λ (βi) once the coefficients are generated. In Figure 5.6A,

roots don’t exist as ჽi and Λv are zero thus indicating no errors in the received codeword.

The generated roots in Figure 5.6B represent the reciprocal of the actual error location, that

is if root is 8127, the error location is 64(63rd bit).

Figure 5.6A: Roots when no errors in rx

Figure 5.6B: Roots when rx has errors

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 53

Chapter 6

APPLICATIONS AND ADVANTAGES

The BCH encoder takes a block of digital data and adds extra "redundant" bits. Errors occur

during transmission or storage due to a number of reasons (for example, noise or

interference, scratches on a CD, etc.). The BCH decoder processes each block of data and

attempts to correct the errors and recover the original data. The number and type of errors

that can be corrected depends on the characteristics of the BCH code. BCH encoding and

decoding can be carried out either in software or in special-purpose hardware.

6.1 Applications of BCH codes

Bose–Chaudhuri–Hocquenghem (BCH) codes are of great practical importance for error

correction, particularly if the expected number of errors is small compared with the length.

BCH codes were constructed as a generalization of Hamming codes. BCH codes are best

considered as cyclic codes. The original applications of BCH codes were restricted to

binary codes of length 2 m -1 for some integer m. These were extended later by Gorenstein

and Zierler to the nonbinary codes with symbols from the Galois field GF(q).

6.1.1 Digital Communications and Storage

BCH error correction codes are block-based error correcting codes with a wide range of

applications in digital communications and storage. BCH codes are used to correct errors

in many systems including:

➢ Storage devices (including tape, Compact Disk, DVD, barcodes etc.)

➢ Wireless or mobile communications (including cellular telephones, microwave

links, pager etc.)

➢ Satellite communications

➢ Digital television / DVB

➢ High-speed modems such as ADSL, xDSL, etc.

6.1.2 BCH Codes as Industry Standards

• (511, 493) BCH code in ITU-T. Rec. H.261 “video codec for audiovisual service at

kb/s” a video coding standard used for video conferencing and video phone. n=511

m=9 k=493 n-k=18 t=2

• (40, 32) BCH code in ATM (Asynchronous Transfer Mode) is a shortened cyclic

code that can correct 1-bit error and detect 2-bit errors

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 54

6.1.3 BCH Code in image encryption

For the data security perspective we utilize a BCH code in round key addition and mixed

column matrix steps in AES algorithm and then put on this modified AES(Advanced

Encryption Standard) [18] algorithm to image encryption. The image encryption quality

permits to incorporate this alteration to AES.

AES algorithm consists of four steps: Substitute byte , Shift Rows, Mix Columns and Add

Round Keys .The AES algorithm is modified with the help of BCH codes have the

following steps: (1) Convert 128 bits of data into 16 data bytes and write these 16 bytes in

a 4 ∗ 4 state matrix;(2) The generator polynomial of BCH code is used as a round key. This

key is served as the secret key and the current state matrix is XOR with this key in each

add round key step;(3) Now the entries of the current state matrix are substituted with the

S-box entries; (4) Then perform the circular shift on each row of the current state matrix.

Row 0 is shifted 0 byte left, row 1 is shifted 1 byte left, row 2 is shifted 2 bytes left and row

3 shifted 3 bytes left and so on;(5) Now the current state matrix is multiplied with the mix

column matrix which is constructed by using the BCH code. Repeat these steps ten times

for AES-128 encryption results for data. This scheme is called AES-C. The modified AES-

C for the image encryption scheme. Figure 6.1(a) shows that original Lena image, Figure

6.1(b) and 6.1(c) shows encrypted image by original AES and modified AES-C

respectively. From Figure 6.1(b) and 6.1(c), it is analyzed that, encrypted image by AES-

C is better than encrypted image by AES. The results of AES-C are better in each channel

because correlation and energy are close to zero. If Contrast is greater, then it means that

image encryption quality is strong and the most important part of the quality of image

encryption technique is an entropy AES-C gives entropy close to 8 which give high security

for the confidential image.

 (a) (b) (c)

Figure 6.1 (a) Original Lena image;(b) Image by AES;(c) Image by AES-C

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 55

6.1.4 Error-free Communication in NB-IoT

Internet of Things (IoT), a parasitic innovation and one of a kind revolutionizing the cyber

networks far and wide over the globe have infiltrated several sectors of human lives.

Ensuring and elevating the quality of human living, it continues to evolve with time. The

much-evolved version of IoT, Narrow Band Internet of things (NB-IoT) has left the world

astonished owing to its unique ability to digitally transform lives with much lesser

frequency of operation. The ability to coexist with technologies such as Artificial

Intelligence (AI) and Machine Learning (ML) having a contained asset wastage, provides

NB-IoT a high ground over existing innovations. With the introduction of error-correcting

codes such as BCH in the client and server-side of the network, NB-IoT prospers over

Industrial sectors ensuring nearly absolute error-free data transfer. BCH codes incorporated

alongside NB-IoT structures a favored arrangement in ensuring the quality of data and

assuring the well-defined future of several industrial sectors.

Figure 6.2 NB-IoT architecture with BCH arrangement

NB-IoT is surely evinced in terms of a cost-effective, reliable, and low power solution. But

still, persist with attenuation of the received signal due to external factors. For a critical

system data, integrity is must, therefore, the BCH is inculcated in NBIoT at the transceiver

with error correction capability close to achieving absolute error-free data and successful

data transfer.

Client-side server-side

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 56

6.2 Advantages

A class of powerful multiple-error-correcting cyclic codes was discovered by Bose and

Ray-Chaudhuri in 1960 and independently by Hocquenghem in 1959. These codes are

known as the BCH codes.

The BCH codes provide a wide variety of block lengths and corresponding code rates. They

are important not only because of their flexibility in the choice of their code parameters,

but also because, at block lengths of a few hundred or less, many of these codes are among

the most used codes of the same lengths and code rates.

Another advantage is that there exist very elegant and powerful algebraic decoding

algorithms for the BCH codes. The importance of the BCH codes also stems from the fact

that they are capable of correcting all random patterns of t errors by a decoding algorithm

that is both simple and easily realized in a reasonable amount of equipment. BCH codes

occupy a prominent place in the theory and practice of multiple-error correction.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 57

Chapter 7

CONCLUSIONS AND SCOPE FOR FUTURE WORK

The proposed Systolic Array type BCH encoder can be molded to whichever parallelization

factor without any complications. BCH codes are illustrated to be eminent error correcting

codes for codes of any length and irrespective of how random the errors are. The exact

capabilities of these codes have driven large attention as the encoding-decoding system is

simple. Thus, adopting methods involving parallel approach, the speed of operation and

device utilization are improved to a great extent as illustrated with the comparisons made

considering BCH(63,39,4) encoder.

