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NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight
Control System

Chapter 1
INTRODUCTION

There is need to develop an on-board acquisition unit for interfacing with ASA and assess
the in-fight performance of the unit. The in-flight acquisition and recording unit provide
excitation voltages to four channels of the ASA unit. ASA operated in two modes namely
bit mode and normal mode. During bit mode, ARU provides bit excitation signals to four
channels of ASA and need to acquire bit outputs from the ASA unit. In the normal mode
of operation, all four channels accelerometer sensor outputs are required to acquire
continuously and record them on board. The On-board recorded data need to be
downloaded through a high-speed serial interface after the flight on ground for post flight
performance analysis of the ASA unit. The unit should provide isolated power to all four
channels of ASA. ASA-ARU needs to be compact, lightweight, rugged, low power and
airworthy unit to use along with indigenously developed ASA. The ASA-ARU needs to
provide a similar interface of DFCC to ASA. The existing interface of ASA with DFCC is

given Fig. 1.

+15V

-15V

BIT Ex.

BIT Output

Sensor Output

Channel 1

Channel 2 |

Channel 3

Channel 4

Figure 1. ASA interface with DFCC

The ASA-ARU will have FPGA based main control module for BIT excitation generation,
acquisition of BIT output, normal mode sensor output and recording to on-board NAND

flash memory. The Ethernet interface is used for downloading of in-flight recorded data.
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The RS 232 interface is planned to monitor system health on ground. There will be separate
power supply module for the generation of four independent voltages to four channels of
ASA.

1.1  Requirement of ECC in NAND Flash

Practically, there exists no channel that is noise free and even a single bit error might lead
to a major setback for a safety critical system of an aircraft, like flight control systems of a
fighter aircraft. Hence, a need for encoding the data along with error correcting and
controlling mechanisms for error-free retrieval at the receiver end arises. The interest for a
completely dependable computerized framework has been quickened by the accessibility
and fast advancement of VLSI innovation, rapid information systems, and capacity of
advanced data.[1] Error control coding schemes are linear codes, categorised into
Convolution codes and Block codes whose examples are Reed-Solomon, BCH (Bose-
Chaudhuri-Hocquenghem) codes, Golay, Cyclic codes, Repetition codes, Polynomial
codes, Hamming codes and non-linear codes. The most straightforward block code being
Hamming codes, is just appropriate for basic error control circuit while BCH, the
generalization of Hamming codes, forms a wide range of effective arbitrary error correcting

cyclic codes that is capable of rectifying multiple errors [2].

The ECC mechanism is implemented in two opposing functions. The first is the encoding
operation and second is the decoding operation where the former adds spare bits and the

latter removes these added bits iteratively [3].

The widely used NAND Flash memory systems are vulnerable to multiple types of errors,
such as, retention errors due to charge leakage, physical errors due to coupling noises, errors
generated due to shift of threshold voltages as the memory density increases and many
more. Thus, the data reliability is of utmost importance for any communication and storage
systems in terms of high operational speed and other aspects. Therefore, to improve data
reliability we use ECC. With the occurrence of random errors, the first preference would
be BCH codes as these are adaptable to wide ranges of code length and possess a versatile
error correcting capability over Reed Solomon as the latter is mostly suitable for handling

burst errors [4].
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NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight
Control System

1.2 Overview of BCH

A conventional BCH design includes an elementary shift register, the LFSR (linear
feedback shift register), which in correspondence with explicit XOR, computes single
message bit per cycle. Considering the need of circuits with high operational speed, the
BCH serial encoder is replaced with the parallel BCH encoders which process p-bit data at
an instance. Matrix multiplication, CRT based encoding, unfolding method are some of the
parallel processing methods used [5]. In this paper, we employ a BCH encoder with tree-
type systolic array architecture. This architecture does without modifying the generator

polynomial and extra hardware requirement unlike other three methods mentioned above.

Galois Field (GF) is named after Evariste Galois. The existence of a finite count of elements
characterises the GF. Data in vector form in a GF allows mathematical operations to
scramble data easily and effectively. Some of the significant properties of GF are:

e All elements of GF are defined on addition and multiplication and the resultant must
also be an element of GF.
e Addition (a) and subtraction (b) are inversely related (i.e. a+b=0) and similarly,

multiplication(c) and division(d) are inverse to one another (i.e. c*d=1) [6].

A BCH decoding system is designed for correction of errors in the codeword that might
have occurred in the intermediate channel. In the proposed BCH decoder, there are four
sub modules, the GF(2%) root table generation, syndrome calculation, computation of
coefficients of error locator polynomial (PGZ (Peterson-Gorenstein-Zierler) Algorithm) [7]

and determining roots of the error locator polynomial(Chien search) [8].

1.3 Motivation

The aerospace systems demand very high level of reliability and safety. Stringent
development process is followed for development for aerospace systems to meets these
requirements. The design and development exposure in aerospace domain will help in
developing systems for all other domains. This has motivated to take up project related
fighter aircraft application. In this aerospace domain, the need for compact, rugged, high
speed data acquisition and on-board storage is becoming crucial for flight test applications.
This in-turn has motivated to take up a Project on “NAND Flash Based In-Flight
Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight Control

System”
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1.4 Objectives
The main objectives of this Project are given bellow:
1. General understanding of LCA-FCS, DFCC, ASA and its sensors.

2. Understanding of ASA in-flight test requirements and its interface.
3. Study of ARU design and development process.

4. Study of NAND Flash interface with FPGA.

5. Implementation of ECC module using VHDL.

6. Functional simulation
7. Verification using in-built MATLAB functions

Department of ECE, CMRIT, Bangalore 2019-20 4
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Chapter 2
LITERATURE SURVEY

Extensive literature survey helps in understanding the work already carried in the field of
investigation and also provides the technology trend in the domain to help to home on to

the challenging problem to take up and further investigate as a part of the project.

As a part of literature survey, multiple papers were examined and out of these, few
important papers which are in the area of interest were investigated in detail. The outcome

of the literature survey is given below:

2.1 LCA-FCS, DFCC

Flight control system of an aircraft consists of Flight control computer, Sensors, Cockpit

sensors and actuators as shown in figure 2.1.

PILOT
CONTROLS

SENSORS ™ » COMPUTER ACTUATORS

.....................

AIRCRAFT
(Flex body)

Figure. 2.1: Aircraft Flight Control System

LCA flight Control System employees Digital Fly-by-wire flight control system. The heart
of the fly-by-wire flight control system is Digital Flight Control Computer (DFCC).

DFCC interfaces with Accelerometer Sensor Assembly, Rate Sensor assembly, Cockpit
controls like Pilot Stick, Rudder pedals etc., and Direct Drive Valve (DDV) based
Actuators. It contains Flight program with Control Laws.

Fly-by-wire control system, developed in the early 1970’s, is purely electrically signaled

control system, which use computer to process flight control input by pilot/autopilot and
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send corresponding electrical signal to fight control surface actuators. This replaces
mechanical linkage, that is, pilot inputs do not directly move to control surface.
Features:

* Provides safety and reliability
* Reduces pilot work load
* Higher Fuel efficiency

* Overall cost reduction
2.2 Accelerometer Sensor Assembly (ASA)
An accelerometer is an electromechanical device that will measure acceleration forces.
These forces may be static, like the constant force of gravity pulling at your feet, or they
could be dynamic which is caused by moving or vibrating the accelerometer.
FCS of TEJAS uses body acceleration for stabilization and command augmentation. The

body acceleration is obtained by axes accelerometer sensor assembly.

BAE’s ASA VS Indigenous ASA:
- Asingle LRU, Line Replacement Unit consist of two accelerometer sensors, that is,
o Lateral axis
0 Normal axis
- These sensors are imported from M/s BAE systems, USA.
- Since few components of BAE —ASA are obsolete (production from vendors has stopped),
ASA is out of production as the alternatives are expensive.
- Thereby, ADA initiated indigenous development of MEMS based ASA.

MEMS (Micro-electromechanical system) devices that have characteristics of very small
size ranges from few micrometres to millimetres combine both mechanical and electrical
components fabricated using IC batch processing technologies.
MEMS-ASA:
- MEMS-ASA consists of three Axes: o Longitudinal axis
o Lateral axis
0 Normal axis
- And it is a quadraplex redundant channel. Therefore 12 sensor output data is

available.
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- Types:
o Cantilever capacitor output

0 Proof mass pendulum

Figure.2.2: Cantilever Capacitor Output
2.3 Data Integrity:

» Maintaining the data consistent throughout its lifecycle is a matter of protecting it so that
it’s reliable. Uncorrupted data is considered to be whole and then stay unchanged.

» Data integrity refers to the fact that data must be reliable and accurate over its entire
lifecycle. Data integrity(uncorrupted) and data security(protection) go hand in hand.

> Data is expected to be attributable, legible, contemporaneous, original and accurate
(ALCOA principle).

2.3.1 Data integrity vs. Data security:

Data security refers to the protection of data against unauthorized access or corruption and
IS necessary to ensure data integrity. Data integrity[9] is a desired result of data security.
Data security, in other words, is one of several measures which can be employed to
maintain data integrity. Whether it's a case of malicious intent or accidental compromise,

data security plays an important role in maintaining data integrity.
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2.4 Error Control Coding

In recent years there has been an increasing demand for digital transmission and storage
systems. This demand has been accelerated by the rapid development and availability of
VLSI technology and digital processing. It is frequently the case that a digital system must
be fully reliable, as a single error may shutdown the whole system, or cause unacceptable
corruption of data, e.g. in a bank account . In situations such as this error control must be
employed so that an error may be detected and afterwards corrected. The simplest way of
detecting a single error is a parity checksum [10], which can be implemented using only
exclusive-or gates. But in some applications this method is insufficient and a more

sophisticated error control strategy must be implemented.

If the transmission system transmits data in both directions, an error control strategy may
be determined by detecting an error and then, if an error is occurred, retransmitting the
corrupted data. These systems are called Automatic Repeat Request (ARQ). If transmission
transfers data in only one direction, e.g. in- formation recorded on a compact disk, the only
way to control the error is with Forward Error Correction (FEC). In FEC systems some
redundant data is concatenated with the information data in order to allow for the detection

and correction of the corrupted data without having to retransmit it.

Classification of error control coding schemes[2]:

Error
Correction Code

! I

Block Convolution

l I

‘ Linear | l Non-linear ‘

N
l I l l

‘ Repetition Parity ‘ Hamming Cyclic

Figure.2.3: Classification of ECC
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The two types of linear codes are,

1. Block codes: These codes are referred to as “n” and “k” codes. A block of k data
bits is encoded to become a block of n bits called a code word. In block codes, code
words do not have any dependency on previously encoded messages. NAND Flash
memory devices typically use block codes. Example: RS, Golay, Cyclic codes,
Repetition codes, Polynomial codes.

2. Convolution codes: These codes produce code words that depend on both the data
message and a given number of previously encoded messages. The encoder changes
state with every message processed. Typically, the length of the code word constant.

Example: Systematic codes, Nonsystematic codes.

2.4.1 Linear Block Codes

Error control coding mechanism is done in two inverse operations. The first one is a
mechanism of adding redundancy bits to the message and form a codeword, this operation
called (encoding operation), the second operation is excluding the redundancy bits from the

codeword to achieve the message and this operation called (decoding operation).

These types of codes are called block codes and are denoted by C(n,k). The rate of the code,
R = k/n, where k represents the message bits and n represents the coded bits. Since the
2kmessages are converted into codewords of n bits. This encoding procedure can be
understood as conversion from message vector of k bits located in space of size 2k to a

coded vector of size n bits in a space of size, and 2konly selected to be valid codewords.

Linear block codes [2] are considered to be the most common codes used in channel coding
techniques. In this technique, message words are arranged as blocks of k bits, constituting
a set of 2k possible messages. The encoder takes each block of k bits, and converts it into
a longer block of n > k bits, called the coded bits or the bits of the codeword. In this
procedure there are (n—k) bits that the encoder adds to the message word, which are usually
called redundant bits or parity check bits. As explained in the previous section. The
codewords generated from the encoder is linearly combined as the summation of any two

codeword is an existing codeword so it is called Linear Block Codes.
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K bits message (n-Kk) bits parity check

n bits codeword
« »

Figure. 2.4 Systematic form of codeword of a linear block code

Linear block codes are summarized by their symbol alphabets (e.g., binary or ternary) and

parameters (n,m,dmin) Where

o nisthe length of the codeword, in symbols,
o m isthe number of source symbols that will be used for encoding at once,
o Omin is the minimum hamming distance for the code.

There are many types of linear block codes, such as

Cyclic codes (e.g., Hamming codes)
Repetition codes

Parity codes

Polynomial codes (e.g., BCH codes)
Reed-Solomon codes

Algebraic geometric codes

Reed—Muller codes

© N o a k& w0 DN E

Perfect codes

2.5 Galois Field (GF):

In this chapter finite fields[6] and finite field arithmetic operators are introduced. The
definitions and main results underlying finite field theory are presented and it is shown how
to derive extension fields. The various finite field arithmetic operators are reviewed. In
addition, new circuits are presented carrying out frequently used arithmetic operations in
decoders. These operators are shown to have faster operating speeds and lower hardware
requirements than their equivalents and consequently have been used extensively

throughout this project.
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2.5.1 Properties of Galois Field
The main properties of a Galois field are:

1. Afinite field always contains a finite number of elements and it must be a prime power,
say g = pr, where p is prime and it is unique. In Galois field GF (q), the elements can
take q different values. Field is another algebraic system.

2. All elements of GF are defined on two operations, called addition and multiplication.

3. The result of adding or multiplying two elements from the Galois field must be an
element in the Galois field.

4. Identity of addition “zero” must be exist, such that a + 0 = a for any element a in the
field.

5. Identity of multiplication “one” must be exist, such that a *x 1 = a for any element a in
the field.

6. For every element a in the Galois field, there is an inverse of addition element b such
that a + b = 0. This allows the operation of subtraction to be defined as addition of the
inverse.

7. For every non-zero element b in the Galois field, there is an inverse of multiplication
element b-1 such that bb-1= 1. this allows the operation of division to be defined as
multiplication by the inverse.

8. Both addition and multiplication operations should satisfy the commutative,

associative, and distributive laws.
2.5.2 Galois field GF(2) “Binary Field”

The simplest Galois field is GF (2). Its elements are the set {0, 1} under modulo-2 algebra.
The addition and multiplication tables of GF (2) are shown in Tables 2.1(a) and 2.1(b).

Table 2.1: (a)Modulo-2 addition(XOR) ;(b) Modulo-2 Multiplication (AND)

"o loll ololo
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Here is a one-to-one correspondence between any binary number and a poly- nomial with
binary coefficients as every binary number can be presented as a polynomial over GF(2).

A polynomial of degree K over GF(2) has the following general form:

f(x)=fot+ HX + X2+ + fc X"

where the coefficient fo,_fx are the elements of GF(2) i.e. it can take only values 0 or 1. A
binary number of (K + 1) bits can be represented as a polynomial of degree K by taking the
coefficients equal to the bits and the exponents of X equal to bit locations. In the polynomial

representation, a multiplication by X represents a shift to the right.

2.5.3 Extension Fields

Finite fields exist for all prime numbers g and for all p™ where p is prime and m is a positive
integer. GF(q ) is a sub-field of GF(p™) and as such the elements of GF(q ) are a sub-set of
the elements of GF( p™) , therefore GF( p™) is an extension field of GF(q).

Table 2.2: (a) Addition for GF(4) ={0,1,2,3};(b)Multiplication for GF(4) ={0,1,2,3}

-+ o 1 2 3 B O 1 2 3

o 0] 1 2 3 o] (0] 0] 0] 0]

1 1 2 3 (8] 1 0] 1 2 3

2 2 3 O 1 2 0] 2 0] 2

3 3 o 1 2 3 0] 3 2 1
(a) (b)

Consider GF (4)={0,1,2,3 } in Table 2.2(a) and 2.2(b), which is not a Galois field because
it is of order 4, which is not a prime. The element 2 has no multiplicative inverse and
therefore we cannot divide by 2. Instead, we could define GF (4)={0,1, a, b } with addition
and multiplication as shown in Table 2.3(a)and 2.3(b).
Now all elements do have additive and multiplicative inverses.

