
VISVESVARAYA TECHNOLOGICAL UNIVERSITY
“Jnana Sangama”, Belgaum – 590 018

A PROJECT REPORT ON

“Implementing a backend tool to share disc images among Virtual Machines”

Submitted in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

INFORMATION SCIENCE & ENGINEERING

by

SHOBHIT KUSHWAHA (1CR16IS101)

SHREE CHARAN B G (1CR16IS102)

SUDHA KUMARI (1CR16IS110)

MARUTHI C N (1CR16IS051)

Under the guidance of

Mrs. Vidya U

Assistant Professor

Dept. of ISE, CMRIT, Bengaluru

CMR INSTITUTE OF TECHNOLOGY
DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

#132, AECS Layout, IT Park Road, Bengaluru-560037

VISVESVARAYA TECHNOLOGICAL UNIVERSITY
“Jnana Sangama”, Belgaum – 590 018

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Certificate

This is to certify that the project entitled, “Implementing a backend tool to share disc

images among Virtual Machines”, is a bonafide work carried out by SHOBHIT

KUSHWAHA (1CR16IS101), SHREE CHARAN B G (1CR16IS102), SUDHA KUMARI

(1CR16IS110) and MARUTHI C N (1CR16IS051) in partial fulfillment of the award of the

degree of Bachelor of Engineering in Information Science & Engineering of Visvesvaraya

Technological University, Belgaum, during the year 2019-20. It is certified that all

corrections/suggestions indicated during reviews have been incorporated in the report. The project

report satisfies the academic requirements in respect of the project work prescribed for the said

Degree.

Name & Signature of Guide Name & Signature of HOD

Mrs. Vidya U Dr. M. Farida Begam

Asst. Professor HoD

Dept. of ISE, CMRIT Dept. of ISE, CMRIT

External Viva

Name of the examiners Signature with date

1.

2.

CMR INSTITUTE OF TECHNOLOGY

BANGALORE-560037

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Declaration

We, SHOBHIT KUSHWAHA (1CR16IS101), SHREE CHARAN B G (1CR16IS102), SUDHA

KUMARI (1CR16IS110) and MARUTHI C N (1CR16IS052) bonafide students of CMR

Institute of Technology, Bangalore, hereby declare that the dissertation entitled,

“Implementing a backend tool to share disc images among Virtual Machines” has been

carried out by us under the guidance of Mrs. Vidya U, Associate Professor, CMRIT,

Bangalore, in partial fulfilment of the requirements for the award of the degree of Bachelor of

Engineering in Information Science Engineering, of the Visvesvaraya Technological University,

Belgaum during the academic year 2019-2020. The work done in this dissertation report is

original and it has not been submitted for any other degree in any university.

 SHOBHIT KUSHWAHA (1CR16IS101)

SHREE CHARAN B G (1CR16IS102)

SUDHA KUMARI (1CR16IS110)

MARUTHI C N (1CR16IS051)

Acknowledgement

The satisfaction and euphoria that accompany a successful completion of any task

would be incomplete without the mention of people who made it possible.

Success is the epitome of hard work and perseverance, but steadfast of all is

encouraging guidance.

So, it is with gratitude that we acknowledge all those whose guidance and

encouragement served as beacon of light and crowned our effort with success.
We would like to thank Dr. Sanjay Jain, Principal, CMRIT, Bangalore, for

providing an excellent academic environment in the college and his never-ending

support for the B.E program.

We would like to express our gratitude towards Dr. M. Farida Begam, Professor

and HOD, Department of Information Science & Engineering CMRIT, Bangalore,

who provided guidance and gave valuable suggestions regarding the project.

We consider it a privilege and honor to express our sincere gratitude to our

internal guide Mrs. Vidya U, Asst. Professor, Department of Information Science

& Engineering, CMRIT, Bangalore, for their valuable guidance throughout the

tenure of this project work.

We would like to thank all the faculty members who have always been very

cooperative and generous. Conclusively, we also thank all the non- teaching staff

and all others who have done immense help directly or indirectly during our

project.

Shobhit Kushwaha
Shree Charan B G

Sudha Kumari

Maruthi C N

ABSTRACT

The aim of the project is to develop a virtual host-user-block device backend inside QEMU (Quick

Emulator) so that guests can efficiently access shared disk images.