The error correction is successfully done by implementing a BCH decoder. It is seen that

when errors occur in the received codeword, the corresponding syndrome, coefficients and

roots are computed to locate position of the errors precisely which can be corrected by

simply flipping only those bits. In this paper, we have considered only 4-bit error

correction. One prime highlight of this method is that the error correction is done in the

parity as well in addition to the message as there are chances of the parity also being

affected while transmission. This provides a more reliable retrieval of data at receiver end.

The same concept can be extended to multiple error correction by generating the syndrome

and based on i (2t-1) value in ჽi , the Λv equations can be obtained from PGZ algorithm

and the corresponding Chien search can be applied for determining the error locations and

correcting them.

The further study will be on the concept of error detection when there are more than t-bits

of error, that is, here, when we encounter more than 4-bits of error, the roots generated may

not yield the exact error locations. A system having adaptability to correct any number of

error bits is to be designed.

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 58

REFERENCES

[1] Rajesh Mehra & Garima Saini , Sukhbir Singh- “FPGA Based High Speed BCH Encoder for Wireless

Communication Applications” 2011 International Conference on Communication Systems and

Network Technologies

[2] Po-Ning Chen, Hsuan-Yin Lin, Stefan M. Moser – “Nonlinear codes outperform the best linear codes

on the binary erasure channel” 2015 IEEE International Symposium on Information Theory (ISIT)

[3] FJ MacWilliams, NJA Sloane – “The theory of error-correcting codes”- 1977 - books.google.com

[4] Faisal Rasheed Lone, Arjun Puri, Sudesh Kumar , “Performance Comparison of Reed Solomon Code

and BCH Code over Rayleigh Fading Channel” International Journal of Computer Applications

71(20):23-26, June 2013

[5] 1961Je-Hoon Lee and Sharad Shakya- “Implementation of Parallel BCH Encoder Employing Tree-

Type Systolic Array Architecture” International Journal of Sensor and Its Applications for Control

Systems Vol.1, No.1 (2013), pp.1-12

[6] Nabil Abu-Khader, Pepe Siy -“Inversion/Division in Galois Field Using Multiple-Valued Logic” 37th

International Symposium on Multiple-Valued Logic (ISMVL'07)

[7] D. Gorenstein and N. Zierler, “A Class of Cyclic Linear Error-Correcting Codes in pm Symbols”

Journal of the Society of Industrial and Applied Mathmatics, vol. 9, pp. 207-214, June

[8] Yanni Chen and Keshab K. Parhi – “Area Efficient Parallel Decoder Architecture for long Bch Codes”

2004 IEEE International Conference on Acoustics, Speech, and Signal Processing

[9] Data Integrity Checks https://aeronavdata.com/capabilities/airport-mapping-data/integrity-checks/

[10] Technical note “NAND Error Correction Codes Introduction” by Macronix International Co., Ltd.-

AN0271 (Rev. 1), 17-02-2014

[11] E. R. Berlekamp,- ”On Decoding Binary Bose-Chaudhuri-Hocquenghem codes”, IEEE Transactions

on Information Theory, IT-11: 577-80, October 1965.

[12] Henry D. Pfister “Algebraic Decoding of Reed-Solomon and BCH Codes” November 15th, 2013 (rev.

2)

[13] Yi-Min Lin, Chi-Heng Yang, Chih-Hsiang Hsu, Hsie-Chia Chang, and Chen-Yi Lee – “A MPCN-

Based Parallel Architecture in BCH Decoders for NAND Flash Memory Devices” IEEE Transactions

on Circuits And Systems—Ii: Express Briefs, Vol. 58, No. 10, October 2011.

[14] 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-

Digital Converter User Guide

[15] 002-00499_S34ML01G2_S34ML02G2_S34ML04G2_1_Gb_2_Gb_4_Gb_3_V_4-

bit_ECC_SLC_NAND_Flash_Memory_for_Embedded.pdf

[16] Micron TN-29-71: Enabling Software BCH ECC on a Linux Platform Introduction

[17] Amit Kumar Panda, Shahbaz sarik, Abhishek Awasthi- “FPGA Implementation of Encoder for (15, k)

Binary BCH Code Using VHDL and Performance Comparison for Multiple Error Correction Control”

2012 International Conference on Communication Systems and Network Technologies

[18] Muhammad Asif and Tariq Shah “BCH Codes with computational approach and its applications in

image encryption”, Journal of Intelligent & Fuzzy Systems

https://aeronavdata.com/capabilities/airport-mapping-data/integrity-checks/

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 59

APPENDIX A

BCH Encoder: Module definition

--

-- Company:

-- Engineer:

--

-- Create Date: 17:34:03 03/16/2020

-- Design Name:

-- Module Name: bch_encoder - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 60

entity bch_encoder is

 Port (fpga_clk : in STD_LOGIC;

 fpga_reset : in STD_LOGIC;

 bch_enable : in STD_LOGIC;

 data : in STD_LOGIC_VECTOR (7 downto 0);

 parity_data_valid : out STD_LOGIC;

 parity_data : out STD_LOGIC_VECTOR (51 downto 0));

end bch_encoder;

architecture Behavioral of bch_encoder is

signal p: std_logic_vector(51 downto 0);

begin

process(fpga_clk)

 begin

 if(rising_edge()) then

 if(fpga_reset='1') then

 p <= x"0000000000000";

 elsif(bch_enable='1') then

 p(51) <= p(43) xor data(1) xor data(3) xor p(47) xor p(45);

 p(50) <= p(42) xor data(0) xor p(44) xor data(2) xor p(46);

 p(49) <= p(41) xor data(3) xor p(47);

 p(48) <= p(40) xor data(7) xor p(51) xor data(2) xor p(46);

 p(47) <= p(39) xor data(6) xor p(50) xor data(7) xor p(51) xor data(1) xor p(45);

 p(46) <= p(38) xor data(0) xor p(44) xor data(5) xor p(49) xor data(7) xor p(51) xor

data(6) xor p(50);

 p(45) <= p(37) xor data(1) xor p(45) xor data(3) xor p(47) xor data(5) xor p(49) xor

data(4) xor p(48) xor data(6) xor p(50);

 p(44) <= p(36) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor

data(3) xor p(47) xor data(5) xor p(49);

 p(43) <= p(35) xor data(2) xor p(46) xor data(4) xor p(48) xor data(7) xor p(51);

 p(42) <= p(34) xor data(1) xor p(45) xor data(3) xor p(47) xor data(7) xor p(51) xor

data(6) xor p(50);

 p(41) <= p(33) xor data(0) xor p(44) xor data(2) xor p(46) xor data(5) xor p(49) xor

data(7) xor p(51) xor data(6) xor p(50);