Table 2.3: (a)Addition for GF(4)={0,1,a,b};(b)Multiplication for GF(4)={0,1,a,b}

+ 0 1 a b * (0] 1 a b

0 0 1 a b 0 0 0 0 0

1 1 0 b a 1 0 1 a b

a a b 0] 1 a 0 a b 1

b b a 1 0] b 0 b 1 a
(a) (b)
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These extension fields are used to handle non-binary codes where code symbols are
expressed as m -bit binary code symbols, For example, GF(4) consists of four different
two-bit symbols and GF(16) of 16 hexadecimal symbols. To obtain multiplication for
binary, numbers are expressed as polynomials, they are multiplied and divided by the prime

polynomial while the remainders taken as result.

2.6 BCH Codes

BCH codes forms a class of random multiple error-correcting cyclic codes. defined over a
Galois Field (GF) of q elements GF(q), with g=2m. The parameter m corresponds to the
degree of the GF, q is the number of states that takes each component of the GF elements,

and they are related with the codeword length as n=2m-1.

Binary BCH codes are identified by their codeword length n, their message length k, the

maximum error capability of the code is t, and are represented as BCH (n, k, t)

For any positive integer m >= 3 (where 3< m <16) and t < 2m —1, there exists a binary

BCH code with the following parameters:
Block length: n =2m - 1

Number of parity-check digits: n — k - mt
Minimum distance: dmin =2t + 1.

BCH codes are subset of the Block codes. In block codes, the redundancy bits are added to
the original message bits and the resultant longer information bits called “codeword” for
error correction is transmitted. The block codes are implemented as (n, k) codes where n

indicates the codeword and k the original information bits.

2.6.1 BCH Merits:

e It can be decoded using syndrome decoding method

e Highly flexible allowing control over block length and acceptable error thresholds

e Reed Solomon codes are nonlinear BCH codes used in applications such as satellite
communication, compact disk players, DVD’s, disk drives, 2-dimensional bar code

e Low amount of redundancy

e Easy to implement in hardware

e Widely used

The parameters of some useful BCH codes of lengths less than 21°-1 are given below:
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Table 2.4: BCH codes parameters of lengths less than 21°-1

m n k t|m n k t [m =n k t n k t n k t
7 4 1 63 24 7 127 50 13| 255 187 9|255 71 29
4 15 11 1 18 10 43 14 179 10 63 30
7 2 16 11 36 15 171 11 55 31
5 3 0 13 29 21 163 12 47 42
5 31 26 1 7 15 22 23 155 13 45 43
21 207 127 120 1 15 27 147 14 37 45
16 3 113 2 8 31 139 15 29 47
15 106 3| 8 255 247 1 131 18 21 55
6 7 99 4 239 2 123 19 13 59
6 63 57 1 92 5 231 3 115 21 9 63
— 52 85 6 223 4 107 22511 502 1
45 787 215 5 99 23 493 2
For temanl 32 4 719 207 6 91 25 484 3
n—k=mt 36 64 10 199 7 87 26 475 4
30 6 57 1 191 8 79 27 466 5
n k t n k t n k t n k t n k t
511 457 6| 511 322 22| 511 193 43| 511 58 91[1023 933 9
448 7 313 23 184 45 49 93 923 10
439 8 304 25 175 46 40 95 913 11
430 9 295 26 166 47 31 109 903 12
421 10 286 27 157 51 28 111 893 13
412 11 277 28 148 53 19 119 883 14
403 12 268 29 139 54 10 121 873 15
394 13 259 30 130 55 1013 1 863 16
385 14 250 31 121 58| 1023 1003 2 858 17
376 15 241 36 112 59 993 3
367 16 238 37 103 61 983 4
358 18 229 38 94 62 973 5
349 19 220 39 85 63 963 6
340 20 211 41 76 85 953 7
331 21 202 42 67 87 943 8
2.6.2 BCH Demerits:
e Complexity.
e |terative complex decoding algorithm.
e Decoder cannot decide whether decoded package is false or not.
Department of ECE, CMRIT, Bangalore 2019-20 14
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2.6.3 Some examples of BCH Applications:
e (511,493) BCH code is used in ITU-T Rec.H.261lvideo codec for video
conferencing and video phone
e (40,32) BCH is used in ATM (Asynchronous Transfer Mode) it is a shorten cyclic
code that can correct 1-bit or 2-bit error

e ECC in NAND Flash memory for reliable data storage

2.7 BCH Encoder

An encoder is a device, circuit, transducer, software program, or algorithm that converts
the information from one format or code to another, for the purposes of standardisation,
speed or compressions. A simple encoder assigns binary code to an active input line. The
BCH encoder block creates a BCH code with message length k and codeword length n. The
input must contain exactly k elements. n must have the form 2™-1 where m is an integer

greater than or equal to 3.

2.7.1 Code generation:

To generate all the field elements a primitive polynomial in Galois Field :

In order to obtain the generator polynomial[6] of the BCH code we need and auxiliary
polynomial called primitive polynomial. The generator polynomial is the polynomial of
lowest degree over GF(2) witha, o of,...., o® as roots. Let mi(x) be the minimal
polynomial of o. Then, must be the least common multiple (LCM) of )m(x)1, mz(x), ....,
ma(X) .That is
g(x)= LCM{m1(x),m2(x),... ,ma(X)}

A simplification is possible because every even power of a primitive element has the same
minimal polynomial as some odd power of the element, halving the number of factors in

the polynomial. Then

g(x)= LCM{m1(x),mz(x),... ,mat1(X)}

Hence, every even power of a in the sequence has the same minimal polynomial as some
preceding odd power of ain the sequence. As a result, the generator polynomial g(x) of the

binary t-error-correcting BCH code of length 2™-1 can be reduced to

g(x)= LCM{$1(X),03(x),... ,02t1(X)}
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The generator polynomial is g(x) = 1+gax+g2x>+gax3+. . . . +gnk1x"c?
Code word ¢(x) = cn-aX™ +Cn2X™24+ . . +C1X+Co
Data polynomial, d(x) = di-1x¥+dk-2x*2+ . . . .+dix+do

C(x) =d(x).g(x)

2.7.2 Primitive Polynomials:

A primitive polynomial is a polynomial that generates all elements of an extension field
from a base field. Primitive polynomials are also irreducible polynomials. For any prime
or prime power g and any positive integer n, there exists a primitive polynomial of degree

n over GF(q).
The primitive polynomial for various value of m is shown in table:

Table 2.5: Primitive polynomials for 3< m< 20

M Primitive Polynomial
3 1+x+x3
4 1+x+ x*
5 1+ X% +Xx°
6 1+x+ X8

7 1+ x3* X!
8 1+ X2+ x3+ x4+ x8
9 1+ x4+ x°
10 1+ x3 + x1°
11 1+ X2+ x1t
12 1+x+ x4+ x8 + x1?
13 1+ x+x3+ x4+ x13
14 1+x+ X8+ x10+ x14
15 1+x+ x¥°
16 1+x+ x3* x12 + x16
17 1+ x3 + xY
18 1+ x" + x18
19 1+ x+ X%+ x>+ x*°
20 1+ x3* x?°

Department of ECE, CMRIT, Bangalore 2019-20 16



NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight
Control System

There are

é(g"-1)
win= 2D

Primitive polynomials over GF(q), where ®(n) is the totient function. A polynomial of

degree n over the finite field GF(2) is primitive if it has polynomial order 2" — 1.

2.7.3 Minimal Polynomials:
The even powers minimal polynomials are duplicates of odd powers minimal polynomials,
so we only use the first two minimal polynomials corresponding to odd powers of the

primitive element.

2.8 BCH Decoder

A BCH decoding system is designed for the correction of errors in the codeword. Some of
the popular methods used for decoding are PGZ (Peterson-Gorenstein-Zierler) Algorithm ,
Berlekamp-Massey (BMA) algorithm and Euclidean ( EA) algorithm. There are different
Chien search algorithms for fast encoding like the Conventional p-parallel - Chien
architecture, MPCN-based parallel architecture , Joint Chien Search & Syndrome-

Calculator Architecture.

2.8.1 Algebraic Decoding

A. Peterson-Gorenstein-Zierler Decoding
If there are v errors, then the syndrome relationships (3) for j = 1,2,..,n — k provide n - k

equations involving the 2v unknowns o (i) and es() for i = 1,2,..,,v. Since these equations are

. . . . n—k
nonlinear, solving for these unknowns requires a clever trick. For” <! <["3"] Jet

) t -J . . .
Aw) = 250 Aja’ pe any degree-t polynomial that satisfies A(0) =1 and A(f®) =0 fori=
1,..,v. Then, the coefficients of A(x) have a linear relationship with the syndromes. This can
be seen by summing the equation

t—1

0 A (ﬁ—a(v‘)) A (ﬂ_nu))t A (JB—G(U) et Ay (3—0(1‘)) + Ag

Ro(i k H H
for i = 1,..,v with the coefficientsto2* (57)" For k=t + 1t + 2,..,2¢, this gives
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0= Z Cq(iy” (ﬁ”m)k A (ﬁ—‘f“))

i=1
A; (ﬁ‘””)J

= i eq(iy* (g’?”m)k
i=1 =0
t v e
= Z Aj Zea(;)u"" (,8"(”)1‘ !

j=0 =1

.
~ A
§=0 ¢H)]

t

.

The derivation implies that any polynomial A(x) with constant term 1 and roots at g-o®
(i.e., the inverse of a to the error location) for i = 1,..v must satisfy this equation. The
minimal-degree polynomial A(x) that satisfies these conditions is called the error-locator
polynomial. It is easy to see that it must have one root at each location and is, therefore, the
degree-v polynomial defined by
A(z) 2 H (1-a8")
i=1 .

This polynomial allows the error position to be revealed by factoring A(x).

Since Ao =1, (1) defines the linear system

.5‘1 Jgg e JS“{ ."\{ _St—l
Sy 53 .o Siyg Ap g —Siya
S S!+1 s Sy J Ay —8y

)

where the i-th row is given by the equation for k = t + i. If t = v, then this matrix will be
invertible because there is a unique solution. If it is not invertible, one can sequentially
reduce t by 1 until the matrix becomes invertible. After solving for the error-locator
polynomial, one can evaluate it at all points infs to determine the error locations. An

efficient method of doing this is called a Chien search.

For binary BCH codes, the error magnitudes must be 1. After correcting the “errors”,
one must also check that the resulting vector is a codeword by reducing it modulo g(x). If
it is not a codeword, then the decoder should declare a detected error. For non-binary codes,
one can solve for the error magnitudes using the error locations and the implied frequency-
domain parity-check matrix[7]. For fixed error locations, one can write the first v

syndromes as linear functions of the error magnitudes using
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Figure 2.5: The Peterson-Gorenstein-Zierler Algorithm Flowchart
B. The Berlekamp-Massey Decoding Algorithm
While the PGZ algorithm is conceptually simple, it can require the inversion of an i x i
matrix for i = 1,2,....,t in the worst case. Since each inversion has a complexity of roughly
i3/2 operations, this approach leads to a worst case complexity of roughly t*/6 operations.

The Berlekamp-Massey algorithm [11] starts with the observation that (1) can be rewritten,
forj=t+1t+2,.,n—k as

L
L=
Il
I
E____
L
[y
|

-
Il
—

This implies that the syndrome sequence S1,Sz,... can be generated by a linear feedback shift
register (LFSR) with coefficients Ai1,Az,...,Ar. The shortest LFSR that generates the
syndrome sequence is unique and corresponds to t = v and gives the error-locator

polynomial.
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The trick is to solve recursively for a sequence of LFSRs that generate the initial part of the

syndrome sequence. Let the connection polynomial of a length-Lx minimal length LFSR

that generates the first k elements of the syndrome be

Li

AF(z) =37 Ao

i—1

To be precise, we say that AKl(x) generates the first k elements if

L
I[|'
5=~ 3oAls,
i—=1

forj=Lk+ 1,....k. In particular, the shift register is initialized to contain the first Lxelements,

S1,52,...,SL. Then, the j-th clock outputs Sjand computes Sj:.from Si,S»,...,Si. This also

introduces a subtle distinction between Ly and the degree of AK(x).

t AM) ¢ 1, AT g - 1

2Lqe0 IpeD

Y A=1

& fork+1to2 do

TSyt U

& memnfie{dl,... k-1 |Li=Lia)
7 if Ay=0then

v A= Al

g

Ly-1=1y
10 else
it AR() - AR - A AT m AT )

12 I+ [I]ﬂX(Lk_l,Lm_l +k—m]
1% end if

14: end for

15: Afz) ¢ A%(a)

Initlalize

Vilfz) = 1 Kiofz) = 1

B =11 10

g TE v g w8 4o 1 B

L

i) = -21yislz) + o i) 2

l

pisd)(z) m 23i8(z), o glo-dl 1t g = g or 17 D (WZ) ) >
himidl{z) = 7 jied(z), flel=gied |t nat { f ditl+ 0 and Deg (Wed(z) 1= 1)

L
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7/ patynemial
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Figure 2.6: BMA Algorithm with flowchart

Department of ECE, CMRIT, Bangalore

2019-20

20



NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight
Control System

C. Sugiyama’s Euclidean Decoding Algorithm
An alternative approach is to use the Euclidean algorithm[12] to find the error-locator
polynomial. To describe this, the syndrome is first extended to a semi-infinite sequence
(51,52,...) by defining

S; = ZCU(';)(Y” (ﬁ”("));’

i=1

, 3)
for j € {1,2,...} and noting that the two definitions coincide for j = 1,2,..,n — k. The extended
syndrome function (=) is defined to be

v Bo’(i)
L A
Y ;60(1)(1 T2

= iicg(i)a”xifl (5(,(,1))::'

j=1i=1

oo
_ g1
= E Sz
J=1

It is important here to comment on the meaning of infinite sums over finite fields. Unlike
the continuous case, no two distinct points can be considered close to one another.
Therefore, convergence in the limit is the same as eventual equality. Thus, the second and
third equalities do not hold for evaluations but instead imply that the (infinite) power series
expansions of the two expressions match term by term.

The error-evaluator polynomial Q(;”’) = Vim0 % s given by
Qz) = Alx)S(z)

) R g
Z St o) ﬁ(l—:cﬁ”(j)).

i

It is easy to see that Q(x) has degree at most v — 1. The polynomial Q(x) is called the error-
evaluator polynomial because

O (ﬂ*"(k)) ZF e f)’ﬂ(l)H( 1 — potk) ot ))

J#i

= eo(r)a” {3"(“ 11 (1 —~ m;’i"“))]
r=p—2(k)

J#k

= —eymya’ A (,13*"(}”)) ,
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where, using the product rule, the formal derivative of A(x) is given by

v

N(z)=— Zﬂ”cﬁ) ﬁ (l — :I:ﬁ”(j))

i=1 J#i

Using Q(x), one can compute the error magnitudes using

0 (/370'(1.:))
,‘QLLAI (’B—G([\’)) . (4)

Colk) =

This approach is known as Forney’s method.

The decoder is required to compute both the error-locator and error-evaluator polynomials
SRS 2t e i
from the finite syndrome polynomials(l‘) =257 Since Se(x) = S(x) + x*w(x), for

some w(x), we find that

Q(x) = A(x)Se(x) = A(x)S(x) + A(x)x*tw(x)

and deg(€(x)) < v. Thus, we arrive at the key equation for RS decoding which is given by

Q(x) = A(x)S(x) mod x2t,

In fact, if v <t, then any degree-v polynomial ®(x) that satisfies deg O(x)S(x) mod #*') < v

must also satisfy ®(x) = cA(X) [4, Prop. 6.1]. Therefore, this equation can also be used to

find error-locator and error-evaluator polynomials.

The extended Euclidean algorithm (EEA) computes the greatest common divisor of two
elements ai,a> from a Euclidean domain E (e.g., a ring of polynomials over a field) and
coefficients u,v € E such that apu + a;v = gcd(as,a2). The algorithm proceeds by dividing a;
by aj+1 so that a; = aj+10j+1 + aj+2 with quotient gj+1 and remainder aj+>. Each step of the
Euclidean algorithm works because the division implies that gcd(aj,aj+1) = gcd(aj+1,aj+2).
For polynomials, the Euclidean algorithm terminates when a; = 0. This always occurs
because deg(a;) < deg(ai) holds by assumption and deg(aj+2) < deg(aj+1) holds by

induction.

The extended algorithm also computes u;,vj recursively so that a; = uja1 + vjaz. Starting from

az=ai;— (qaz(i.e., us=1and v3=—q2), we have the recursion
aj+2 = aj — gj+1aj+1l = (ujal + vja2) — qj+1 (uj+lal + vj+la2).