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 61

 p(40) <= p(32) xor data(3) xor p(47) xor data(5) xor p(49) xor data(7) xor p(51) xor

data(4) xor p(48) xor data(6) xor p(50);

 p(39) <= p(31) xor data(2) xor p(46) xor data(4) xor p(48) xor data(6) xor p(50) xor

data(3) xor p(47) xor data(5) xor p(49) xor data(7) xor p(51);

 p(38) <= p(30) xor data(2) xor p(46) xor data(4) xor p(48) xor data(6) xor p(50) xor

data(1) xor p(45) xor data(3) xor p(47) xor data(5) xor p(49);

 p(37) <= p(29) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor

data(1) xor p(45) xor data(3) xor p(47) xor data(5) xor p(49) xor data(7) xor p(51);

 p(36) <= p(28) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor

data(6) xor p(50);

 p(35) <= p(27) xor data(5) xor p(49) xor data(7) xor p(51);

 p(34) <= p(26) xor data(4) xor p(48) xor data(6) xor p(50);

 p(33) <= p(25) xor data(3) xor p(47) xor data(5) xor p(49) xor data(7) xor p(51);

 p(32) <= p(24) xor data(2) xor p(46) xor data(4) xor p(48) xor data(6) xor p(50) xor

data(7) xor p(51);

 p(31) <= p(23) xor data(1) xor p(45) xor data(3) xor p(47) xor data(5) xor p(49) xor

data(6) xor p(50) xor data(7) xor p(51);

 p(30) <= p(22) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor

data(6) xor p(50) xor data(5) xor p(49);

 p(29) <= p(21) xor data(4) xor p(48) xor data(5) xor p(49) xor data(7) xor p(51);

 p(28) <= p(20) xor data(3) xor p(47) xor data(4) xor p(48) xor data(6) xor p(50) xor

data(7) xor p(51);

 p(27) <= p(19) xor data(2) xor p(46) xor data(3) xor p(47) xor data(5) xor p(49) xor

data(7) xor p(51) xor data(6) xor p(50);

 p(26) <= p(18) xor data(1) xor p(45) xor data(2) xor p(46) xor data(4) xor p(48) xor

data(6) xor p(50) xor data(7) xor p(51) xor data(5) xor p(49);

 p(25) <= p(17) xor data(0) xor p(44) xor data(1) xor p(45) xor data(3) xor p(47) xor

data(5) xor p(49) xor data(4) xor p(48) xor data(6) xor p(50);

 p(24) <= p(16) xor data(0) xor p(44) xor data(1) xor p(45) xor data(2) xor p(46) xor

data(5) xor p(49) xor data(4) xor p(48) xor data(7) xor p(51);

 p(23) <= p(15) xor data(0) xor p(44) xor data(4) xor p(48) xor data(6) xor p(50) xor

data(7) xor p(51);

 p(22) <= p(14) xor data(1) xor p(45) xor data(5) xor p(49) xor data(6) xor p(50) xor

data(7) xor p(51);

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 62

 p(21) <= p(13) xor data(0) xor p(44) xor data(4) xor p(48) xor data(5) xor p(49) xor

data(6) xor p(50) xor data(7) xor p(51);

 p(20) <= p(12) xor data(4) xor p(48) xor data(5) xor p(49) xor data(6) xor p(50) xor

data(1) xor p(45);

 p(19) <= p(11) xor data(0) xor p(44) xor data(3) xor p(47) xor data(4) xor p(48) xor

data(5) xor p(49) xor data(7) xor p(51);

 p(18) <= p(10) xor data(1) xor p(45) xor data(2) xor p(46) xor data(4) xor p(48) xor

data(6) xor p(50) xor data(7) xor p(51);

 p(17) <= p(9) xor data(0) xor p(44) xor data(1) xor p(45) xor data(3) xor p(47) xor

data(5) xor p(49) xor data(6) xor p(50) xor data(7) xor p(51);

 p(16) <= p(8) xor data(0) xor p(44) xor data(1) xor p(45) xor data(2) xor p(46) xor

data(3) xor p(47) xor data(4) xor p(48) xor data(5) xor p(49) xor data(6) xor p(50) xor

data(7) xor p(51);

 p(15) <= p(7) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor

data(5) xor p(49) xor data(6) xor p(50) xor data(7) xor p(51);

 p(14) <= p(6) xor data(4) xor p(48) xor data(5) xor p(49) xor data(6) xor p(50);

 p(13) <= p(5) xor data(3) xor p(47) xor data(4) xor p(48) xor data(5) xor p(49) xor

data(7) xor p(51);

 p(12) <= p(4) xor data(2) xor p(46) xor data(3) xor p(47) xor data(4) xor p(48) xor

data(6) xor p(50) xor data(7) xor p(51);

 p(11) <= p(3) xor data(1) xor p(45) xor data(2) xor p(46) xor data(3) xor p(47) xor

data(5) xor p(49) xor data(6) xor p(50);

 p(10) <= p(2) xor data(0) xor p(44) xor data(1) xor p(45) xor data(2) xor p(46) xor

data(4) xor p(48) xor data(5) xor p(49) xor data(7) xor p(51);

 p(9) <= p(1) xor data(0) xor p(44) xor data(4) xor p(48) xor data(6) xor p(50);

 p(8) <= p(0) xor data(1) xor p(45) xor data(5) xor p(49) xor data(7) xor p(51);

 p(7) <= data(0) xor p(44) xor data(4) xor p(48) xor data(6) xor p(50) xor data(7)

xor p(51);

 p(6) <= data(1) xor p(45) xor data(5) xor p(49) xor data(6) xor p(50);

 p(5) <= data(0) xor p(44) xor data(4) xor p(48) xor data(5) xor p(49) xor data(7)

xor p(51);

 p(4) <= data(1) xor p(45) xor data(4) xor p(48) xor data(6) xor p(50) xor data(7)

xor p(51);

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 63

 p(3) <= data(0) xor p(44) xor data(3) xor p(47) xor data(5) xor p(49) xor data(6)

xor p(50) xor data(7) xor p(51);

 p(2) <= data(1) xor p(45) xor data(2) xor p(46) xor data(3) xor p(47) xor data(4)

xor p(48) xor data(5) xor p(49) xor data(6) xor p(50);

 p(1) <= data(0) xor p(44) xor data(1) xor p(45) xor data(2) xor p(46) xor data(3)

xor p(47) xor data(4) xor p(48) xor data(5) xor p(49);

 p(0) <= data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48);

 end if;

 end if;

 end process;

 parity_data<= p;

end Behavioral;

BCH Encoder: Test Bench

--

-- Company:

-- Engineer:

--

-- Create Date: 15:18:37 04/23/2020

-- Design Name:

-- Module Name: /home/ise/mp_bch/bchenc/bch_encoder_tb.vhd

-- Project Name: bchenc

-- Target Device:

-- Tool versions:

-- Description:

--

-- VHDL Test Bench Created by ISE for module: bch_encoder

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 64

-- Notes:

-- This testbench has been automatically generated using types std_logic and

-- std_logic_vector for the ports of the unit under test. Xilinx recommends

-- that these types always be used for the top-level I/O of a design in order

-- to guarantee that the testbench will bind correctly to the post-implementation

-- simulation model.