This gives the recursions Uj+2 = Uj— gj+1Uj+1 and Vj+2 = Vj— Qj+1Vj+1 Starting from uz= 1 and v3

=—(Q2.
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The decoding the RS codes is accomplished using a partial application of the EEA

algorithm to compute god (#%,5(2)) The extended part of the algorithm generates a

sequence of relationships of the form u;(x)x? + vj(x)S(x) = a;(X),

where the degree of aj(x) is decreasing with j. Let j* be the first step where deg(aj(x)) <t
and stop the algorithm at this point. Viewing the above relationship as a congruence modulo
x?t gives vj(x)S(x) = aj(x) mod x*,and we see that vjx(x) and aj(x) satisfy the key equation

with deg(aj*(x)) < t. In this case, the polynomials vj*(x),a;*(x) must also satisfy

Vi(x) = CA(X)

aj(x) = cQ(x),
for some constant c. This means that we can run the EEA until the remainder term has
degree less than t. After that, we can solve for ¢ using ¢ = vj(0) and compute A(x),€2(x).
After the error-locator and error-evaluator polynomials are known, decoding proceeds by
factoring A(x) to find the error locations and then using (4) to compute the error

magnitudes.

2.8.2 Chien Search Algorithms
Once A(x) is found, the decoder searches for error locations by checking whether A(ai) =
0 for 0 <i < (n— 1), which is normally achieved by Chien search. A conventional serial

Chien search architecture is shown in Fig. 2.7(a), and

t i
Ala) =) Aja¥ =) Ao +1
J=0 J=1

where 0 <i < (n— 1). All the multiplexers select A(x) in the first clock cycle, then select

the registered data afterwards.

porilll BT OO
=hiot)

| =T
/’b-< @J;: - & = @‘:

é I ‘ r

i‘,’mux o MUK ¢t !_rl;\ne MUY,

Figure 2.7(a) : Conventional Chien search circuit
Since all the n possible locations have to be evaluated for the A(x), it takes n clock cycles
to complete the Chien search process. To speed up this process, parallel Chien search

architecture that evaluates several locations per clock cycle is essential. Two different
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possible architectures [13] with parallel factor p are depicted in Fig. 2.7(b) and Fig. 2.7(c)
, Where Fig. 2.7(b) actually is just a direct unfolded version of Fig. 2.7(a) with an unfolding
factor of p.

As both designs can reduce the number of clock cycles searching for error locations from
n down to [n/p], they also share similar hardware complexity. Denoting the parallel factor
as p, both designs have the exactly same (p x t) constant finite field multipliers (FFM), p t-
input m-bit finite field adders(FFA),p m-bit registers and p m-bit multiplexers. However,
the critical path of Fig. 2.6(b) is (Tmux+ p xTm+ Ta) while it is only (Tmux+Tm+Ta) for
Fig. 2.7(c), where Tmux,Tm and Ta stand for the critical path of multiplexer, FFM and t-
input m-bit FFA, respectively. Obviously, once the parallel factor p is greater than 1, much
faster clock speed could be achieved for the design in Fig. 2.7(c) than that in Fig.2.7(b).

For example, assuming Tm is dominant, critical path of Fig. 2.7(c) is p times shorter.

Al
I A
_f:’}-\""“ —@i} B e s il
f f f :
j_\_ I /+-\_ @———.‘« (o1
\::_:-T«-E,ﬂ—(.( I’:;::l—r— = Il._"*':»lq_ ot
.-fl'\. 1 . == %F-_-"\- (s
[o] s~ [ ] Ee)= o « [o] GSd
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T ﬂ-}hﬁ.:d:ll

Figure 2.7(c) : p-parallel Chien search architecture: equivalent architecture with shorter

critical path

Fig. 2.8 shows the architectures of three basis components, including the jth MPCN, the jth
BT, and the GBT. The jth MPCN MPCNj shown in Fig. 2.8(a) executes modulo operation

with divisor Mj(x). It is constructed by the combinational circuit of the linear feedback shift
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register with the connectionm polynomial Mj(x). Each binary element mkj in Fig. 2.8(a) is
the kth coefficient ofMj(x), indicating the wire connection. In the jth BT shown in Fig.
2.8(b), each ak | is a binary element and can be represented whether the wire is connected
or not. Fig. 2.8(c) illustrates the block diagram of the GBT. The additions are first executed
with all the coefficients of Dj(x) for j = 1 ~t (total mt bits), and the similar operations as a

BT are applied with basis a0 ~ amt.

OUT_MPCN

3
f
LS

i

T
1 o
NN SN
IN_PIFCHNI IN_MPCN[L

104

iy

o IN_BT|m-1]

o

OUT_GRT

Figure 2.8 Basic components in Chien search architecture. (a) MPCN.. (b) BT;. (c) GBT.

SUMMATION CIRCUTT

e

L&) ]

In the MPCN-based parallel-p Chien search architecture shown in Fig. 2.9, the coefficients
of A(x) are applied to the IBTSs for transforming the operating basis. The transformed values
are evaluated with minimal polynomials for obtaining the Chien search results. All the
multiplexers select the outputs of IBTs in the first cycle and then select the register data
afterward. Searching from the (N — 1)th to zeroth location, the proposed design checks p
locations at each cycle. In each row, mt-bit data are fed into a GBT to examine the error
locations. An error is found at the (N + r — p(z + 1) — 1)th location if the output of the rth-
row GBT is equal to zero at the z th cycle. MPCN Chien search architecture utilizes p x t
MPCNs to replace p x t CFFMs. Notice that the XOR gate count requirement of one MPCN
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is at most m — 1, which is much smaller than that of one CFFM. Therefore, it is area

efficient to apply the MPCNSs, particularly in the large parallelism conditions.

> GBT [l>A(a®)

[_D
MPCN, ... rMrcN]
i : |
GBT |»A(a®™9)
[MPCN] [MPCN;] | .. | [MPCN] T
A 3
GBT [i>A(a™)
[D|MPCN,| [D]MPCN,|  [D]MPCN]
U i MUX
3 3
Ay A, Ay

Figure 2.9 MPCN-based parallel-p Chien search architecture.
The MPCN-based architecture can merge the syndrome calculator and the Chien search in
the same hardware with small overhead. Fig. 2.10 illustrates parallel-p joint syndrome
calculator and Chien search with the MPCN-based architecture. The syndrome calculator
and Chien search phases are determined by the SEL signal. When the SEL signal is high,
the jth syndrome value is formulated as
S; = (((Ry_1x™ '+ - 4+ Ry p 1) mod M;(x)) =
+(Rn_—pox? '+ - -+ Ryn_2p1)) mod M;(x))z?
+ - )xP + Ry 127 + - - - + Rp) mod M (x)|z—as
The partial remainder stored in the register is multiplied by xP and accumulated with the
received symbols. After all the received symbols are processed, BTj transforms the
accumulated result to the jth syndrome value. In contrast with Fig. 2.9, t BTs are applied
instead of one GBT in the first row to evaluate individual syndrome value. Note that the
FFAin Fig. 2.10 is only a 1-bit operation because each coefficient of R(x) is a binary value.
Therefore, except for the difference between the BT and the GBT, the overhead of the
supporting syndrome calculation is only p NAND and p x t XOR gates.
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Figure 2.10 Parallel-p joint syndrome calculator and Chien search with MPCN based

architecture.
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Chapter 3

HARDWARE
3.1  Acquisition and Recording Unit (ARU)

CHANNEL 1

ACCELEROMETER SENSOR CHANNEL 2

ASSEMBLY(ASA) RIERTEE ACQUISITION AND RECORDING UNIT(ARU)

CHANNEL 4

POWER BOARD

Figure 3.1 ASA-ARU system interface with ASA-LRU

The main objective of ASA-ARU is used to store the 12 Accelerometer Sensors data. The
data is stored in the digital but the sensors outputs are analog. So, to convert analog to
digital ADC’s are required. ASA has 12 sensor outputs. Hence, two ADC’s are used.
NAND FLASH is used to store the acquired data. RTC with on-board memory is used for
time-stamp and storing data. To retrieve the data from the NAND FLASH Ethernet is used.
RS232 is used to retrieve the data from the RTC. ASA-ARU uses ADC, NAND FLASH,
RTC, Ethernet physical layer and RS232 transceiver.

The ASA-ARU will acquire and record the 12-accelerometer sensors data of ASA
continuously. The recorded data can be later retrieved for analysis purpose at ground. The
ASA-ARU contains RS-232 interface, which shall be used to debug the system and
Ethernet interface for data retrieval.

The objective of the ASA-ARU is used to store the 12 Accelerometer Sensor Data, store in
NAND FLASH Memory during Flight, retrieve the data from NAND FLASH Memory and
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send to Rugged Laptop through Ethernet and RS232 during POST flight. In ASA-ARU,
FPGA is communicating with ADC, RTC Memory, NAND FLASH Memory, Ethernet
Physical Layer and RS232 Driver. The below sections gives the related information
regarding System Initialization, Power on Self Test, Mode Identification, Acquisition
Mode, Retrieval Mode, Inside FPGA modules, FPGA Constraints and Safety
Considerations.

3.2 System Initialization

ASA-ARU has ADC, NAND FLASH Memory, RTC with on-board Memory, Ethernet
Physical Layer and RS232 transceiver. Each one is initialized using FPGA sub Modules
such as Data Acquisition Controller, NAND FLASH Controller and RTC SPI Controller,
Ethernet Controller, UART Controller and all these modules are controlled by the Top
Module.

MAIN CONTROL BOARD

Figure 3.2 ASA-ARU system-Main Control Board
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NAND Flash
Controller

Data
Acquisition
Controller

Ethernet
Controller

FPGA TOP MODULE
UART

Controller

ADC

Controller +«—— Control lines

RTC SPI +«——— Status lines

Controller

Top_module_ main_fsm control_fsm

NF_controller
NF_Test =

534MLO4G2

Figure 3.4 NAND Flash Controller module

3.3 NAND Flash Controller

Top module will enables operations like page read, page write, reset operation, readlD

(manufacture 1D) operation and block erase operation.
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1.

4.

5.

Once FPGA_RESET _n is deasserted, POST operation will starts automatically.
Check flash health status .

. Check flash health is good and ASA-ARU health is good, go for the mode

identification operation else exit the function.

. If Acquisition mode (mode=0), It enables the bad block checking operation by

making signal BB_FSM_en = 1, else Retrieval Mode (mode=1). In retrieval mode it
enables the bad blocks read operation from the RTC controller by making
BB_retrieval FSM_en =1.

During Acquisition mode:

If BB_FSM_en = 1 it enables the bad block checking operation by making
page BB read_en =1. This signal enables the bad block page read operation. Read
1% location of NF spare memory data. check for BB if block is bad block update the
BB‘s address into BB_FIFO memory. Check for all blocks (4096); once completion
of this operation enables the BB_opr_comp BB_opr_comp it. Enable the program
operation by making progm_FSM en=1.

Once Progm_FSM _en = 1, Read NF write completed page address from the RTC
then read acquisition data from the DAQ controller. Assign page completion
address to NF page_address and block completion address to NF block_address.
Check if dag.stop = 0 send DAQ_FIFO rd data along with
DAQ_FIFO data valid signal and page_write_en=1. Wait for write_complete=1
once write_complete=1, check NF page and block address with completed page and
block address if it not equal compare current address with bad block address if it
not equal go for DAQ _stop check and repeat the process up to daq_stop = 1 else
updated the NF address in the BB_FIFO memory and compare next BB address
with NF address.

Once daq_stop=1, read session data from RTC controller and send to NF on last

two pages.

During Retrieval mode:

BB management operation :- If BB_retrival FSM_en = 1 read BB’s address
from RTC and store into BB FIFO memory. Once stored the all BB’s into
BB_FIFO it generate BB_FIFO filled = 1. BB_FIFO_filled it Enable the read
operation by making read_FSM_en = 1.
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Once read_FSM en = 1, read BB address from DAQ controller and store into
BB_FIFO. Compare BB address with NF block address, if address are equal
increment NF address by 1 and compare with BB address else address are
different read data from NF by send Page read en = 1. Wait for
Read_complete=1 repeat the process .

Once page complete address and NF block and page address are equal read last
two blocks first page data by enabling page_read_en =1.

After reading last two blocks 1% page data generate erase FSM en=1.

Once erase_ FSM_en = 1, it will wait for the NF_block erase en = 1. Once
NF_block_erase_en = 1, compares NF block address with BB block address if
both are equal increment NF block address by 1 and compare with next BB

address else both address are not equal erase NF block repeat the process.

3.1.1 Data integrity for ASA-ARU:

The data recorded in-flight is fed to the actuators which then leads to the smooth

functioning of the flight without any turbulence. The slightest change in this data, would

lead to a large deviation from the original position, causing the flight to topple in the worst

case. Thus, to avoid such disasters, the data from the accelerometer has to be accurate and

reliable throughout the whole process of giving an input, processing and providing the

feedback for the normal functioning of the whole system.

3.2 FPGA-ARTIX 7:

» FPGA hardware: FPGA[14] is the main data processing hardware of the system. It is

used for controlling various functions of the ASA-ARU such as POST analysis, Mode

Identification, Data Acquisition Controlling, recording data into NAND Flash memory,

retrieving data from NAND Flash memory, Transmitting retrieved data to GSE via
Ethernet Interface and UART Controller.

» FPGA Clock: A 25 MHz clock is used for FPGA operations and peripherals controlling.
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» Artix-7 FPGAs are available in -3, -2, -1, -1L1, and -2L speed grades, with -3 having

the highest performance. The Artix-7 FPGAs predominantly operate at a 1.0V core

voltage.

» FPGA is used as a controller in ASA-ARU system. FPGA hardware used in ASA-ARU
system is XC7A100T-2FTG2561 - ARTIX 7 FPGA. Artix 7 FPGA Hardware
Description Language (HDL) developed in the "'VHDL' language. The operating

environment details of the HDL are given in the below Table.

» VHDL coding standard followed for Artix 7 FPGA is “VHDL coding standards for

programmable hardware used in the development of software system of LCA”.

Table 3.1 Operating Environment of Hardware Description Language

SI. No Platform Details
1 Firmware type Hardware Description Language (HDL)
FPGA Artix7- XC7A100T-2FTG2561
(Simulation, (ISE Design Suit 14.6,
2 Synthesis, ISE Design Suit 14.6(XST),
Implementation, ISE Design Suit 14.6,
Download) iMPACT (or) Vivado Tools 2014.2
3 IDE for Firmware ISE Design Suit 14.6 (or) Vivado Tool 2014.2
4 Programming Language “VHDL” Language
5 GSE Software LabWindow\CVI
6 GSE Software Language ‘C’ Language
7 Windows OS 7 or high
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OVERVIEW:

« Artix-7 address the complete range of system requirements, ranging from low
cost, small form factor, cost-sensitive, high-volume applications to ultra high-
end connectivity bandwidth, logic capacity and signal processing capability for
the most demanding high-performance applications. Artix-7 Optimized for
lowest cost and power with small form-factor packaging for the highest volume

applications.

Table 3.2 I/0 Pin/Device/Package Combinations for Artix-7 FPGASs

Configurable Logic
Block RAM Blocks
Blocks (CLBs)
DSFP43 C Total Max
Device Logic XADC
Max El M ECle| GTF J ] User
Cells 18 36 Max Blocks
Slices Distributed Slices T Bank Lo
Kb Kb (Eb)
EAM (Khb)
HCTAIT | 33280 3100 400 o0 100 | 30 1800 5 1 4 1 3 250
XCTAST | 52160 2130 600 110 150 | 73 2700 5 1 4 1 3 230
XCTATST | 75520 11800 842 180 210 | 103 1780 3 1 4 1 ] 300
XCTAL00
T 101440 | 13830 1183 240 70| 133 4860 B 1 4 1 [ 300
NCTAI0OT| 213360 | 33630 2888 740 T30 | 363 13140 | 10 1 4 1 10 300

a. CLBs, Slices, and LUTs:

Some key features of the CLB architecture include:

1. Real 6-input look-up tables (LUTYS)
2. Memory capability within the LUT

3. Register and shift register functionality

The LUTSs in Artix-7 can be configured as either one 6-input LUT (64-bit ROMSs) with one
output, or as two 5-input LUTSs (32-bit ROMs) with separate outputs but common addresses
or logic inputs. Each LUT output can optionally be registered in a flip-flop. Four such LUTs

and their eight flip-flops as well as multiplexers and arithmetic carry logic form a slice, and
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two slices form a configurable logic block (CLB). Four of the eight flip-flops per slice (one

per LUT) can optionally be configured as latches.