--

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--USE ieee.numeric_std.ALL;

ENTITY bch_encoder_tb IS

END bch_encoder_tb;

 ARCHITECTURE behavior OF bch_encoder_tb IS

 -- Component Declaration for the Unit Under Test (UUT)

 COMPONENT bch_encoder

 PORT(

 fpga_clk : IN std_logic;

 fpga_reset : IN std_logic;

 bch_enable : IN std_logic;

 data : IN std_logic_vector(7 downto 0);

 -- parity_data_valid : OUT std_logic;

 parity_data : OUT std_logic_vector(51 downto 0)

);

 END COMPONENT;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 65

 --Inputs

 signal fpga_clk : std_logic := '0';

 signal fpga_reset : std_logic := '0';

 signal bch_enable : std_logic := '0';

 signal data : std_logic_vector(7 downto 0) := (others => '0');

 --Outputs

 --signal parity_data_valid : std_logic;

 signal parity_data : std_logic_vector(51 downto 0);

 -- Clock period definitions

 constant fpga_clk_period : time := 10 ns;

BEGIN

 -- Instantiate the Unit Under Test (UUT)

 uut: bch_encoder PORT MAP (

 fpga_clk => fpga_clk,

 fpga_reset => fpga_reset,

 bch_enable => bch_enable,

 data => data,

 -- parity_data_valid => parity_data_valid,

 parity_data => parity_data

);

 -- Clock process definitions

 fpga_clk_process :process

 begin

 fpga_clk <= '0';

 wait for fpga_clk_period/2;

 fpga_clk <= '1';

 wait for fpga_clk_period/2;

 end process;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 66

 -- Stimulus process

 stim_proc: process

 begin

 -- hold reset state for 100 ns.

 wait for 100 ns;

 -- insert stimulus here

 data <= "11111111";fpga_reset <= '1';bch_enable <= '1';wait for fpga_clk_period;

 data <= "11111111";fpga_reset <= '1';bch_enable <= '0';wait for fpga_clk_period;

 data <= "11111111";fpga_reset <= '0';bch_enable <= '0';wait for fpga_clk_period;

 --data <= "00011111";fpga_reset <= '0';bch_enable <= '1';wait for

fpga_clk_period;

 fpga_reset <= '1'; bch_enable <= '1';data <= "10100101";wait for

fpga_clk_period;

 for i in 1 to 10 loop

 fpga_reset <= '0'; bch_enable <= '1';data <= "10101010";wait for fpga_clk_period;

 end loop;

 for i in 1 to 10 loop

 fpga_reset <= '0'; bch_enable <= '1';data <= "11001100";wait for fpga_clk_period;

 end loop;

-- for i in 1 to 127 loop

-- data <= "11111111";wait for fpga_clk_period;

-- END LOOP;

-- for i in 1 to 127 loop

-- data <= "00000000";wait for fpga_clk_period;

-- END LOOP;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 67

-- for i in 1 to 127 loop

-- data <= "11111111";wait for fpga_clk_period;

-- END LOOP;

-- for i in 1 to 127 loop

-- data <= "00000000";wait for fpga_clk_period;

-- END LOOP;

-- for i in 1 to 127 loop

-- data <= "11111111";wait for fpga_clk_period;

-- END LOOP;

-- for i in 1 to 127 loop

-- data <= "00000000";wait for fpga_clk_period;

-- END LOOP;

-- for i in 1 to 127 loop

-- data <= "11111111";wait for fpga_clk_period;

-- END LOOP;

-- for i in 1 to 127 loop

-- data <= "00000000";wait for fpga_clk_period;

-- END LOOP;

 data <= "--------";wait for fpga_clk_period;

 bch_enable <= '0';

 --$stop;

 wait;

 end process;

END;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 68

APPENDIX B

BCH Decoder: Module Definition

--

-- Company:

-- Engineer:

--

-- Create Date: 23:02:12 04/29/2020

-- Design Name:

-- Module Name: bch - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.Numeric_Std.all;

--use IEEE.STD_LOGIC_arith.all;

use ieee.std_logic_signed.all;

use std.textio.all;

entity bch_decoder is

Port (fpga_clk : in STD_LOGIC;

BCH_RESET : in STD_LOGIC;

bch_decoder_en : in STD_LOGIC;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 69

bch_decoder_data :in std_logic_vector (7 downto 0);

error_byte_location_OP_1 : inout STD_LOGIC_VECTOR (9 downto 0);

error_bit_location_OP_1 : out STD_LOGIC_VECTOR (7 downto 0);

error_byte_location_OP_2 : inout STD_LOGIC_VECTOR (9 downto 0);

error_bit_location_OP_2 : out STD_LOGIC_VECTOR (7 downto 0);

error_byte_location_OP_3 : inout STD_LOGIC_VECTOR (9 downto 0);

error_bit_location_OP_3 : out STD_LOGIC_VECTOR (7 downto 0);

error_byte_location_OP_4 : inout STD_LOGIC_VECTOR (9 downto 0);

error_bit_location_OP_4: out STD_LOGIC_VECTOR (7 downto 0);

-- mem_OP : out STD_LOGIC_VECTOR (5 downto 0);

num_of_error : out STD_LOGIC_VECTOR (2 downto 0)

--error_location_valid : out STD_LOGIC

);

end bch_decoder;

architecture Behavioral of bch_decoder is

-----------------RX_buffer---------------------------------

type buff is array (0 to 1023) of std_logic_vector(7 downto 0);

signal rx : buff;

signal rx_done : std_logic := '0';

----------------roots mem declaration---------------------------

type memory is array (0 to 8190) of std_logic_vector(12 downto 0);

signal mem : memory;

signal root_done : std_logic := '0';

----------------syndrome declaration-------------

signal s1 : STD_LOGIC_VECTOR (12 downto 0);

signal s2 : std_logic_vector (12 downto 0);

signal s3 : std_logic_vector (12 downto 0);

signal s4 : std_logic_vector (12 downto 0);

signal s5 : std_logic_vector (12 downto 0);

signal s6 : std_logic_vector (12 downto 0);

signal s7 : std_logic_vector (12 downto 0);

signal i1 : integer range 0 to 8191 := 0;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 70

---------------eigen value declaration-----------

signal A1 : std_logic_vector (12 downto 0);

signal A2 : std_logic_vector (12 downto 0);

signal A3 : std_logic_vector (12 downto 0);

signal A4 : std_logic_vector (12 downto 0);

signal eigen_en :std_logic := '0';

signal eigen_done :std_logic := '0';

----------------chien search declaration-----------

signal bch_decoder_chien_en : std_logic := '0';

signal ch_ini : std_logic := '0';

signal chien_done : std_logic := '0';

signal jc: integer range 0 to 4 := 0;

type error_loc_roots is array (0 to 3) of std_logic_vector(12 downto 0);

signal er_loc_root : error_loc_roots;

---------------GF multiplication function------------------------------

function mul (v1, v2 : in std_logic_vector) return std_logic_vector is

constant m : integer := 13;

variable dummy : std_logic;

variable v_temp : std_logic_vector(m-1 downto 0);

variable ret : std_logic_vector(m-1 downto 0);

begin

v_temp := (others=>'0'); --- p(x)=1+ x+x3+ x4 + x13

for i in 0 to m-1 loop

dummy := v_temp(12);

v_temp(12) := v_temp(11);

v_temp(11) := v_temp(10);

v_temp(10) := v_temp(9);

v_temp(9) := v_temp(8);

v_temp(8) := v_temp(7);

v_temp(7) := v_temp(6);

v_temp(6) := v_temp(5);

v_temp(5) := v_temp(4);

v_temp(4) := v_temp(3) xor dummy;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 71

v_temp(3) := v_temp(2) xor dummy;

v_temp(2) := v_temp(1) ;

v_temp(1) := v_temp(0) xor dummy;

v_temp(0) := dummy;

for j in 0 to m-1 loop

v_temp(j) := v_temp(j) xor (v1(j) and v2(m-i-1));

end loop;

end loop;

ret := v_temp;

return ret;

end mul;

----------------------GF division function-------------------------------

function div (a, b : in std_logic_vector) return std_logic_vector is

constant m : integer := 13;

variable ret : std_logic_vector(m-1 downto 0);

variable temp : std_logic_vector(m-1 downto 0) ;

begin

temp := b; --- b^(-1) = b^((2m)-2) (since, b^((2m)-1) =1)

for i in 0 to 10 loop

temp := mul (temp,temp);

temp := mul (b,temp);

end loop;

temp := mul (temp,temp);

ret := mul (a,temp);

return ret;

end div;

--

--

begin

------------------RX_buffer----------------------------

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 72

process(fpga_clk)

variable a : integer range 0 to 1023:= 1023;

variable f : integer range 0 to 1023 := 1023;

begin

if(fifo_done = '0') then ----receive padded zeros first then (msb)data and parity(lsb) bits

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

if(BCH_RESET = '0') then

if(f >=0 and f < 1024) then

rx(f) <= bch_decoder_data; a:= f; f:=f-1;

end if;

end if;

end if;

end if;

if(a = 0) then rx_done <= '1';

end if;

end if;

end process;

------------mem ------------------------------

process(fpga_clk)

variable temp_mem : memory;---------calculating roots for extension field (0 to 8190

alphas)

variable j : integer := 0;

variable root: std_logic_vector(12 downto 0);

variable var1: std_logic;

variable var3: std_logic;

variable var4: std_logic;

begin

if(root_done = '0') then

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 73

if(BCH_RESET = '1') then

root := "0000000000000";

root := "0000000000001";

temp_mem(0) := root;

else

if(j < 8190) then

if(root(12) /= '1') then

root := root(11 downto 0) & root(12);

else

var1 := root(0);

var3 := root(2);

var4 := root(3);

root := (root(11 downto 0)&root(12));

root(1) := '1' xor var1;

root(3) := '1' xor var3;

root(4) := '1' xor var4;

end if ;

j := j+1;

temp_mem(j) := root;

end if;

end if;

end if;

end if;

if(j = 8190) then mem <= temp_mem; root_done <= '1';end if;

end if;

end process;

--------------------Syndrome calculation------------

process(fpga_clk) ---s1----

variable mul : std_logic_vector(12 downto 0);

variable n : integer range 0 to 1023 := 0;

variable j: integer range 0 to 7 := 0;

variable si : integer range 0 to 8191:= 0;

variable sum: Std_logic_vector(12 downto 0);

variable s11: Std_logic_vector(12 downto 0) := (others => '0');

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 74

variable i_done1: Std_logic := '0';

begin

if(i_done1 /= '1') then

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

0

if(si < 8190) then

for n in 0 to 1023 loop

for j in 0 to 7 loop

if(si /= 8191) then

mul := mem(si) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &

rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j));

sum := mul xor S11;

S11 := sum;

S1 <= (mem(i1) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &

rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j))) xor S1;

si := si+1;

end if;

end loop;

end loop;

end if;

end if;

end if;

end if;

if(si > 8190) then i_done1 := '1' ; i1 <= si; s1 <= s11; end if;

end if;

end process;

process(fpga_clk) ---s2----

variable mul2 : std_logic_vector(12 downto 0);

variable si2 : integer range 0 to 8200:= 0;

variable sum2: Std_logic_vector(12 downto 0);

variable s22: Std_logic_vector(12 downto 0) := (others => '0');

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 75

variable i_done2: Std_logic := '0';

begin

if(i_done2 /= '1') then

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

if(root_done = '1') then

s_2:for n in 0 to 1023 loop

for j in 0 to 7 loop

if(si2 < 8191) then

mul2 := mem(si2) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &

rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j));

sum2 := mul2 xor S22;

S22 := sum2;

elsif(si2 > 8190) then si2 := si2 - 8191;

end if;

exit s_2 when si2 = 8189;

si2 := si2+2;

end loop;

end loop;

end if;

end if;

end if;

if(si2 = 8189) then s2 <= s22; i_done2 := '1';end if;

end if;

end process;

--

process(fpga_clk) ---s3----

variable mul3 : std_logic_vector(12 downto 0);

variable si3 : integer range 0 to 8200:= 0;

variable sum3: Std_logic_vector(12 downto 0);

variable s33: Std_logic_vector(12 downto 0) := (others => '0');

variable i_done3: Std_logic := '0';

begin

if(i_done3 /= '1') then

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 76

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

if(root_done = '1') then

s_3:for n in 0 to 1023 loop

for j in 0 to 7 loop

if(si3 < 8191) then

mul3 := mem(si3) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &

rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j));

sum3 := mul3 xor S33;