Between 25-50% of all slices can also use their LUTSs as distributed 64-bit RAM or as 32-

bit shift registers (SRL32) or as two SRL16s. Modern synthesis tools take advantage of

these highly efficient logic, arithmetic, and memory features.

b. Block RAM:
Some of the key features of the block RAM include:
1. Dual-port 36 Kb block RAM with port widths of up to 72

2. Programmable FIFO logic

3. Built-in optional error correction circuitry

Artix-7 has between 135 and 4860 dual-port block RAMs, each storing 36 Kb. Each block

RAM has two completely independent ports that share nothing but the stored data.

3.3 NAND Flash Memory

» NAND is the most popular type of flash storage memory for USB flash drives,

memory cards, and SSDs. It is used in some of the best SSDs in the market today.

This flash memory technology is non-volatile chip-based storage, and unlike
DRAM does not require a persistent power source. NAND cell arrays store 1, 2, 3,
or 4 bits of data. When the NAND SSD or card is detached from a power source,
metal-oxide semiconductors called floating-gate transistors (FGT) provide

electrical charges to the memory cells, and data remains intact.

It stores data in memory cell arrays that are defined by transistors. Each transistor
has two gates instead of one, like an electrical switch where the current flows
between two points. A floating gate and a control gate control the energy flow in a
flash memory cell. The control gate captures electrons and moves them as needed

into the floating gate.

NAND flash development concentrates on reducing the size of the chips while

maintaining or increasing their capacity. This reduces bit costs and increases
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density. Another feature is connecting cells in series of FTGs, which takes less takes

less space than parallel connections and further reduces NAND flash costs.

3.3.1 Types of NAND:

The most common types of NAND are between cells containing 1, 2, or 3 bits a cell. We
call these SLC, MLC, and TLC. 3D NAND is also gaining ground and high-performance,
high density environments[15].

R

% SLC: Single-Level Cell stores 1 bit in each cell.
s MLC: Multi-Level Cell stores 2 bits per cell.
% eMLC: Enterprise Multi-Level Cell increases MLC endurance

% TLC: Triple-Level Cell stores 3 bits per cell. However, advances in 3D NAND and
sophisticated controllers are positioning TLC to perform in read-heavy enterprise
applications.

X/

% QLC: Quad-Level Cells store 4 bits per cell. However, increasing density by storing
more bits per cell has serious disadvantages. The more bits per cell, the more often
writes and erasures occur in the cell, which decreases endurance. Voltage is also an

issue in QLCs, since voltage changes cause instability in surrounding cells.

K/

% 3D NAND: Flash manufacturers are on a mission to decrease cell sizes in order to pack
more chips and thus more capacity on a NAND device. However, shrinking cells using
the above cell level technologies resulted in cell to cell interference, which reduced data
integrity in NAND flash.

Table 3.3 Characteristic Comparison of NAND and NOR

| Characteristic | NAND Flash | NOR (Q-Flash) |

Random access read 25 ps (first byte) A12ps
.03us each for remaining 2111 bytes

Sustained read speed 23 MBY/s (x8) or 20.5 MB/s (x8) or
(sector basis) 37 MBJ/s (x16) 41MB/s (x16)
Random write speed ~300s/2112 bytes 180us/32 bytes
Sustained write speed (sector basis)| 5 MB/s .178 MB/s
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Erase block size 128KB 128K8

PREARE PREROP) 2ms - NAND 750ms  NOR
Deployment More widely used Moderately used
Memory cell The cells are connected in | The cells are connected in

connections

series, do not allow direct
writes to individual
memory cells.

parallel, the system can
write. and read to
individual memory cells

Read performance

Reads are slower since it
supports page and block

access, not random access.

Allows random access to
any memory address. This
allows the system to read
bytes independently  of

pages and blocks.

Write and erasure

Writes and erasures are

Writes and erasures are

performance faster in NAND with its | slower on NOR’s larger
smaller cell sizes. cells.
Endurance NAND cells typically have
98% good bits when
shipped, and end-users
know to expect additional
bit failures over the cell’s NOR cells have 100%
lifetime. known good blocks over the
NAND manufacturers | life of the cell. NOR does
usually add error correcting | not need any error
code (ECC) correcting code (ECC).
Density Ranges between 1Gb to | Ranges from 64MB to 2Gb

16Gbh.

Table 3.4 Parameteric Comparison of NAND and NOR
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Chapter 4

SOFTWARE
4.1 ECC for NAND Flash

Due to the Manufacturing issues, usage and environmental factors, data stored in NAND
FLASH may not return its data value as written. However, the probability for this happing
is very small. ECC is the good way to recover the wrong value from the remaining good
data bits. NAND FLASH manufactures recommended using ECC for NAND FLASH
would give better performance with reducing bit errors. ECC is implemented either
hardware or software. Implementation of ECC through software reduces the hardware
components and power. For software, various Algorithms are used to find ECC such as
Hamming Algorithm, Reed Solomon Algorithm, BCH Algorithm, for two bit error
detection and one bit error correction done by Hamming Algorithm, for multiple error
detection and correction by Reed Solomon Algorithm and BCH Algorithm.

Each page in NAND FLASH is divided into Main area and Spare area as shown in Fig.4.1A.
Main area consists of 2048 bytes and spare area consists of 128 bytes. Calculated ECC
values are stored in Spare area. The main area is divided into four chunks. Each chunk is
512 bytes as shown in Figure 4.1B . Calculate ECC for each chunk and store in Spare area.
Spansion recommended[16] 4-bit ECC for each 512 bytes data.

- 217G Bytes P 2176 Byles -
o T
-, ] A ekl
Gache Register | 2048 [ e | 2048 [ BT UO°
rd i - . J.::-
Data Register 2048 s | 2048 [ e |7
i 1 Page = (2K+128) Bytas
S34MLOZGE has 1 Block = (2K+128) Bytes x 64 Pages
1024 Blocks per Plans = (128K +83K) Byles
J 1 Black Black
S3AMLOMGE has ™ SRAMLOZGZ Device = (1 28K+6K) ¥ 2048 Blocks
2048 Blocks per Plans ‘ ‘ l SHIMLMGE Device = (1 2BK+BK) » 4086 Blocks
&
Plang Plane 1
Array QOrganization (x8)

Figure 4.1A: NAND FLASH Array Organisation
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Main area (2048 bytes) Spare area (128 bytes)

Chunkl | Chunk2 | Chunk3 | Chunk4 | Spare Spare Spare Spare
(512 (512 (512 (512 Chunk1 Chunk2 | Chunk3 | Chunk4
bytes) bytes) bytes) bytes) (32 (32 (32 (32
bytes) bytes) | bytes) bytes)
Figure 4.1B: Main area and its division
Table 4.1 Recommended BCH Code
ECC Selection NAND Flash Error
Factor Characteristics Hamming Reed-Solomon Binary BCH

Error Correction

Some error detection beyond
the correction power of the
code improves system
performance.

Error detection is
not inherent in the
code, but can be
added by increasing
overhead.

An arbitrary level of
additional error
detection is possible.

An arbitrary level of
additional error

detection is possible.

Length of error
patterns

Bit errors are un-correlated.
When given a bit error, the
probability of any other bit
being in error is not increased.

Not applicable since
itonly corrects 1-bit
errors.

Efficient code for
correlated error
patterns (such as burst
errors).

Efficient code for un-

correlated error
patterns (1-bit
errors).

Distribution of
error patterns

Errors are randomly
distributed within a page.

Good for single-bit
random errors.

Good for randomly
distributed error
patterns.

Good for randomly
distributed error
patterns.

Frequency of
errors

Raw error rates vary by
technology, but errors are
relatively rare.

Unacceptable when
the raw error rate is
greater than 1077,

Applies when error
rates are less than
approximately 104,

Applies when error
rates are less than
approximately 107,

4.1.1 Data Recording — NAND Flash

Functional Requirements:

It has to store the 12 channels data into NAND Flash.

240 minutes of the ADC sampled data has to store in NAND Flash.

Design approach:

Memory size required for storing data with 640 samples/sec:

1 samples/sec for 1 channel = 2 bytes = 16 bits/sec

640 samples/sec for 1 channel =640*16 = 10,240 bits/sec

640 samples/sec for 12 channels =12 *10240 = 1,22,880 bits/sec

640 samples/minutes for 12 channels =60 *122880 = 73,72,800 bits/sec

640 samples/240minutes for 12 channels =240 * 7372800 =1,76,94,72,000bits/sec
~ 1770 Mbits
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So, Finally 4 Gbits NAND Flash selected based on above calculations -
S34ML04G200TFI000.

4.2 BCH Codes in ASA-ARU Application

S34ML04G200TFI000 NAND FLASH requires 4-bit ECC per (512 bytes + 52 bits) of
data, which is 4148 bits. BCH code requires 52 parity bits.
We have,

n =4096 (data area) + 52 (parity bits) <2m -1 —->m =13
GF of ‘w’ elements GF(w), w=2" are used to characterise BCH codes. The GF degree is
given by m, the quantity of states taking each integrant over GF elements is given by w,
and codeword length is given by n=2M-1.
BCH (n, k, t) is the binary BCH code representation. The terms n, t and k give the
codeword-length, maximum error capability of the code and message-length respectively
[17].

For any non-negative numeral, m > 3 (where 3< m <16) and also t <2m —1, BCH code of
given specifications exists [17]:

Codeword-length: n=2"-1

Message-length: k >n — mt

Minimum distance: dmin > 2t + 1.

The MLC flash memories organisation for which the BCH encoder is implemented is as
shown in Figure 4.1A. There are two planes each having 4096 blocks and each block
consists of 64 pages. Each page has a main area of 2048 bytes and 128 spare bytes. The
main area is further broken down into chunks each of size 512 bytes and calculated ECC
for each chunk is stored in Spare area as shown in Figure 4.1B.

Based on the above specifications of memory, below are the parameters for binary BCH
code:

As we saw, 1 chunk=512B=4096 bits (2*?), block length,

n>2M-1. Thus, considering m=13, we get n=8191. For a 4-bit error correcting BCH code,
t=4. Using the above values in the following equation, k>n-mt, we get k= 8139. Therefore,
the parity check (n-k) bits = 52bits.
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4.3 BCH Encoder

Inputs of BCH Encoder are clock, reset, input data valid, 8-bit data. Outputs from BCH

Encoder are 8-bit parity data with parity data valid.
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Figure 4.2 Hardware Systolic Array Type BCH Encoder
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Figure 4.3 Block Flow Diagram of BCH Encoder-Decoder

The BFD of BCH encoder is as shown in Figure 4.3. The design of proposed encoder
follows these stages.

4.3.1 Design and Implementation of Systolic- Array type Binary BCH
Encoder
A. Generator Polynomial

The codeword(n-bit) in BCH(n,k,t) is (CXn-1, CXn-2, ... , Cxo),

Cxi € GF(2), (0<i<n-1) and message(k-bit) is (Mk-1 ,Mk-2, ..., mg), mi € GF(2), (0<i<k-1).
Generator polynomial, g(x) is of (n-k) degree. The expression, cx(x) = m(»)g(x) gives the
encoding of BCH codes in terms of g(x).

O(%) = Onkt 2"+ L +gs w S+ w24 w +1

CX(%) = CXn-1 %" CXn2 12+ L L +CX1 K +CXo

m(®) = Mg % mie x 624+

. tmM1x +Mmo
lowest degree polynomial of over GF(2) with roots as B, B2 B3,...., B* (also known as
primitive elements) is known as generator polynomial [6]. Let fi(») be the minimal

polynomial of ai. Then, g(x) is give as:

g(xn) = LCM{f1(xn), f2(x%), ...., f2¢(n )} (1)

The conjugate roots of g(x) have same minimal polynomials .i.e. p'=(p")?", fi(x) = fi (%),
where i =i *2w for w > 1, thus for a BCH code with t-error rectification, g(x) in eqn.(1)

can be turndown to:
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g(n) = LCM{fi(xn), f3(n), ...., f2t-1(1)} (2)
For BCH (8191,8139,4), the primitive polynomial for GF(2%) is given as
pn) =n13 +ut+u3+xn+1. (3)

The minimal polynomials for GF (2*3) in binary BCH codes are:

_

fi(n) =uB +xt+ 0+ +1

fa(0) =uB+x0+2 0 + '+ 0+ + 1
— (4)
fo() =nBP +ull +a8+ 0’ +xt+u+1

fr00) =B+ 10+ 0+ 0P+ Hal H P H e+l
Therefore from eqn. (2) and (4), g(») is computed as:

g(») = LCM (f1(x), f3(»), f5(x), f7(x)), where

g(%) = %52 + %50 + %46 + %44 + %41 + %37 + %36 + %30 + %25 + %24 + %23 + %21 + %19 + %17 + %16
+ 1+l + 0 + o+ 0+ + ot (5)

B. Construction of BCH (8191,8139,4) Encoder

The proposed BCH encoder is nearly an equivalent of the traditional serial BCH encoder
in which the yield of XOR situated furthest to the right acts an input to remaining XORs in
addition to first register but the difference being, the further stages input is taken from the
previous stage output. Each of the horizontal lines in Figure. 3 are considered as parallel
factor j, where Oth stage is the first and (j-1) is the last stage. In each stage, the orientation
of the XOR gates is an imitation of the preliminary stage but the contribution to each stage
is from the preceding stage [6]. This procedure majorly operates on shifting mechanism.
The (j-1th) stage output is fed as input to the (0Oth) stage, and is rehashed sequentially once
the XOR operation is completed.

The procedure to calculate the parity bits for 512 bytes is as follows. Let ‘P’ is the parity
bits consists of 52 bits, named as PO, P1, ..., P5, P6, ..., P49, P50, P51 and ‘i’ is the input
bits consisting of 8 bits named as 10, i1, i2, . . . ,i6, i7.Initially parity bits ‘P’ are set to zeros.
The first input byte data is loaded in i register which is 8-bit register connected to hardware
systolic array type BCH Encoder when enable is high. Now the parity bits ‘P’ value is
changed according to the ‘i’ register and Hardware digital circuit. The parity bits output for
the input byte are input to the next byte in the field of parity bits ‘P’. The next input byte is

loaded in i register.
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The parity bits ‘P’ corresponding data ‘i’ are calculated. Continue to load the input bytes
and the preceding parity bits till 512 bytes are completed. After completion, parity bits for
the 512 bytes are available in the parity bit register.

One major advantage of systolic array type architecture is that the stages can be changed to
any number causing no effect on the complexity of the circuit as the stages are just replicas
of the first. Hence, in the proposed BCH encoder implemented for the reliability of storage
of data in NAND Flash memory, this architecture provides the ease of encoding the 2048
bytes of main area without increasing hardware design and thus preferred for high speed

applications with maximum reutilisation of modules.

Once the message is encoded successfully, the information bits, along with the parity bits
are now ready to enter the storage area. Once stored, the data can be retrieved into the buffer

byte-wise and the decoding process is initiated.

ead input datg

data=0 }

compute systolic
array structure for
parity bit

v

display parity

Figure 4.4 Flow diagram for proposed BCH Encoder
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4.4 BCH Decoder

Inputs of BCH Decoder are clock, reset, data (stored data + parity data), data valid.
Outputs from BCH Decoder are No of errors, valid error enables, Error byte location,

Error bit location

4.4.1 Design and Implementation Binary BCH Decoder

A. Galois Field roots generation
The root table generation is the primary stage for decoding. The values of roots initially are
0, B° and B. Raising P to increasing powers, we get B2 B°, . . ., B! and p*2 as the following

roots to initial vales. When B2 is encountered, knowing p(x) from eqn. (3), we get,

B3 = g+ 3t f+ 1. (6)
The primitive polynomial, p(x») aids in generating elements for the extension field
(GF(2™M)) from base field (GF(2)). Any power beyond 13 (i.e B** to p81%) is reduced using
eqn. (6).

B. Syndrome calculation
Once the B' is generated, the phase two is calculation of the syndromes(Si. The indication
of the received code being valid or not is given by this syndrome computation, that is, if

syndrome is zero(Si = 0), the received codeword is error-free.

Table 4.2 Root Table for GF (212)

Coefficients | Root values

B° 0000000000001
Bt 0000000000010
pl? 1000000000000
B13 0000000011011
peLoo0 1000000001101
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Received codeword, rx(x) is the syndrome module’s input. The rx(%) may be erroneous

with a pattern er(x).
rx(x) = cx(»n) + er(x) (7)
The received codeword is:

rx(x) =rxo + rxix + ...+ rxnp-1xn1 )

Transmitted codeword is given by:

cx(n) = cxo + cxin + ... + CXn-1x"1 (9)

The error pattern is:
er(n) =ero + erin+ ...+ ern-1x"1 (10)

Syndrome §; can be computed by:

Si=rx(p')
rx(fl) = rxo + rxi1 fi+ rxz f? + rx3 % + ... + rxn-1 fO-DI (11)

where 1<i < 2t-1 and B is the primitive element of GF(2%).