S33 := sum3;

elsif(si3 > 8190) then si3 := si3 - 8191;

end if;

exit s_3 when si3 = 8188;

si3 := si3+3;

end loop;

end loop;

end if;

end if;

end if;

if(si3 = 8188) then s3 <= s33; i_done3 := '1'; end if;

end if;

end process;

process(fpga_clk) ---s4----

variable mul4: std_logic_vector(12 downto 0);

variable si4 : integer range 0 to 8200:= 0;

variable sum4: Std_logic_vector(12 downto 0);

variable s44: Std_logic_vector(12 downto 0) := (others => '0');

variable i_done4: Std_logic := '0';

begin

if(i_done4 /= '1') then

if(rising_edge(fpga_clk)) then

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 77

if(bch_decoder_en = '1') then

if(root_done = '1') then

s_4:for n in 0 to 1023 loop

for j in 0 to 7 loop

if(si4 < 8191) then

mul4 := mem(si4) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &

rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j));

sum4 := mul4 xor S44;

S44 := sum4;

elsif(si4 > 8190) then si4 := si4 - 8191;

end if;

exit s_4 when si4 = 8187;

si4 := si4+4;

end loop;

end loop;

end if;

end if;

end if;

if(si4 = 8187) then s4 <= s44; i_done4 := '1';end if;

end if;

end process;

process(fpga_clk) ---s5----

variable mul5 : std_logic_vector(12 downto 0);

variable si5 : integer range 0 to 8200:= 0;

variable sum5: Std_logic_vector(12 downto 0);

variable s55: Std_logic_vector(12 downto 0) := (others => '0');

variable i_done5: Std_logic := '0';

begin

if(i_done5 /= '1') then

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

if(root_done = '1') then

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 78

s_5:for n in 0 to 1023 loop

for j in 0 to 7 loop

if(si5 < 8191) then

mul5:= mem(si5) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &

rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j));

sum5 := mul5 xor S55;

S55 := sum5;

elsif(si5 > 8190) then si5 := si5 - 8191;

end if;

exit s_5 when si5 = 8186;

si5 := si5+5;

end loop;

end loop;

end if;

end if;

end if;

if(si5 = 8186) then s5 <= s55; i_done5 := '1'; end if;

end if;

end process;

process(fpga_clk) ---s6----

variable mul6 : std_logic_vector(12 downto 0);

variable si6 : integer range 0 to 8200:= 0;

variable sum6: Std_logic_vector(12 downto 0);

variable s66: Std_logic_vector(12 downto 0) := (others => '0');

variable i_done6: Std_logic := '0';

begin

if(i_done6 /= '1') then

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

if(root_done = '1') then

s_6:for n in 0 to 1023 loop

for j in 0 to 7 loop

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 79

if(si6 < 8191) then

mul6:= mem(si6) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &

rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j));

sum6 := mul6 xor S66;

S66 := sum6;

elsif(si6 > 8190) then si6 := si6 - 8191;

end if;

exit s_6 when si6 = 8185;

si6 := si6+6;

end loop;

end loop;

end if;

end if;

end if;

if(si6 = 8185) then s6 <= s66; i_done6 := '1';end if;

end if;

end process;

process(fpga_clk) ---s7----

variable mul7 : std_logic_vector(12 downto 0);

variable si7 : integer range 0 to 8200:= 0;

variable sum7: Std_logic_vector(12 downto 0);

variable s77: Std_logic_vector(12 downto 0) := (others => '0');

variable i_done7: Std_logic := '0';

begin

if(i_done7 /= '1') then

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

if(root_done = '1') then

s_7:for n in 0 to 1023 loop

for j in 0 to 7 loop

if(si7 < 8191) then

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 80

mul7:= mem(si7) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &

rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j));

sum7 := mul7 xor S77;

S77 := sum7;

elsif(si7 > 8190) then si7 := si7 - 8191;

end if;

exit s_7 when si7 = 8184;

si7 := si7+7;

end loop;

end loop;

end if;

end if;

end if;

if(si7 = 8184) then s7 <= s77; i_done7 := '1';end if;

end if;

if((s1 or s2 or s3 or s4 or s5 or s6 or s7) /= "-------------") then eigen_en <= '1';end if;

end process;

-------------------eigen calculations---------------------------------

process(fpga_clk)

variable k1: std_logic_vector(12 downto 0);

variable k2: std_logic_vector(12 downto 0);

variable k3: std_logic_vector(12 downto 0);

variable k4: std_logic_vector(12 downto 0);

variable k5: std_logic_vector(12 downto 0);

variable k6: std_logic_vector(12 downto 0);

variable k7: std_logic_vector(12 downto 0);

variable k8: std_logic_vector(12 downto 0);

variable k9: std_logic_vector(12 downto 0);

variable k10: std_logic_vector(12 downto 0);

variable k11: std_logic_vector(12 downto 0);

variable k12: std_logic_vector(12 downto 0);

variable k13: std_logic_vector(12 downto 0);

variable k14: std_logic_vector(12 downto 0);

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 81

variable k15: std_logic_vector(12 downto 0);

variable k16: std_logic_vector(12 downto 0);

variable k17: std_logic_vector(12 downto 0);

variable k18: std_logic_vector(12 downto 0);

variable nr1: std_logic_vector(12 downto 0);

variable nr2: std_logic_vector(12 downto 0);

variable dr1: std_logic_vector(12 downto 0);

variable A11: std_logic_vector(12 downto 0);

variable A22: std_logic_vector(12 downto 0);

variable A33: std_logic_vector(12 downto 0);

variable A44: std_logic_vector(12 downto 0);

begin

if(eigen_done /='1') then

if(eigen_en = '1') then

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

k1 := mul (S1,S7); --op s1s7

k2 := mul (S1,S1); --op s1^2

k3 := mul (k2,k2); --op s1^4

k4 := mul (k3,k3); --op s1^8

k5 := mul (S1,k3); --op s1^5

k6 := mul (S3,k5); --op s3s1^5

k7 := mul (S3,S5); --op s3s5

k8 := mul (S1,k2); --op s1^3

k9 := mul (S3,k8); --op s3s1^3

k10 := mul (S3,S3); --op s3^2

k11 := mul (k5,S1); --op s1^6

k12 := mul (S1,S5); --op s1s5

nr1 := (k1 xor k4 xor k6 xor k7);

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 82

dr1 := (k9 xor k10 xor k11 xor k12);

k13 := div (nr1,dr1);

k14 := mul (S1,A22);

k15 := mul (S3,k2);

k16 := mul (A22,k8);

k17 := mul (A22,S3);

nr2 := (k15 xor S5 xor k16 xor k17);

k18 := div (nr2,S1);

A11 := s1;

A22 := k13;

A33 := (k8 xor S3 xor k14);

A44 := k18;

end if;

end if;

end if;

A1 <= A11;

A2 <= A22;

A3 <= A33;

A4 <= A44;

if((A1 or A2 or A3 or A4) /= ("-------------")) then bch_decoder_chien_en <= '1' ;

eigen_done <= '1'; end if;

end if;

end process;