C. Coefficients of error locator polynomial

Some of the popular methods used for decoding are PGZ (Peterson-Gorenstein-Zierler)
Algorithm [7], Berlekamp- Massey ( BMA ) algorithm [11] and Euclidean ( EA)
algorithm[12].

Among these, the most effortless way to comprehend a BCH decoder is by using the PGZ
algorithm for any error correction capacity(t), that is, any decoder can be realised without

the requirement of algebraic computation with high level of difficulty.

The error locator polynomial is defined as:
A (B) = Ao + A1l +A25%7 +A3537 + A4 + ... +A:pY (12)

Here, we use the PGZ Algorithm to determine the A(B') coefficients, i.e. the Eigen values
from the determinant of the A1, Az,..., Ay of polynomial,
A(n) = 1+ Ain+ A2n? + ... + Avn” (13)

Department of ECE, CMRIT, Bangalore 2019-20 46



NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight
Control System

For 4-bit(v=4) error correction, the following equations are used to calculate the eigen

values:

A1=8 (14)
=S @9

As= (S, + 813) + 8 A2 (16)

Au= (85+S3812)+A2(83+813) (17)

81

Newton’s Identities [11] are used to verify the generated Eigen values (Av) with the below
set of equations:

S1+A1=0 M
So+ A1S1+2A2=0

Sv + Aj_Sv-l +...+ Av-lSl +VAV =0 > (18)
Sv+1 + AlSv +...+ Av-182 + AvS]_ =0

Sot + A1Sor1+ . . L+ AvaSotv+1 + AvSoty = 0/

D. Roots of A(x)

Once the coefficients, Av are computed, Polynomial, A(x) roots are to be determined which
indicates the reciprocal of error location.

There are different Chien search algorithms for fast encoding like the Conventional p-
parallel - Chien architecture , MPCN-based parallel architecture [13], Joint Chien Search

& Syndrome-Calculator Architecture .

Figure 4.5 Conventional Chien search
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The hardware implementation of Chien search block [8] used proposed decoder for

determining the roots of A(x) is shown in Figure. 5.

A(n) = At + Apant 1 + ... + A1 + Ao

Element B'is root of A(x) if the below condition is

satisfied:

A(B) = Aefit + Aeafi -0 L+ N1ffi + Ao = 0

Knowing, Ag=1

AB) -1 = APt + Aeafi D 4.+ N1 = -1

For element B0*YV:

AB+1) -1 = AfG+D ¢ + A fO+DED) 4 4 A1fi+1

AB*1) -1 = Afieft + AcsfCDE1+ .+ Aifip

(19)

(20)

(21)

(22)
(23)

Value of A(B"*Y) is computed from previous A(B') values. The eqn. (23), when iteratively

executed, yields the roots of A(x) .

As mentioned earlier, the inverse roots now obtained are reciprocated to determine the bit

locations at which the error occurred while transmission. Based on the error correcting

capacity(t), those number of bits will be corrected.

no
if buff_done=1
yes

h 4 ¢<
read E ~ compute root
decoder_data
yes
8

compute
syndroTe_done > syndrome Si
=1 (i=1 to 7)

yes

if eigen_done
=1
yes
f chien_done
=1 no
S

i
ye

display error
location
<;J_°°>‘

Figure 4.6 Flow diagram for proposed BCH Decoder

compute error
coefficients
(eigen values)

compute error
location
polynomial roots

Department of ECE,

CMRIT, Bangalore 2019-20

48



NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight
Control System

Chapter 5
RESULTS
5.1 Simulation results of BCH(8191,8139,4) Encoder

The proposed Encoder is simulated in Xilinx ISE version 14.7 using VHDL. The simulation
waveform result for parallel BCH(8191,8139,4) encoder is shown in Figure 5.1.

The clock period for the waveform simulation is 10ns.
The number of clock cycles utilised to generate 52 bit parity for 8139 input bits is 1018

cycles.

-”}.; fpoa_dk
-”}.; fpga_reset

-”-r bch_enable
p B datalr.0]
3 % parity_data[51:0] 2280318268275288 33647910 19804...

18 foga chperiod | 10000 s ___l

Figure 5.1 Simulated waveform for BCH(8191,8139,4) Encoder (message = 2.9230e+47

(in decimal))

Considering the conventional BCH encoder (Serial BCH encoder), it is observed that clock
cycles required for computing the 52 parity bits for 8139 input bits would be
(8139+52)cycles. When compared to the proposed parallel BCH encoder, the former takes
nearly 8 times longer thus making the proposed design more suitable for high speed

operations.

5.2 Performance Comparison of Conventional and Parallel BCH(63,39,4)

Encoder

To further show the advantage of parallel BCH encoders over the conventional enoders, let
us consider BCH(63,39,4) encoder.

Figure 5.2 shows serial BCH(63,39,4) encoder. The clock period is taken as 100ns. Thus,
to generate 24- bit parity for 39 input bits, 39 clock cycles will be utilised along with an

extra of 24 cycles to output the 24 parity bits from the register in hardware.
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Figure 5.3 Parallel BCH(63,39,4) Encoder

Figure 5.3 shows parallel BCH(63,39,4) encoder. The clock period is taken as 50ns. Thus,
to generate 24- bit parity for 39 input bits, 4 clock cycles will be utilised with no extra
cycles required to read the parity.

The comparison summary is shown in Table 5.1.

Table 5.1: Performance comparison of parallel and serial BCH encoder observed in

simulation
Serial BCH Parallel BCH
(63,39,4) (63,39,4)
Encoder Encoder
Clock period 100ns 50ns
Message Bits 39 39
Parity bits 24 24
Clock Cycle | 39 4
utilization-parity
computation
Clock Cycle | 24 0
utilization - to
output parity bits

Department of ECE, CMRIT, Bangalore 2019-20 50



NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight
Control System

5.3 Simulation Results of BCH Decoder

Once the process of encoding is completed, the received codeword (message + parity bits)
are fed to the decoding system designed. The received codeword (rx) is now fed byte wise
and the root table is obtained. Later, the codeword is used to calculate the syndrome. As

seen in Figure 5.4A, an error-free codeword generates S; =0. When errors are introduced
(considering 4 bits of error), it is observed that the syndrome is computed accordingly (Si#

0) as in Figure 5.4B.

?E sifi24] 0000000000000
R 0000000000000
iy 301200 0000000000000
iy sal120] 0000000000000
dy s5(120] 0000000000600
ay (1200 0000000000000
2y s71120] 0000000000000
Figure 5.4A : Syndrome when no errors in rx
?E s1[12:0 1110010101111
gy =220 0011110100010
g s3[12:0] 0100101010101
By s4120] 0101000601010
oy s5012:0] 1001010100001
gy sel12:0] 0011111010010
g s7012:0] 0111010010110

Figure 5.4B : Syndrome when rx has errors

The coefficients, Ayare calculated in correspondence with the syndrome generated above.

Therefore, when S; =0, Ay =0 as well when no errors in rx as shown in Figure 5.5A and

when (S;# 0), the Ay generated are as shown in Figure 5.5B.

95 ailt2q) 0000000000000
9 a2120) 0000000000000
% a3(124] 0000000000000
2 a4l12g 0000000000000

Figure 5.5A: Coefficients when no errors in rx
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Kajpg  it000101111

Bag  i100100000111
Boleg 1110000100101
B oqi2g 1010000000001

Figure 5.5B: Coefficients when rx has errors

The roots are computed from A (B') once the coefficients are generated. In Figure 5.6A,
roots don’t exist as Sjand Ay are zero thus indicating no errors in the received codeword.

The generated roots in Figure 5.6B represent the reciprocal of the actual error location, that
is if root is 8127, the error location is 64(63™ bit).

& er_loc rootf03] UUUUUUUUUUUUU, U..

q [0 x
q (1] x
Ny -
ﬂ 3] x

Figure 5.6A: Roots when no errors in rx

% er loc rootf0:3] 1111100111101, 1.

g [ 7997

g [1] 7538
g (2] 8058

B [ 8127

Figure 5.6B: Roots when rx has errors
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Chapter 6
APPLICATIONS AND ADVANTAGES

The BCH encoder takes a block of digital data and adds extra "redundant™ bits. Errors occur
during transmission or storage due to a number of reasons (for example, noise or
interference, scratches on a CD, etc.). The BCH decoder processes each block of data and
attempts to correct the errors and recover the original data. The number and type of errors
that can be corrected depends on the characteristics of the BCH code. BCH encoding and

decoding can be carried out either in software or in special-purpose hardware.

6.1 Applications of BCH codes

Bose—Chaudhuri—-Hocquenghem (BCH) codes are of great practical importance for error
correction, particularly if the expected number of errors is small compared with the length.
BCH codes were constructed as a generalization of Hamming codes. BCH codes are best
considered as cyclic codes. The original applications of BCH codes were restricted to
binary codes of length 2 m -1 for some integer m. These were extended later by Gorenstein

and Zierler to the nonbinary codes with symbols from the Galois field GF(q).

6.1.1 Digital Communications and Storage
BCH error correction codes are block-based error correcting codes with a wide range of
applications in digital communications and storage. BCH codes are used to correct errors

in many systems including:

» Storage devices (including tape, Compact Disk, DVD, barcodes etc.)

» Wireless or mobile communications (including cellular telephones, microwave
links, pager etc.)

» Satellite communications

» Digital television / DVB

» High-speed modems such as ADSL, xDSL, etc.

6.1.2 BCH Codes as Industry Standards
e (511, 493) BCH code in ITU-T. Rec. H.261 “video codec for audiovisual service at

kb/s” a video coding standard used for video conferencing and video phone. n=511
m=9 k=493 n-k=18 t=2
e (40, 32) BCH code in ATM (Asynchronous Transfer Mode) is a shortened cyclic

code that can correct 1-bit error and detect 2-bit errors
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6.1.3 BCH Code in image encryption

For the data security perspective we utilize a BCH code in round key addition and mixed
column matrix steps in AES algorithm and then put on this modified AES(Advanced
Encryption Standard) [18] algorithm to image encryption. The image encryption quality
permits to incorporate this alteration to AES.

AES algorithm consists of four steps: Substitute byte , Shift Rows, Mix Columns and Add
Round Keys .The AES algorithm is modified with the help of BCH codes have the
following steps: (1) Convert 128 bits of data into 16 data bytes and write these 16 bytes in
a 4 * 4 state matrix;(2) The generator polynomial of BCH code is used as a round key. This
key is served as the secret key and the current state matrix is XOR with this key in each
add round key step;(3) Now the entries of the current state matrix are substituted with the
S-box entries; (4) Then perform the circular shift on each row of the current state matrix.
Row 0 is shifted 0 byte left, row 1 is shifted 1 byte left, row 2 is shifted 2 bytes left and row
3 shifted 3 bytes left and so on;(5) Now the current state matrix is multiplied with the mix
column matrix which is constructed by using the BCH code. Repeat these steps ten times
for AES-128 encryption results for data. This scheme is called AES-C. The modified AES-
C for the image encryption scheme. Figure 6.1(a) shows that original Lena image, Figure
6.1(b) and 6.1(c) shows encrypted image by original AES and modified AES-C
respectively. From Figure 6.1(b) and 6.1(c), it is analyzed that, encrypted image by AES-
C is better than encrypted image by AES. The results of AES-C are better in each channel
because correlation and energy are close to zero. If Contrast is greater, then it means that
image encryption quality is strong and the most important part of the quality of image
encryption technique is an entropy AES-C gives entropy close to 8 which give high security

for the confidential image.

(b) (c)
Figure 6.1 (a) Original Lena image;(b) Image by AES;(c) Image by AES-C
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6.1.4 Error-free Communication in NB-1oT

Internet of Things (l1oT), a parasitic innovation and one of a kind revolutionizing the cyber
networks far and wide over the globe have infiltrated several sectors of human lives.
Ensuring and elevating the quality of human living, it continues to evolve with time. The
much-evolved version of 10T, Narrow Band Internet of things (NB-10T) has left the world
astonished owing to its unique ability to digitally transform lives with much lesser
frequency of operation. The ability to coexist with technologies such as Artificial
Intelligence (Al) and Machine Learning (ML) having a contained asset wastage, provides
NB-IoT a high ground over existing innovations. With the introduction of error-correcting
codes such as BCH in the client and server-side of the network, NB-10T prospers over
Industrial sectors ensuring nearly absolute error-free data transfer. BCH codes incorporated
alongside NB-IoT structures a favored arrangement in ensuring the quality of data and

assuring the well-defined future of several industrial sectors.

| ;

™ RX

| — }

™ RX

Y
ELEELEF Y

|BCH Encoder| [peH pecoder| ‘BCH Encoder‘ BCH Decoder| oy
— ] | PHY — | |

g “‘I \

Sleep 10T
Procressor

(Server)

server

NAND Flash

Main —>  Interface .

Process / NAND Flash
\ 7 ‘/

Database
Keyboard Dev/User Keyboard

server-side Client-side

Figure 6.2 NB-IoT architecture with BCH arrangement

NB-10oT is surely evinced in terms of a cost-effective, reliable, and low power solution. But
still, persist with attenuation of the received signal due to external factors. For a critical
system data, integrity is must, therefore, the BCH is inculcated in NBIoT at the transceiver
with error correction capability close to achieving absolute error-free data and successful

data transfer.
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6.2 Advantages

A class of powerful multiple-error-correcting cyclic codes was discovered by Bose and
Ray-Chaudhuri in 1960 and independently by Hocquenghem in 1959. These codes are

known as the BCH codes.

The BCH codes provide a wide variety of block lengths and corresponding code rates. They
are important not only because of their flexibility in the choice of their code parameters,
but also because, at block lengths of a few hundred or less, many of these codes are among

the most used codes of the same lengths and code rates.

Another advantage is that there exist very elegant and powerful algebraic decoding
algorithms for the BCH codes. The importance of the BCH codes also stems from the fact
that they are capable of correcting all random patterns of t errors by a decoding algorithm
that is both simple and easily realized in a reasonable amount of equipment. BCH codes
occupy a prominent place in the theory and practice of multiple-error correction.
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Chapter 7
CONCLUSIONS AND SCOPE FOR FUTURE WORK

The proposed Systolic Array type BCH encoder can be molded to whichever parallelization
factor without any complications. BCH codes are illustrated to be eminent error correcting
codes for codes of any length and irrespective of how random the errors are. The exact
capabilities of these codes have driven large attention as the encoding-decoding system is
simple. Thus, adopting methods involving parallel approach, the speed of operation and
device utilization are improved to a great extent as illustrated with the comparisons made
considering BCH(63,39,4) encoder.

The error correction is successfully done by implementing a BCH decoder. It is seen that
when errors occur in the received codeword, the corresponding syndrome, coefficients and
roots are computed to locate position of the errors precisely which can be corrected by
simply flipping only those bits. In this paper, we have considered only 4-bit error
correction. One prime highlight of this method is that the error correction is done in the
parity as well in addition to the message as there are chances of the parity also being
affected while transmission. This provides a more reliable retrieval of data at receiver end.

The same concept can be extended to multiple error correction by generating the syndrome
and based on i (2t-1) value in Si , the Ay equations can be obtained from PGZ algorithm

and the corresponding Chien search can be applied for determining the error locations and

correcting them.