---- -------------------------------chien search-------------

process(fpga_clk)

variable ch1 : std_logic_vector (12 downto 0);

variable ch2 : std_logic_vector (12 downto 0);

variable ch3 : std_logic_vector (12 downto 0);

variable ch4 : std_logic_vector (12 downto 0);

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 83

variable Ach1: std_logic_vector(12 downto 0) := (others => '0');

variable Ach2: std_logic_vector(12 downto 0) := (others => '0');

variable Ach3: std_logic_vector(12 downto 0) := (others => '0');

variable Ach4: std_logic_vector(12 downto 0) := (others => '0');

variable g : std_logic_vector(12 downto 0) := (others => '0');

variable r : std_logic_vector(12 downto 0) := (others => '1');

begin

if(chien_done /= '1') then

if(rising_edge(fpga_clk)) then

if(bch_decoder_chien_en = '1' and ch_ini = '0') then

Ach1 := A1;

Ach2 := A2;

Ach3 := A3;

Ach4 := A4;

r := "0000000000000";

ch_ini <= '1';

elsif(ch_ini = '1') then

count <= count+1;

g := "0000000000001" xor Ach1 xor Ach2 xor Ach3 xor Ach4;

if(("0000000000001" xor Ach1 xor Ach2 xor Ach3 xor Ach4) = "0000000000000") then

er_loc_root(jc) <= r+"1";

jc <= jc + 1;

end if;

r := r+1;

ch1 := mul (Ach1,mem(1));

ch2 := mul (Ach2,mem(2));

ch3 := mul (Ach3,mem(3));

ch4 := mul (Ach4,mem(4));

Ach1 := ch1;

Ach2 := ch2;

Ach3 := ch3;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 84

Ach4 := ch4;

if(r = "1111111111111") then chien_done <= '1';end if;

end if;

end if;

end if;

end process;

---------------------------------error location op -------------

process(fpga_clk)

variable er1 : std_logic_vector(12 downto 0) := (others => '0');

variable er2 : std_logic_vector(12 downto 0) := (others => '0');

variable er3 : std_logic_vector(12 downto 0) := (others => '0');

variable er4 : std_logic_vector(12 downto 0) := (others => '0');

variable temp_rx : std_logic_vector(7 downto 0) := (others => '0');

variable empty: std_logic := '0';

begin

if(rising_edge(fpga_clk)) then

if(bch_decoder_en = '1') then

case jc is

when 4 =>

er1 := er_loc_root(0)(12 downto 0) ;

er2 := er_loc_root(1)(12 downto 0) ;

er3 := er_loc_root(2)(12 downto 0) ;

er4 := er_loc_root(3)(12 downto 0) ;

er1 := 8191 - (er1);

er2 := 8191 - (er2);

er3 := 8191 - (er3);

er4 := 8191 - (er4);

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 85

error_byte_location_OP_1 <= er1/8 ;

error_bit_location_OP_1 <= er1 mod 8;

error_byte_location_OP_2 <= er2 /8 ;

error_bit_location_OP_2 <= er2 mod 8;

error_byte_location_OP_3 <= er3/8 ;

error_bit_location_OP_3 <= er3 mod 8;

error_byte_location_OP_4 <= er4/8 ;

error_bit_location_OP_4 <= er4 mod 8;

num_of_error <= jc;

--temp_rx := rx;

--temp_rx(to_integer(unsigned(er1))) := not(temp_rx(to_integer(unsigned(er1))));

--temp_rx(to_integer(unsigned(er2))) := not(temp_rx(to_integer(unsigned(er2))));

--temp_rx(to_integer(unsigned(er3))) := not(temp_rx(to_integer(unsigned(er3))));

--temp_rx(to_integer(unsigned(er4))) := not(temp_rx(to_integer(unsigned(er4))));

--corr_msg_out=temp_rx; //output corrected msg declare at port

when 3 =>

er1 := er_loc_root(0)(12 downto 0) ;

er2 := er_loc_root(1)(12 downto 0) ;

er3 := er_loc_root(2)(12 downto 0) ;

er1 := 8191 - (er1);

er2 := 8191 - (er2);

er3 := 8191 - (er3);

error_byte_location_OP_1 <= er1/8 ;

error_bit_location_OP_1 <= er1 mod 8;

error_byte_location_OP_2 <= er2 /8 ;

error_bit_location_OP_2 <= er2 mod 8;

error_byte_location_OP_3 <= er3/8 ;

error_bit_location_OP_3 <= er3 mod 8;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 86

num_of_error <= jc;

--temp_rx := rx;

--temp_rx(to_integer(unsigned(er1))) := not(temp_rx(to_integer(unsigned(er1))));

--temp_rx(to_integer(unsigned(er2))) := not(temp_rx(to_integer(unsigned(er2))));

--temp_rx(to_integer(unsigned(er3))) := not(temp_rx(to_integer(unsigned(er3))));

--corr_msg_out=temp_rx; //output corrected msg declare at port

when 2 =>

er1 := er_loc_root(0)(12 downto 0) ;--(er_loc_root(0) / 2);

er2 := er_loc_root(1)(12 downto 0) ;--(er_loc_root(1) / 2);

er1 := 8191 - (er1);

er2 := 8191 - (er2);

error_byte_location_OP_1 <= er1/8 ;

error_bit_location_OP_1 <= er1 mod 8;

error_byte_location_OP_2 <= er2 /8 ;

error_bit_location_OP_2 <= er2 mod 8;

num_of_error <= jc;

--temp_rx := rx;

--temp_rx(to_integer(unsigned(er1))) := not(temp_rx(to_integer(unsigned(er1))));

--temp_rx(to_integer(unsigned(er2))) := not(temp_rx(to_integer(unsigned(er2))));

--corr_msg_out=temp_rx; //output corrected msg declare at port

when 1 =>

er1 := er_loc_root(0)(12 downto 0) ;

er1 := 8191 - (er1);

error_byte_location_OP_1 <= er1/8 ;

error_bit_location_OP_1 <= er1 mod 8;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 87

num_of_error <= jc;

-- temp_rx := rx;

-- temp_rx(to_integer(unsigned(er1)))

:= not(temp_rx(to_integer(unsigned(er1))));

when others => empty := '1';

end case;

end if;

end if;

end process;

end Behavioral;

BCH Decoder: Test Bench

--

-- Company:

-- Engineer:

--

-- Create Date: 14:16:32 06/04/2020

-- Design Name:

-- Module Name: F:/hdl codes/syndrome/syn_tb.vhd

-- Project Name: syndrome

-- Target Device:

-- Tool versions:

-- Description:

--

-- VHDL Test Bench Created by ISE for module: syn_fifo_try

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 88

--

-- Notes:

-- This testbench has been automatically generated using types std_logic and

-- std_logic_vector for the ports of the unit under test. Xilinx recommends

-- that these types always be used for the top-level I/O of a design in order

-- to guarantee that the testbench will bind correctly to the post-implementation

-- simulation model.