The further study will be on the concept of error detection when there are more than t-bits
of error, that is, here, when we encounter more than 4-bits of error, the roots generated may
not yield the exact error locations. A system having adaptability to correct any number of

error bits is to be designed.
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APPENDIX A

BCH Encoder: Module definition

-- Company:

-- Engineer:

-- Create Date:  17:34:03 03/16/2020

-- Design Name:

-- Module Name: bch_encoder - Behavioral
-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created

-- Additional Comments:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL,;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
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entity bch_encoder is
Port (fpga_clk : in STD_LOGIC;
fpga_reset : in STD_LOGIC;
bch_enable : in STD _LOGIC;
data:in STD_LOGIC_VECTOR (7 downto 0);
parity data valid : out STD_LOGIC;
parity_data : out STD_LOGIC_VECTOR (51 downto 0));

end bch_encoder;

architecture Behavioral of bch_encoder is
signal p: std_logic_vector(51 downto 0);
begin
process(fpga_clk)
begin
if(rising_edge()) then
if(fpga_reset="1") then
p <= x"0000000000000";
elsif(bch_enable="1") then
p(51) <= p(43) xor data(1) xor data(3) xor p(47) xor p(45);
p(50) <= p(42) xor data(0) xor p(44) xor data(2) xor p(46);
p(49) <= p(41) xor data(3) xor p(47);
p(48) <= p(40) xor data(7) xor p(51) xor data(2) xor p(46);
p(47) <= p(39) xor data(6) xor p(50) xor data(7) xor p(51) xor data(1) xor p(45);
p(46) <= p(38) xor data(0) xor p(44) xor data(5) xor p(49) xor data(7) xor p(51) xor
data(6) xor p(50);
p(45) <= p(37) xor data(1) xor p(45) xor data(3) xor p(47) xor data(5) xor p(49) xor
data(4) xor p(48) xor data(6) xor p(50);
p(44) <= p(36) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor
data(3) xor p(47) xor data(5) xor p(49);
p(43) <= p(35) xor data(2) xor p(46) xor data(4) xor p(48) xor data(7) xor p(51);
p(42) <= p(34) xor data(1) xor p(45) xor data(3) xor p(47) xor data(7) xor p(51) xor
data(6) xor p(50);
p(41) <= p(33) xor data(0) xor p(44) xor data(2) xor p(46) xor data(5) xor p(49) xor
data(7) xor p(51) xor data(6) xor p(50);
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p(40) <= p(32) xor data(3) xor p(47) xor data(5) xor p(49) xor data(7) xor p(51) xor
data(4) xor p(48) xor data(6) xor p(50);

p(39) <=p(31) xor data(2) xor p(46) xor data(4) xor p(48) xor data(6) xor p(50) xor
data(3) xor p(47) xor data(5) xor p(49) xor data(7) xor p(51);

p(38) <= p(30) xor data(2) xor p(46) xor data(4) xor p(48) xor data(6) xor p(50) xor
data(1) xor p(45) xor data(3) xor p(47) xor data(5) xor p(49);

p(37) <=p(29) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor
data(1) xor p(45) xor data(3) xor p(47) xor data(5) xor p(49) xor data(7) xor p(51);

p(36) <= p(28) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor
data(6) xor p(50);

p(35) <= p(27) xor data(5) xor p(49) xor data(7) xor p(51);

p(34) <= p(26) xor data(4) xor p(48) xor data(6) xor p(50);

p(33) <= p(25) xor data(3) xor p(47) xor data(5) xor p(49) xor data(7) xor p(51);

p(32) <= p(24) xor data(2) xor p(46) xor data(4) xor p(48) xor data(6) xor p(50) xor
data(7) xor p(51);

p(31) <= p(23) xor data(1) xor p(45) xor data(3) xor p(47) xor data(5) xor p(49) xor
data(6) xor p(50) xor data(7) xor p(51);

p(30) <= p(22) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor
data(6) xor p(50) xor data(5) xor p(49);

p(29) <= p(21) xor data(4) xor p(48) xor data(5) xor p(49) xor data(7) xor p(51);

p(28) <= p(20) xor data(3) xor p(47) xor data(4) xor p(48) xor data(6) xor p(50) xor
data(7) xor p(51);

p(27) <= p(19) xor data(2) xor p(46) xor data(3) xor p(47) xor data(5) xor p(49) xor
data(7) xor p(51) xor data(6) xor p(50);

p(26) <= p(18) xor data(1) xor p(45) xor data(2) xor p(46) xor data(4) xor p(48) xor
data(6) xor p(50) xor data(7) xor p(51) xor data(5) xor p(49);

p(25) <= p(17) xor data(0) xor p(44) xor data(1) xor p(45) xor data(3) xor p(47) xor
data(5) xor p(49) xor data(4) xor p(48) xor data(6) xor p(50);

p(24) <= p(16) xor data(0) xor p(44) xor data(1) xor p(45) xor data(2) xor p(46) xor
data(5) xor p(49) xor data(4) xor p(48) xor data(7) xor p(51);

p(23) <= p(15) xor data(0) xor p(44) xor data(4) xor p(48) xor data(6) xor p(50) xor
data(7) xor p(51);

p(22) <= p(14) xor data(1) xor p(45) xor data(5) xor p(49) xor data(6) xor p(50) xor
data(7) xor p(51);
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p(21) <= p(13) xor data(0) xor p(44) xor data(4) xor p(48) xor data(5) xor p(49) xor
data(6) xor p(50) xor data(7) xor p(51);

p(20) <= p(12) xor data(4) xor p(48) xor data(5) xor p(49) xor data(6) xor p(50) xor
data(1) xor p(45);

p(19) <= p(11) xor data(0) xor p(44) xor data(3) xor p(47) xor data(4) xor p(48) xor
data(5) xor p(49) xor data(7) xor p(51);

p(18) <= p(10) xor data(1) xor p(45) xor data(2) xor p(46) xor data(4) xor p(48) xor
data(6) xor p(50) xor data(7) xor p(51);

p(17) <= p(9) xor data(0) xor p(44) xor data(1) xor p(45) xor data(3) xor p(47) xor
data(5) xor p(49) xor data(6) xor p(50) xor data(7) xor p(51);

p(16) <= p(8) xor data(0) xor p(44) xor data(1) xor p(45) xor data(2) xor p(46) xor
data(3) xor p(47) xor data(4) xor p(48) xor data(5) xor p(49) xor data(6) xor p(50) xor
data(7) xor p(51);

p(15) <= p(7) xor data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48) xor
data(5) xor p(49) xor data(6) xor p(50) xor data(7) xor p(51);

p(14) <= p(6) xor data(4) xor p(48) xor data(5) xor p(49) xor data(6) xor p(50);

p(13) <= p(5) xor data(3) xor p(47) xor data(4) xor p(48) xor data(5) xor p(49) xor
data(7) xor p(51);

p(12) <= p(4) xor data(2) xor p(46) xor data(3) xor p(47) xor data(4) xor p(48) xor
data(6) xor p(50) xor data(7) xor p(51);

p(11) <= p(3) xor data(1) xor p(45) xor data(2) xor p(46) xor data(3) xor p(47) xor
data(5) xor p(49) xor data(6) xor p(50);

p(10) <= p(2) xor data(0) xor p(44) xor data(1) xor p(45) xor data(2) xor p(46) xor
data(4) xor p(48) xor data(5) xor p(49) xor data(7) xor p(51);

p(9) <= p(1) xor data(0) xor p(44) xor data(4) xor p(48) xor data(6) xor p(50);

p(8) <= p(0) xor data(1) xor p(45) xor data(5) xor p(49) xor data(7) xor p(51);

p(7) <= data(0) xor p(44) xor data(4) xor p(48) xor data(6) xor p(50) xor data(7)
xor p(51);

p(6) <= data(1) xor p(45) xor data(5) xor p(49) xor data(6) xor p(50);

p(5) <= data(0) xor p(44) xor data(4) xor p(48) xor data(5) xor p(49) xor data(7)
xor p(51);

p(4) <= data(1) xor p(45) xor data(4) xor p(48) xor data(6) xor p(50) xor data(7)
xor p(51);
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p(3) <= data(0) xor p(44) xor data(3) xor p(47) xor data(5) xor p(49) xor data(6)
xor p(50) xor data(7) xor p(51);
p(2) <= data(1) xor p(45) xor data(2) xor p(46) xor data(3) xor p(47) xor data(4)
xor p(48) xor data(5) xor p(49) xor data(6) xor p(50);
p(1) <= data(0) xor p(44) xor data(1) xor p(45) xor data(2) xor p(46) xor data(3)
Xor p(47) xor data(4) xor p(48) xor data(5) xor p(49);
p(0) <= data(0) xor p(44) xor data(2) xor p(46) xor data(4) xor p(48);
end if;
end if;
end process;
parity data<=p;

end Behavioral;

BCH Encoder: Test Bench

-- Company:

-- Engineer:

-- Create Date: 15:18:37 04/23/2020

-- Design Name:

-- Module Name: /home/ise/mp_bch/bchenc/bch_encoder_th.vhd
-- Project Name: bchenc

-- Target Device:

-- Tool versions:

-- Description:

-- VHDL Test Bench Created by ISE for module: bch_encoder

-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created

-- Additional Comments:
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-- Notes:

-- This testbench has been automatically generated using types std_logic and

-- std_logic_vector for the ports of the unit under test. Xilinx recommends

-- that these types always be used for the top-level I/O of a design in order

-- to guarantee that the testbench will bind correctly to the post-implementation
-- simulation model.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;

ENTITY bch_encoder_tb IS
END bch_encoder_tb;

ARCHITECTURE behavior OF bch_encoder _th IS

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT bch_encoder
PORT(
fpga_clk : IN std_logic;
fpga_reset : IN std_logic;
bch_enable : IN std_logic;
data: IN std _logic_vector(7 downto 0);
-- parity_data_valid : OUT std_logic;
parity_data : OUT std_logic_vector(51 downto 0)
);
END COMPONENT;
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--Inputs

signal fpga_clk : std_logic :='0";

signal fpga_reset : std_logic :='0";

signal bch_enable : std_logic :='0;

signal data : std_logic_vector(7 downto 0) := (others =>"'0");

--Outputs
--signal parity_data_valid : std_logic;

signal parity_data : std_logic_vector(51 downto 0);

-- Clock period definitions

constant fpga_clk_period : time := 10 ns;

BEGIN

-- Instantiate the Unit Under Test (UUT)
uut: bch_encoder PORT MAP (
fpga_clk => fpga_clk,
fpga_reset => fpga_reset,
bch_enable => bch_enable,
data => data,
-- parity_data_valid => parity_data_valid,
parity_data => parity_data
);

-- Clock process definitions
fpga_clk_process :process
begin
fpga_clk <="0";
wait for fpga_clk_period/2;
fpga_clk <="1";
wait for fpga_clk_period/2;

end process;
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-- Stimulus process
stim_proc: process
begin
-- hold reset state for 100 ns.
wait for 100 ns;
-- insert stimulus here

data<="11111111";fpga_reset <='"1";bch_enable <="1";wait for fpga_clk_period,

data<="11111111";fpga_reset<="1";bch_enable <='0";wait for fpga_clk_period;

data<="11111111";fpga_reset <='0";bch_enable <="0";wait for fpga_clk_period;

--data <= "00011111";fpga_reset <= '0;bch_enable <= '1";wait for
fpga_clk_period;

fpga reset <= '1'; bch_enable <= '1';data <= "10100101";wait for
fpga_clk_period,;
foriin 1to 10 loop
fpga_reset <="'0"; bch_enable <="1";data <= "10101010";wait for fpga_clk_period;
end loop;
foriin1to 10 loop
fpga_reset <="'0"; bch_enable <="1";data <= "11001100";wait for fpga_clk_period;

end loop;

-- foriin 1to 127 loop

-- data <="11111111";wait for fpga_clk_period;
-- END LOOP;

-- foriin1to 127 loop

-- data <= "00000000";wait for fpga_clk_period;
- END LOOP;

Department of ECE, CMRIT, Bangalore 2019-20 66



NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight
Control System

-- foriin1to 127 loop
-- data <="11111111";wait for fpga_clk_period;
-- END LOOP;
-- foriin 1to 127 loop
-- data <="00000000";wait for fpga_clk_period;
-- END LOOP;
-- foriin 1to 127 loop
-- data <="11111111";wait for fpga_clk_period;
-- END LOOP;
-- foriin1to 127 loop
-- data <= "00000000";wait for fpga_clk_period;
- END LOOP;
-- foriin 1to 127 loop
-- data <="11111111";wait for fpga_clk_period;
- END LOOP;
-- foriin 1to 127 loop
-- data <="00000000";wait for fpga_clk_period;
-- END LOOP;
data <= "-------- ";wait for fpga_clk_period,;
bch_enable <="0",
--$stop;
wait;

end process;

END;
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APPENDIX B
BCH Decoder: Module Definition

-- Company:

-- Engineer:

-- Create Date:  23:02:12 04/29/2020
-- Design Name:

-- Module Name: bch - Behavioral
-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created

-- Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_Std.all;

--use IEEE.STD_LOGIC _arith.all;
use ieee.std_logic_signed.all;

use std.textio.all;

entity bch_decoder is

Port (fpga_clk :in STD_LOGIC;
BCH_RESET :in STD_LOGIC;
bch_decoder en:in STD_LOGIC;
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bch_decoder_data :in std_logic_vector (7 downto 0);
error_byte_location_OP_1 : inout STD_LOGIC_VECTOR (9 downto 0);
error_bit_location_OP_1:out STD_LOGIC_VECTOR (7 downto 0);
error_byte location_OP_2 : inout STD_LOGIC_VECTOR (9 downto 0);
error_bit_location_OP_2 :out STD_LOGIC_VECTOR (7 downto 0);
error_byte location_OP_3:inout STD_LOGIC _VECTOR (9 downto 0);
error_bit_location_OP_3:out STD_LOGIC_VECTOR (7 downto 0);
error_byte location_OP_4 : inout STD_LOGIC_VECTOR (9 downto 0);
error_bit_location_OP_4: out STD_LOGIC_VECTOR (7 downto 0);
--mem_OP : out STD_LOGIC_VECTOR (5 downto 0);

num_of _error : out STD_LOGIC_VECTOR (2 downto 0)
--error_location_valid : out STD_LOGIC

);

end bch_decoder;

architecture Behavioral of bch_decoder is

type buff is array (0 to 1023) of std_logic_vector(7 downto 0);
signal rx : buff;

signal rx_done : std_logic :="'0";

type memory is array (0 to 8190) of std_logic_vector(12 downto 0);
signal mem : memory;

signal root_done : std_logic :='0";

signal s1: STD_LOGIC_VECTOR (12 downto 0);
signal s2 : std_logic_vector (12 downto 0);

signal s3 : std_logic_vector (12 downto 0);

signal s4 : std_logic_vector (12 downto 0);

signal s5 : std_logic_vector (12 downto 0);

signal s6 : std_logic_vector (12 downto 0);

signal s7 : std_logic_vector (12 downto 0);

signal il : integer range 0 to 8191 :=0;
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signal Al : std_logic_vector (12 downto 0);
signal A2 : std_logic_vector (12 downto 0);
signal A3 : std_logic_vector (12 downto 0);
signal A4 : std_logic_vector (12 downto 0);
signal eigen_en :std_logic :='0";

signal eigen_done :std_logic :='0";

signal bch_decoder_chien_en : std_logic :='0";

signal ch_ini : std_logic :="'0";

signal chien_done : std_logic :='0";

signal jc: integer range 0 to 4 := 0;

type error_loc_roots is array (0 to 3) of std_logic_vector(12 downto 0);

signal er_loc_root : error_loc_roots;

function mul (v1, v2 : in std_logic_vector) return std_logic_vector is

constant m - integer ;= 13;

variable dummy - std_logic;

variable v_temp . std_logic_vector(m-1 downto 0);
variable ret . std_logic_vector(m-1 downto 0);
begin

v_temp := (others=>'0"); --- p(X)=1+ x+x3+ x4 + x13

foriin 0to m-1 loop
dummy :=v_temp(12);
v_temp(12) :=v_temp(11);
v_temp(11) := v_temp(10);
v_temp(10) :=v_temp(9);
v_temp(9) :=v_temp(8);
v_temp(8) :=v_temp(7);
v_temp(7 ) :=v_temp(6 );
v_temp(6) :=v_temp(5);
v_temp(5) :=v_temp(4);

v_temp(4) :=v_temp(3 ) xor dummy;
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v_temp(3) := v_temp(2 ) xor dummy;
v_temp(2) :=v_temp(1);
v_temp(1) :=v_temp(0 ) xor dummy;

v_temp(0) := dummy;

for j in 0 to m-1 loop

v_temp(j) := v_temp(j) xor (v1(j) and v2(m-i-1));
end loop;

end loop;

ret := v_temp;

return ret;

end mul;

function div (a, b : in std_logic_vector) return std_logic_vector is

constant m - integer := 13;

variable ret : std_logic_vector(m-1 downto 0);
variable temp - std_logic_vector(m-1 downto 0) ;

begin

temp :=b; --- b(-1) = b™((2m)-2) (since, bA((2m)-1) =1)

foriin0to 10 loop

temp := mul (temp,temp);
temp := mul (b,temp);
end loop;

temp := mul (temp,temp);
ret := mul (a,temp);

return ret;
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process(fpga_clk)

variable a : integer range 0 to 1023:= 1023;
variable f : integer range 0 to 1023 := 1023,
begin

if(fifo_done ='0") then ----receive padded zeros first then (msb)data and parity(Isb) bits
if(rising_edge(fpga_clk)) then
if(bch_decoder_en ="1") then
if(BCH_RESET ='0") then

if(f >=0 and f < 1024) then

rx(f) <= bch_decoder_data; a:=f; f:=f-1,;
end if;

end if;

end if;

end if;

if(a = 0) then rx_done <="1",

end if;

end if;

end process;

process(fpga_clk)

variable temp_mem : memory;--------- calculating roots for extension field (0 to 8190
alphas)

variable j : integer :=0;

variable root: std_logic_vector(12 downto 0);

variable varl: std_logic;

variable var3: std_logic;

variable var4: std_logic;

begin

if(root_done ='0") then
if(rising_edge(fpga_clk)) then
if(bch_decoder_en ="1") then
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if(BCH_RESET ='1") then

root := "0000000000000";

root := "0000000000001";
temp_mem(0) := root;

else

if(j < 8190) then

if(root(12) /="1") then

root := root(11 downto 0) & root(12);
else

varl :=root(0);

var3 ;= root(2);

var4 := root(3);

root := (root(11 downto 0)&root(12));
root(1) :='1" xor varl;

root(3) :="'1" xor var3;

root(4) :='1' xor var4,

end if ;

j=itL

temp_mem(j) := root;

end if;

end if;

end if;

end if;

if(j = 8190) then mem <= temp_mem; root_done <= '1";end if;
end if;

end process;

process(fpga_clk) ---s1----

variable mul : std_logic_vector(12 downto 0);
variable n : integer range 0 to 1023 := 0;
variable j: integer range 0 to 7 := 0;

variable si : integer range 0 to 8191:=0;
variable sum: Std_logic_vector(12 downto 0);

variable s11: Std_logic_vector(12 downto 0) := (others =>'0";
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variable i_donel: Std_logic :="0";
begin

if(i_donel /="1") then
if(rising_edge(fpga_clk)) then
if(bch_decoder_en ="1") then