--

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--USE ieee.numeric_std.ALL;

ENTITY syn_tb IS

END syn_tb;

ARCHITECTURE behavior OF syn_tb IS

 -- Component Declaration for the Unit Under Test (UUT)

 COMPONENT syn_fifo_try

 PORT(

 fpga_clk : IN std_logic;

 BCH_RESET : IN std_logic;

 bch_decoder_en : IN std_logic;

 bch_decoder_data : IN std_logic_vector(7 downto 0)

);

 END COMPONENT;

 --Inputs

 signal fpga_clk : std_logic := '0';

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 89

 signal BCH_RESET : std_logic := '0';

 signal bch_decoder_en : std_logic := '0';

 signal bch_decoder_data : std_logic_vector(7 downto 0) := (others => '0');

 -- Clock period definitions

 constant fpga_clk_period : time := 10 ns;

BEGIN

 -- Instantiate the Unit Under Test (UUT)

 uut: syn_fifo_try PORT MAP (

 fpga_clk => fpga_clk,

 BCH_RESET => BCH_RESET,

 bch_decoder_en => bch_decoder_en,

 bch_decoder_data => bch_decoder_data

);

 -- Clock process definitions

 fpga_clk_process :process

 begin

 fpga_clk <= '0';

 wait for fpga_clk_period/2;

 fpga_clk <= '1';

 wait for fpga_clk_period/2;

 end process;

 -- Stimulus process

 stim_proc: process

 begin

 -- hold reset state for 100 ns.

 wait for 100 ns;

-- BCH_RESET <= '1';bch_decoder_en <= '1'; wait for fpga_clk_period;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 90

-- ************TESTCASE 20 Bytes *******************************

--

--ip:

-- fpga_reset <= '1'; bch_enable <= '1';data <= "10100101";wait for fpga_clk_period;

-- for i in 1 to 10 loop

-- fpga_reset <= '0'; bch_enable <= '1';data <= "10101010";wait for fpga_clk_period;

-- end loop;

-- for i in 1 to 10 loop

-- fpga_reset <= '0'; bch_enable <= '1';data <= "11001100";wait for fpga_clk_period;

-- end loop;

--

--op:1000 00011001 11101111 11111000 01011011 00001001 11111000

--

--***

BCH_RESET <= '1';bch_decoder_en <= '1'; wait for fpga_clk_period;

bch_decoder_data <= "-0000000"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period; --rx(1023) msb

for i in 1 to 996 loop

bch_decoder_data <= "00000000"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

end loop;

bch_decoder_data <= "00001010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "10101010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "10100010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--10101010 err

bch_decoder_data <= "10101010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 91

bch_decoder_data <= "10101010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "10101010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "10101010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "10101010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "10101010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "10101010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "10101101"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--10101100 err

bch_decoder_data <= "11001100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;-- 11001100

bch_decoder_data <= "11001100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--11001100

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 92

bch_decoder_data <= "11001000"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--parity + 4b of data

bch_decoder_data <= "00011001"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11101111"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11111000"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "01011011"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "00001001"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

bch_decoder_data <= "11111000"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

---- =======================================enc working test case

1=================================

------ip=10101010,11000011,00001111,,

--

------10101010=01010101,11000011=11000011,00001111=11110000

------op=51,0010 11010001 11011011 10100101 10010011 10100011 10111000 ,0

--

--bch_decoder_data <= "-0000000"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period; --rx(1023) msb

--for i in 1 to 1013 loop

--bch_decoder_data <= "00000000"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

--end loop;

--bch_decoder_data <= "00001010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--data --00001010

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 93

--bch_decoder_data <= "10100100"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--original 10101100 err68

--bch_decoder_data <= "00111001"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--00110000 error 57 59

--

--bch_decoder_data <= "11110010"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--parity- 11110010

--bch_decoder_data <= "11010001"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--11010001

--bch_decoder_data <= "11011011"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--11011011

--bch_decoder_data <= "10100101"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

--bch_decoder_data <= "10010011"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;--10010011

--bch_decoder_data <= "10100011"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period;

--bch_decoder_data <= "10111001"; BCH_RESET <= '0';bch_decoder_en <= '1'; wait for

fpga_clk_period; --rx(0)10111000 err 1

 end process;

END;

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 94

APPENDIX C

Verification using built-in MATLAB function:

For Encoder:

For Decoder:

Chien search check:

clc;clear;
a1 = gf([6166],13,8219);
 a2 = gf([0],13,8219);
 a3 = gf([630],13,8219);
 a4 = gf([506],13,8219);

 m1 = gf([2],13,8219);
 m2 = gf([4],13,8219);
 m3 = gf([8],13,8219);

NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight

Control System

Department of ECE, CMRIT, Bangalore 2019-20 95

 m4 = gf([16],13,8219);
 ach1 = a1 ; ach2 = a2 ; ach3 = a3 ; ach4 = a4;r=0;
 for i = 1:8191
 g = ach1+ach2+ach3+ach4+1;
 if (g == 0)
 r=i-2
 end

 ch1 = m1.*ach1;
 ch2 = m2.*ach2;
 ch3 = m3.*ach3;
 ch4 = m4.*ach4;

 ach1= ch1;
 ach2=ch2;
 ach3=ch3;
 ach4=ch4;
 end

This is to certify that

has contributed a paper titled

thin 4 World Conference on Smart Trends in Systems, Security & Sustainability (WorldS4 2020)
held during July 27 - 28, 2020. The conference was held through digital platform ZOOM.

The paper has also been selected for publication in the (WorldS4) conference as per fulfilment of guidelines issued by IEEE.

BHAVANA R. REDDY, HRUSNA CHAKRI SHADAKSHRI V., SHARATH ANAND, SHARMILA K. P.

Error-free Communication in NB-IoT using ECC Approach

We wish the authors all the very best for future endeavors.

SMART TRENDS IN SYSTEMS, SECURITY AND SUSTAINABILITY

th4 World Conference on

London, United Kingdom

NILANJAN DEY
Publication Chair

WorldS4 2020

AMIT JOSHI
Organising Secretary, WorldS4 2020

Chair- Inter YIT, IFIP

MIKE HINCHEY
Chair - IFIP

Past Chair - IEEE UK & Ireland Section

XIN-SHE YANG
Conference Chair

WorldS4 2020

	Mega_project_report_NAND flash (1).pdf (p.1-104)
	Team_46_IEEE_WS4_2020.pdf (p.105)