0

if(si < 8190) then

for nin 0 to 1023 loop
forjin0to 7 loop

if( si /=8191) then

mul := mem(si) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &
(@) & rx(n)() & rx(n)() & rx(n)(J) & rx(n)(j) & rx(n)(j) & rx(n)() )

sum := mul xor S11;

S11 :=sum;

S1 <= (mem(il) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &
rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) )) xor S1;

Si = si+l;

end if;

end loop;

end loop;

end if;

end if;

end if;

end if;

if(si > 8190) then i_donel :='1"; il <=si; s1 <=s11; end if;

end if;

end process;

process(fpga_clk) ---s2----

variable mul2 : std_logic_vector(12 downto 0);
variable si2 : integer range 0 to 8200:= 0;
variable sum2: Std_logic_vector(12 downto 0);

variable s22: Std_logic_vector(12 downto 0) := (others =>'0";
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variable i_done2: Std_logic :="0";

begin

if(i_done2 /="1") then

if(rising_edge(fpga_clk)) then

if(bch_decoder_en ="1") then

if(root_done ='1") then

s 2:fornin 0 to 1023 loop

forjinOto 7 loop

if(si2 < 8191) then

mul2 := mem(si2) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &
x(n)() & x(n)() & rx(n)([) & rx(n)(i) & rx(n)(j) & rx(n)(j) & rx(n)() );
sum2 := mul2 xor S22;

S22 :=sumz2;

elsif(si2 > 8190) then si2 :=si2 - 8191;

end if;

exits_2 when si2 = 8189;

Si2 1= Si2+2;

end loop;

end loop;

end if;

end if;

end if;

if(si2 = 8189) then s2 <=s22;i_done2 :="1"end if;
end if;

end process;

process(fpga_clk) ---s3----

variable mul3 : std_logic_vector(12 downto 0);
variable si3 : integer range 0 to 8200:= 0;

variable sum3: Std_logic_vector(12 downto 0);
variable s33: Std_logic_vector(12 downto 0) := (others =>'0");
variable i_done3: Std_logic :="0";

begin

if(i_done3 /="1") then
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if(rising_edge(fpga_clk)) then

if(bch_decoder_en ='1") then

if(root_done ='1") then

s _3:fornin 0 to 1023 loop

forjin0to 7 loop

if(si3 < 8191) then

mul3 := mem(si3) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &
(@) & rx(n)() & rx(n)([) & rx(n)() & rx(n)(j) & rx(n)(j) & rx(n)(d) );
sum3 := mul3 xor S33;

S33 :=sumg;

elsif(si3 > 8190) then si3 :=si3 - 8191,

end if;

exits_3 when si3 = 8188;

si3 :=si3+3;

end loop;

end loop;

end if;

end if;

end if;

if(si3 = 8188) then s3 <=s33;i_done3 :='1" end if;
end if;

end process;

process(fpga_clk) ---s4----

variable mul4: std_logic_vector(12 downto 0);

variable si4 : integer range 0 to 8200:= 0;

variable sum4: Std_logic_vector(12 downto 0);

variable s44: Std_logic_vector(12 downto 0) := (others =>'0";
variable i_done4: Std_logic :="0";

begin

if(i_done4 /="1") then

if(rising_edge(fpga_clk)) then
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if(bch_decoder_en ="1") then

if(root_done ='1") then

s _4:fornin 0 to 1023 loop

forjinOto 7 loop

if(si4 < 8191) then

mul4 := mem(si4) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &
x(n)([) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(i) & rx(n)([) & rx(n)() );
sum4 := mul4 xor S44;

S44 = sum4,

elsif(si4 > 8190) then si4 :=si4 - 8191;

end if;

exits_4 when si4 = 8187;

Si4 = si4+4;

end loop;

end loop;

end if;

end if;

end if;

if(si4 = 8187) then s4 <=s44;i_done4 :="1"end if;
end if;

end process;

process(fpga_clk) ---s5----

variable mul5 : std_logic_vector(12 downto 0);
variable si5 : integer range 0 to 8200:= 0;
variable sum5: Std_logic_vector(12 downto 0);
variable s55: Std_logic_vector(12 downto 0) := (others =>'0");
variable i_done5: Std_logic :="'0";

begin

if(i_done5 /="1") then
if(rising_edge(fpga_clk)) then
if(bch_decoder_en ='1") then

if(root_done ='1") then
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s_5:fornin 0 to 1023 loop

forjin0to 7 loop

if(si5 < 8191) then

mul5:= mem(si5) and (rx(n)(j) & rx(n)() & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &
x(n)([) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)() & rx(n)([) & rx(n)() );

sum5 := mul5 xor S55;

S55 1= sumb;

elsif(si5 > 8190) then si5 :=si5 - 8191;

end if;

exits_5 when si5 = 8186;

si5 1= si5+5;

end loop;

end loop;

end if;

end if;

end if;

if(si5 = 8186) then s5 <=s55;i_done5 :="1", end if;
end if;

end process;

process(fpga_clk) ---s6----

variable mul6 : std_logic_vector(12 downto 0);
variable si6 : integer range 0 to 8200:= 0;
variable sum6: Std_logic_vector(12 downto 0);
variable s66: Std_logic_vector(12 downto 0) := (others =>"'0");
variable i_done6: Std_logic :="0";

begin

if(i_done6 /="1") then
if(rising_edge(fpga_clk)) then
if(bch_decoder_en ="1") then

if(root_done ='1") then

s _6:fornin 0to 1023 loop

forjinOto 7 loop
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if(si6 < 8191) then

mul6:= mem(si6) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &
x(n)([) & rx(n)(§) & rx(n)(j) & rx(n)(j) & rx(n)(@) & rx(n)([) & rx(n)() );

sum6 := mul6 xor S66;

S66 := sumo;

elsif(si6 > 8190) then si6 :=si6 - 8191;
end if;

exit s_6 when si6 = 8185;

Si6 :=Si6+6;

end loop;

end loop;

end if;

end if;

end if;

if(si6 = 8185) then s6 <=s66; i_done6 :='1"end if;
end if;

end process;

process(fpga_clk) ---s7----

variable mul7 : std_logic_vector(12 downto 0);
variable si7 : integer range 0 to 8200:= 0;
variable sum7: Std_logic_vector(12 downto 0);
variable s77: Std_logic_vector(12 downto 0) := (others =>'0");
variable i_done7: Std_logic :="0";

begin

if(i_done7 /="1") then
if(rising_edge(fpga_clk)) then
if(bch_decoder_en ="1") then

if(root_done ='1") then

s_7:fornin 0 to 1023 loop

forjin0to 7 loop

if(si7 < 8191) then
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mul7:= mem(si7) and (rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(j) &
x(n)() & x(n)() & rx(n)([) & rx(n)(j) & rx(n)(j) & rx(n)(j) & rx(n)(d) );

sum7 := mul7 xor S77,

S77 :=sum7,

elsif(si7 > 8190) then si7 :=si7 - 8191;

end if;

exits_7 when si7 = 8184;

SI7 :=si7+7,

end loop;

end loop;

end if;

end if;

end if;

if(si7 = 8184) then s7 <=s77;i_done7 :='1"end if;

end if;

if((s1 or s2 or s3 or s4 or s5 or $6 or §7) /= "'--=-mmnmmnm-- ") then eigen_en <="1"end if;

end process;

process(fpga_clk)

variable k1: std_logic_vector(12 downto 0);
variable k2: std_logic_vector(12 downto 0);
variable k3: std_logic_vector(12 downto 0);
variable k4: std_logic_vector(12 downto 0);
variable k5: std_logic_vector(12 downto 0);
variable k6: std_logic_vector(12 downto 0);
variable k7: std_logic_vector(12 downto 0);
variable k8: std_logic_vector(12 downto 0);
variable k9: std_logic_vector(12 downto 0);
variable k10: std_logic_vector(12 downto 0);
variable k11: std_logic_vector(12 downto 0);
variable k12: std_logic_vector(12 downto 0);
variable k13: std_logic_vector(12 downto 0);
variable k14: std_logic_vector(12 downto 0);
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variable k15: std_logic_vector(12 downto 0);
variable k16: std_logic_vector(12 downto 0);
variable k17: std_logic_vector(12 downto 0);
variable k18: std_logic_vector(12 downto 0);

variable nrl: std_logic_vector(12 downto 0);
variable nr2: std_logic_vector(12 downto 0);

variable drl: std_logic_vector(12 downto 0);

variable Al11: std_logic_vector(12 downto 0);
variable A22: std_logic_vector(12 downto 0);
variable A33: std_logic_vector(12 downto 0);
variable A44: std_logic_vector(12 downto 0);
begin

if(eigen_done /="1") then

if( eigen_en ='1") then
if(rising_edge(fpga_clk)) then
if(bch_decoder_en ="1") then

k1 :=mul (S1,S7); --op sls7
k2 :=mul (S1,S1); --ops1l”2
k3 := mul (k2,k2); --op s1l™4
k4 := mul (k3,k3); --opsln8
k5 := mul (S1,k3); --op s1”5
k6 := mul (S3,k5); --op s3s1"5
K7 := mul (S3,S5); --op s3sb

k8 := mul (S1,k2); --ops1”3
k9 := mul (S3,k8); --op s3s1"3
k10 := mul (S3,S3); --op s3"2
k11 := mul (k5,S1); --op s1"6
k12 := mul (S1,S5); --opsls5

nrl := (k1 xor k4 xor k6 xor k7);
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drl := (k9 xor k10 xor k11 xor k12);

k13 :=div (nrl,drl);
k14 := mul (S1,A22);
k15 := mul (S3,k2);

k16 := mul (A22,k8);
k17 := mul (A22,S3);

nr2 := (k15 xor S5 xor k16 xor k17);

k18 :=div (nr2,S1);

All =1,

A22 = Kk13;

A33 := (k8 xor S3 xor k14);
A44 = k18;

end if;

end if;

end if;

Al <= All;

A2 <= A22;

A3 <= A33;

Ad <= Ad4;

if((Alor A2or A3or Ad) /= ("------mmmm--- ")) then bch_decoder_chien_en<="1";
eigen_done <="1"; end if;
end if;

end process;

process(fpga_clk)

variable chl : std_logic_vector (12 downto 0);
variable ch2 : std_logic_vector (12 downto 0);
variable ch3 : std_logic_vector (12 downto 0);

variable ch4 : std_logic_vector (12 downto 0);
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variable Achl: std_logic_vector(12 downto 0) := (others =>"'0");
variable Ach2: std_logic_vector(12 downto 0) := (others =>'0";
variable Ach3: std_logic_vector(12 downto 0) := (others =>'0");
variable Ach4: std_logic_vector(12 downto 0) := (others =>'0);
variable g : std_logic_vector(12 downto 0) := (others =>'0");
variable r : std_logic_vector(12 downto 0) := (others =>'1");
begin

if(chien_done /="1") then

if(rising_edge(fpga_clk)) then

if(bch_decoder_chien_en ="1"and ch_ini ='0') then

Achl := Al

Ach2 := A2;

Ach3 := A3;

Ach4 := A4;

r := "0000000000000";

ch_ini <="1";

elsif(ch_ini ='1") then
count <= count+1;
g :="0000000000001" xor Achl xor Ach2 xor Ach3 xor Ach4;

if(("0000000000001" xor Achl xor Ach2 xor Ach3 xor Ach4) = "0000000000000") then

er_loc_root(jc) <=r+"1";
je<=jc+1;
end if;

r:=r+l;

chl := mul (Achl,mem(1));
ch2 := mul (Ach2,mem(2));
ch3 := mul (Ach3,mem(3));
ch4 := mul (Ach4,mem(4));

Achl :=chl;
Ach2 :=ch2;
Ach3 :=ch3;
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Ach4 :=ch4;

if(r="1111111111111") then chien_done <= "1";end if;
end if;
end if;
end if;

end process;

process(fpga_clk)

variable erl : std_logic_vector(12 downto 0) := (others =>"'0");
variable er2 : std_logic_vector(12 downto 0) := (others =>"'0");
variable er3 : std_logic_vector(12 downto 0) := (others =>"'0");
variable er4 : std_logic_vector(12 downto 0) := (others =>"'0");
variable temp_rx : std_logic_vector(7 downto 0) := (others =>"'0");

variable empty: std_logic :='0";

begin
if(rising_edge(fpga_clk)) then

if(bch_decoder_en ='1") then

case jc is

when 4 =>

erl :=er_loc_root(0)(12 downto 0) ;
er2 :=er_loc_root(1)(12 downto 0) ;
er3 :=er_loc_root(2)(12 downto 0) ;
erd :=er_loc_root(3)(12 downto 0) ;

erl := 8191 - (erl);
er2 := 8191 - (er2);
er3 :=8191 - (er3);
erd := 8191 - (erd);
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error_byte location OP_1 <=erl/8;
error_bit_location_OP_1 <=erl mod 8;
error_byte location OP_2 <=er2/8;
error_bit_location_ OP_2 <=er2 mod 8;
error_byte location OP_3 <=er3/8;
error_bit_location_OP_3 <=er3 mod 8;
error_byte location_OP_4 <=er4/8 ;
error_bit_location_ OP_4 <= er4 mod 8;

num_of_error <=jc;

--temp_rx :=rx;

--temp_rx(to_integer(unsigned(erl))) := not(temp_rx(to_integer(unsigned(erl))));
--temp_rx(to_integer(unsigned(er2))) := not(temp_rx(to_integer(unsigned(er2))));
--temp_rx(to_integer(unsigned(er3))) := not(temp_rx(to_integer(unsigned(er3))));
--temp_rx(to_integer(unsigned(er4))) := not(temp_rx(to_integer(unsigned(er4))));
--corr_msg_out=temp_rx; //output corrected msg declare at port

when 3 =>

erl :=er_loc_root(0)(12 downto 0) ;
er2 :=er_loc_root(1)(12 downto 0) ;
er3 :=er_loc_root(2)(12 downto 0) ;

erl :=8191 - (erl);
er2 := 8191 - (er2);
er3 := 8191 - (er3);

error_byte location OP_1 <=erl/8;
error_bit_location_OP_1 <=erl mod 8;
error_byte location OP_2 <=er2/8;
error_bit_location_ OP_2 <=er2 mod 8§;
error_byte location_OP_3 <=er3/8;

error_bit_location_OP_3 <= er3 mod §;
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num_of_error <=jc;

--temp_rx :=rx;

--temp_rx(to_integer(unsigned(erl))) := not(temp_rx(to_integer(unsigned(erl))));
--temp_rx(to_integer(unsigned(er2))) := not(temp_rx(to_integer(unsigned(er2))));
--temp_rx(to_integer(unsigned(er3))) := not(temp_rx(to_integer(unsigned(er3))));
--corr_msg_out=temp_rx; //output corrected msg declare at port

when 2 =>

erl :=er_loc_root(0)(12 downto 0) ;--(er_loc_root(0) / 2);
er2 :=er_loc_root(1)(12 downto 0) ;--(er_loc_root(1) / 2);

erl := 8191 - (erl);
er2 := 8191 - (er2);

error_byte location OP_1 <=erl/8;
error_bit_location_OP_1 <=erl mod 8;
error_byte location_ OP_2 <=er2/8;
error_bit_location_ OP_2 <=er2 mod 8;

num_of_error <= jc;

--temp_rx :=rx;

--temp_rx(to_integer(unsigned(erl))) := not(temp_rx(to_integer(unsigned(erl))));
--temp_rx(to_integer(unsigned(er2))) := not(temp_rx(to_integer(unsigned(er2))));
--corr_msg_out=temp_rx; //output corrected msg declare at port

when 1 =>

erl :=er_loc_root(0)(12 downto 0) ;

erl := 8191 - (erl);

error_byte_location_OP_1 <=erl/8;

error_bit_location_OP_1 <= erl mod §;
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num_of_error <=jc;

-- temp_rx :=rx;

-- temp_rx(to_integer(unsigned(erl)))

:= not(temp_rx(to_integer(unsigned(erl))));

when others => empty :="'1";

end case;
end if;

end if;

end process;

end Behavioral;

BCH Decoder: Test Bench

-- Company:

-- Engineer:

-- Create Date: 14:16:32 06/04/2020

-- Design Name:

-- Module Name: F:/hdl codes/syndrome/syn_tb.vhd
-- Project Name: syndrome

-- Target Device:

-- Tool versions:

-- Description:

-- VHDL Test Bench Created by ISE for module: syn_fifo_try

-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created

-- Additional Comments:
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-- Notes:

-- This testbench has been automatically generated using types std_logic and

-- std_logic_vector for the ports of the unit under test. Xilinx recommends

-- that these types always be used for the top-level I/O of a design in order

-- to guarantee that the testbench will bind correctly to the post-implementation
-- simulation model.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;

ENTITY syn_tb IS
END syn_tb;

ARCHITECTURE behavior OF syn_tb IS

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT syn_fifo_try
PORT(
fpga_clk : IN std_logic;
BCH_RESET : IN std_logic;
bch_decoder_en : IN std_logic;
bch_decoder_data : IN std_logic_vector(7 downto 0)
)i
END COMPONENT;

--Inputs

signal fpga_clk : std_logic :='0";

Department of ECE, CMRIT, Bangalore 2019-20 88



NAND Flash Based In-Flight Acquisition and Recording Unit for Accelerometer Sensor Assembly of Flight
Control System

signal BCH_RESET : std_logic :='0";
signal bch_decoder_en : std_logic :='0"

signal bch_decoder_data : std_logic_vector(7 downto 0) := (others =>'0");

-- Clock period definitions
constant fpga_clk_period : time := 10 ns;

BEGIN

-- Instantiate the Unit Under Test (UUT)
uut: syn_fifo_try PORT MAP (
fpga_clk => fpga_clk,
BCH_RESET => BCH_RESET,
bch_decoder_en => bch_decoder_en,

bch_decoder_data => bch_decoder_data

);

-- Clock process definitions
fpga_clk _process :process
begin
fpga_clk <="0";
wait for fpga_clk_period/2;
fpga clk <="1"
wait for fpga_clk_period/2;

end process;

-- Stimulus process
stim_proc: process
begin
-- hold reset state for 100 ns.
wait for 100 ns;

-- BCH_RESET <="1";bch_decoder_en <="1"; wait for fpga_clk_period;
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- ************TESTCASE 20 Bytes *hkhkkhkhkhkhkkikhkhkkihkhkkikhhkkihhkkhhhkkiihkkiiikiik

--ip:

-- fpga_reset <="1"; bch_enable <="1";data <= "10100101";wait for fpga_clk_period;
-- foriin1to 10 loop

-- fpga_reset <="'0"; bch_enable <="1";data <="10101010";wait for fpga_clk_period,;
-- end loop;

-- foriin 1to 10 loop

-- fpga_reset <="'0"; bch_enable <="1";data <= "11001100";wait for fpga_clk_period;

-- end loop;

--0p:1000 00011001 11101111 11111000 01011011 00001001 11111000

I T R R R R R R R R R R R R R R R R R R R R R R R R R R R R R S R R R R R R R S T T

BCH_RESET <="1";bch_decoder_en <="1"; wait for fpga_clk_period;

bch_decoder_data <= "-0000000"; BCH_RESET <= '0";bch_decoder _en <= "1"; wait for
fpga_clk_period; --rx(1023) msh

foriin1to 996 loop

bch_decoder_data <= "00000000"; BCH_RESET <= '0';bch_decoder_en <= "1"; wait for
fpga_clk_period;

end loop;

bch_decoder_data <= "00001010"; BCH_RESET <= '0";bch_decoder_en <= '1"; wait for
fpga_clk_period,;

bch_decoder_data <= "10101010"; BCH_RESET <= '0";bch_decoder_en <= '1"; wait for
fpga_clk_period,;

bch_decoder_data <= "10100010"; BCH_RESET <= '0";bch_decoder_en <= "1"; wait for
fpga_clk_period;--10101010 err

bch_decoder_data <= "10101010"; BCH_RESET <= '0";bch_decoder_en <= '"1"; wait for
fpga_clk_period,;
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bch_decoder_data <= "10101010"; BCH_RESET <=
fpga_clk_period,;
bch_decoder_data <= "10101010"; BCH_RESET <=
fpga_clk_period,;
bch_decoder_data <= "10101010"; BCH_RESET <=
fpga_clk_period,
bch_decoder_data <= "10101010"; BCH_RESET <=
fpga_clk_period,;
bch_decoder _data <= "10101010"; BCH_RESET <=
fpga_clk_period;
bch_decoder_data <= "10101010"; BCH_RESET <=
fpga_clk_period,;

bch_decoder_data <= "10101101"; BCH_RESET <=
fpga_clk_period;--10101100 err

bch_decoder _data <= "11001100"; BCH_RESET <=
fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <=
fpga_clk_period;-- 11001100

bch_decoder_data <= "11001100"; BCH_RESET <=
fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <=
fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <=
fpga_clk_period;

bch_decoder_data <= "11001100"; BCH_RESET <=
fpga_clk_period,

bch_decoder_data <= "11001100"; BCH_RESET <=
fpga_clk_period,;

bch_decoder_data <= "11001100"; BCH_RESET <=
fpga_clk_period,

bch_decoder_data <= "11001100"; BCH_RESET <=
fpga_clk_period;--11001100

'0";bch_decoder_en <= "1"; wait for

'0';bch_decoder_en <= "1"; wait for

'0";bch_decoder_en <= "1"; wait for

'0';bch_decoder_en <= "1"; wait for

'0";bch_decoder_en <="1"; wait for

'0";bch_decoder_en <="1"; wait for

'0";bch_decoder_en <= "1"; wait for

'0";bch_decoder_en <= "1"; wait for

'0';bch_decoder_en <= "1"; wait for

'0';bch_decoder_en <= "1"; wait for

'0";bch_decoder_en <= "1"; wait for

'0';bch_decoder_en <= "1"; wait for

'0";bch_decoder_en <="1"; wait for

'0';bch_decoder_en <= "1"; wait for

'0";bch_decoder_en <= "1"; wait for

'0";bch_decoder_en <="1"; wait for
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bch_decoder_data <= "11001000"; BCH_RESET <= '0";bch_decoder_en <= "1"; wait for
fpga_clk_period;--parity + 4b of data

bch_decoder_data <= "00011001"; BCH_RESET <= '0";bch_decoder_en <= '"1"; wait for
fpga_clk_period;

bch_decoder_data <= "11101111"; BCH_RESET <= '0';bch_decoder_en <= '1"; wait for
fpga_clk_period,;

bch_decoder_data <= "11111000"; BCH_RESET <= '0';bch_decoder_en <= "1"; wait for
fpga_clk_period;

bch_decoder_data <= "01011011"; BCH_RESET <= '0";bch_decoder_en <= "1"; wait for
fpga_clk_period,;

bch_decoder_data <= "00001001"; BCH_RESET <= '0';bch_decoder_en <= "1"; wait for
fpga_clk_period;

bch_decoder_data <= "11111000"; BCH_RESET <= '0";bch_decoder_en <= '"1"; wait for
fpga_clk_period,;

—=== —-== == s e e e ettt o | 04 Working test case

------ 0p=51,0010 11010001 11011011 10100101 10010011 10100011 10111000 ,0

--bch_decoder_data <= "-0000000"; BCH_RESET <= '0";bch_decoder_en <="1"; wait for
fpga_clk_period; --rx(1023) msbh

--foriin 1to 1013 loop

--bch_decoder_data <= "00000000"; BCH_RESET <="0";bch_decoder_en <="1"; wait for
fpga_clk_period,;

--end loop;

--bch_decoder_data <= "00001010"; BCH_RESET <="0";bch_decoder_en <="1"; wait for
fpga_clk_period;--data --00001010
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--bch_decoder_data <="10100100"; BCH_RESET <= '0";bch_decoder_en <= "1"; wait for
fpga_clk_period;--original 10101100 err68

--bch_decoder_data <="00111001"; BCH_RESET <="0";bch_decoder_en <="1"; wait for
fpga_clk_period;--00110000 error 57 59

--bch_decoder_data <="11110010"; BCH_RESET <= '0";bch_decoder_en <= "1"; wait for
fpga_clk_period;--parity- 11110010

--bch_decoder_data <= "11010001"; BCH_RESET <= '0";bch_decoder_en <= "1"; wait for
fpga_clk_period;--11010001

--bch_decoder_data <="11011011"; BCH_RESET <= "'0";bch_decoder_en <= "1"; wait for
fpga_clk period;--11011011

--bch_decoder_data <= "10100101"; BCH_RESET <="0";bch_decoder_en <= "1"; wait for
fpga_clk_period;

--bch_decoder_data <="10010011"; BCH_RESET <= '0";bch_decoder_en <= "1"; wait for
fpga_clk_period;--10010011

--bch_decoder_data <= "10100011"; BCH_RESET <="0";bch_decoder_en <="1"; wait for
fpga_clk_period;

--bch_decoder_data <="10111001"; BCH_RESET <="0";bch_decoder_en <="1"; wait for
fpga_clk_period; --rx(0)10111000 err 1

end process;

END;
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APPENDIX C
Verification using built-in MATLAB function:

For Encoder:

fpga reset <= 'l'; bkch enakble <= "l';data <= "10100101";wait for fpga_ clk period;
for i in 1 to 10 loop
fpga_reset <= '0'; bch_enakle <= 'l';data <= "10101010";wait for fpga clk period;

end loop;

for i in 1 to 10 loop

fpga_ reset <= '0'; bch enable <= 'l';data <= "11001100";wait for fpga clk period;
end loop:

1l foga_reset

1 beh_enable

_data[51:0] J1111011111111 o110 0111111000

ga_clk_period

beh_encoder.m + Name Value
il= clc;clear; = [€] enc
2 EHk
3 % ] msg Tx
4 - n mn
5 - k 8 ;% t
& - msg_TX = gf ), repmat([1 010101 0],1,10),repmat([1 1 0 0 1 1 0 0],1,10)]1):
T - enc = bchenc (msg_TX,n,
Command Window ®

ULus 7393 LHLUUGH 1700

o o © © ©o © © 0O © ©o ©0 ©o 0O 6 o o ©o 0 ©6 © 0 ©o 0o ©6 © 0 1 o 1 ©o 1 @O

Columns 7987 through 3019

o 1 © 1 © 1 © 1 € 1 © 1 © 1 © 1 © 1 © 1 © 1 o 1 © 1 ©o 1 © 1 0 1

Columns 8020 through 3052

i 9 1 ©¢ 1 © 1 © 1 © 1 © 1 @ 1 ©o 1 © 1 © 1 © 1 ¢ 1 © 1 © 1 o 1 g

Columns 8053 through 3085

Q 1 a 1 Q 1 Q 1 1 o Q 1 1 a o 1 1 o o 1 1 Q Q 1 1 o Q 1 1 a o 1

Columns 8086 through 3118

o o 1 1 o © 1 1 ¢ ©o 1 1 © © 1 1 o ©© 1 1 o o 1 1 ©o o0 1 1 ©o o 1 1

Columns 8119 through 8151

o 1 1 ¢ ©o 1 1 © © 1 1 © ©o 1 1 ©o o 1 1 o o0 [F @ @ @ 6 o o 1 1 0 @

Columns 8152 through 8184

i1 1 ¢ 1 1 1 1 1 1 1 1 1 @ ©6 ©o ©o 1 © 1 1 ©o 1 1 © 0 ©o o 1 ©o 0 1

Columns 8185 through 8151

1 1 1 1 o o0 o

For Decoder:
Chien search check:

clc;clear;

al = ¢gf([6166],13,8219);
a2 = gf([0],13,8219);
a3 = gf([630],13,8219);
a4 = gf([506],13,8219);

m1 = gf([2],13,8219);
m2 = gf([4],13,8219);
m3 = gf([8],13,8219);
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m4 = gf([16],13,8219);
achl =al; ach2 =a2; ach3 =a3; ach4 = a4;r=0;

fori=1:8191

g = achl+ach2+ach3+ach4+1;

if (9 ==0)
r=i-2
end

chl
ch2
ch3
ch4

ml.*achl;
m2.*ach2;
m3.*ach3;
m4.*ach4;

achl=chi;

ach2=ch2;

ach3=ch3;

ach4=ch4;
end

— R Object Name value Data Type
Command Window L B ennzol azse Array
- B erz212:0l 1se Array
- B ersl120 1zs Array
- B eral1z:0] ° Array
- B temp_nd7:0] cooooooo Array
15 empty 1 Logic
fega_clic o Logic
boh_reset o Logic
r = bon_decoder en 2 Logic
[ S ben gecogera.. 11111000 Array
[ memi(0:8190] 000GEOEOEEE001, 0. Array
'L?mor done £l Logic
'L? count 1113333233312 Int Type
3533 UG e found int Type
-3 $ rxl0:1023] 1113131000, 000010 Array
UG nro_done 1 Logic
- g si12:0] s168 Array
= g s2rizol 3528 Array
- g s3(12:00 1082 Array
- g se12:0] 2354 Array
r = - g ssi12:0] 2051 Array
b B sefiz0] zasz Array
B 35 s7l12:0] 3543 Array
15 o 2113333333333 int Tipe
B g aifrzol s166 Array
7 5 5 5 = g azrizol o Array
- g a3rrzol s30 Array
= $ a<l12:00 s06 Array
-Ll?ﬂgfn_fn El Logic
'L?exgen,mme 1 Logic
'L? boh_decoder_c.. 1 Logic
'Ll?ch,z.m' 1 Logic
r = 'Ll?cmen,acme 1 Logic
Jc Int Type
7 Hig er_ioc_rooti:3] 0111101011101, 1. Array
- g [0 33933 Array
= [1] 7555 Array
B0D&2 e
- g 3] VUUUUUUUUUTOU Array
| bch_encoderm | 4 | Value
1-  clciclear: 16139 gf
2 148191 gf
3 = 2139
o|= 18139 gF
s - k= el3s; g 2191
& -  msg_TX - gf([zeros( , repmac([1 01010 10],1,10),repmac(I1 1 0 0 1 1 0 0],1,10)1);
7 -  enc = bchencmsg_TX,n, k) :
s %% aecoder
s -  dec = bendec(enc,n, k)| -
Cemmand Window @
e .
o o ©o o 0o 0 © © 0 0 6 © © 0 0O 0 6 © ©0 0 6 6 © 0 0 0 0 ©o 0 0 0 @
Columns 795¢ through 7986
o o o o 0o © © © © 0o © © ©o 0o 0o © © © o o © © © o o o 1 ©o 1 o 1 o
Columns 7987 through 801%
© 1 o 1 © 1 © 1 © 1 © 1 © 1 o 1 © 1 o 1 © 1 © 1 o 1 o 1 o 1 o 1
Columns 8020 through 8052
19 1 o 1 © 1 © 1 00 1 6 1 o 1 © 1 © 1 o6 1 @ 1 o 1 o 1 ©o 1 o 1 @
Columns 8053 through 035
¢ 1 o 1 © 1 @ 1 1 ¢ ¢ 1 1 ©o 0o 1 1 © © 1 1 @ e 1 1 ¢ o 1 1 0o o 1
Columns 8086 through 8118
o o 1 1 © © 1 1 © o0 1 1 © o 1 1 © © 1 1 © e 1 1 © o 1 1 o o 1 1
Columns 8119 through £13%
o 1 1 o o 1 1 © @ 1 1 © o 1 1 o © 1 1 o o
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