QEMU can connect virtio-block disks to external processes that act as vhost-user-block device

backend. This makes it possible for QEMU guests to access disks managed by SPDK (Storage

Performance Development Kit) or other software-defined storage appliances.

QEMU itself does not offer a vhost-user-block device backend and hence depends on other

applications such as SPDK for providing vhost-user backends. However, the QEMU block layer

has a number of features that make QEMU desirable as a software-defined storage appliance in its

own right. For example, multiple Virtual Machines could safely access a shared qcow2 disk image

file with one of the QEMUs acting as the vhost-user-block device backend. Today this can be

worked around using QEMU’s NBD (Network Block Device) support, but its performance is low

since it is network protocol.

TABLE OF CONTENTS

 Title Page No.

Abstract i

Acknowledgement…………………………………………………………………… ii

List of Figures vi

List of Tables ………………………………………………………………………. vii

Chapter 1 1-3

PREAMBLE 1

1.1 Introduction……………………………………………………………………….. 1

1.2 Plan of Implementation …………………………………………………………… 2

1.3 Problem Statement ……………………………………………………………….. 2

 1.4 Objective Of the Project 3

Chapter 2 4

LITERATURE SURVEY 4

Chapter 3 5-9

THEORETICAL BACKGROUND 5

3.1 Virualization… 5

3.2 Full Virtualization vs Para- Virtualization 5

3.3 Storage Performance Development Kit . 6

3.4 QEMU . 7

3.4.1 Operating Modes . 7

3.5 Kernel Virtual Machine . 8

3.6 Virtio . 8

3.6.1 Technical Details . 8

3.7 QEMU Server Architecture . 9

Chapter 4 10-11

SYSTEM REQUIREMENTS SPECIFICATION………………………………... 10

4.1 System Requirement.………….…………………………………………….. 10

4.2 Technology Used 11

 Chapter 5 12-14

SYSTEM ANALYSIS ……………………………………………………………… 12

5.1 Feasibility Study…………………………………………………………………. 13

5.1.1 Economical Feasibility…………………………………………………… 13

5.1.2 Technical Feasibility…………………………………………………....... 13

5.1.3 Social Feasibility…………………………………………………………. 13

5.2 Analysis ………………………………………………………………………..... 14

5.2.1 Performance analysis ……………………………………………………. 14

5.2.2 Technical analysis ……………………………………………………….. 14

5.2.3 Economical analysis ……………………………………………………... 14

Chapter 6 ………………………………………………………………. 15-23

SYSTEM DESIGN.……………………………………………………………….. 15

6.1 System development methodology.…………………………………………….. 15

6.1.1 Model phases.…………………………………………………………… 15

6.1.2 Advantages of Waterfall Model.………………………………………… 16

6.2 Design using UML.……………………………………………………………… 18

6.3 Sequence Diagram….……………………………………………………………. 22

Chapter 7 24-49

IMPLENTATION 24

7.1 Commands………….…………………………………………….. 25

Chapter 8 50-53

RESULTS AND PERFORMANCE ANALYSIS …………………………………… 50

8.1 Screenshots …………………………………………………………………. 50

Chapter 9 ………………………………………………………………. 54

CONCLUSION AND FUTURE SCOPE . 54

LIST OF FIGURES

Figure No. Title Page No.

Fig 3.2 Full Virtualization vs Para Virtualization 6

Fig 3.6.1 Defined subsystem types 9

Fig 6.1 Waterfall mode . 11

Fig 6.3 Sequence Diagram . 23

Fig 8.1 The first Virtual Machine . 50

Fig8.2 QEMU Console to see the shared disk . 51

Fig 8.3 Starting the server . 51

Fig 8.4 List of block disks 52

Fig 8.5 Mounting to the server disk . 52

Fig 8.6 Shared disks images being accessed by the Virtual Machines 53

 LIST OF TABLES

Table No. Title Page No.

Table 6.2 Symbols used in UML 22

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 2

Chapter 1

Preamble

1.1 Introduction

QEMU is the most popular open source virtual machine (VM) emulator application. QEMU

uses Kernel Virtual Machine (KVM) driver in Linux to accelerate VM performance using

CPU’s virtualization extensions. QEMU can use virtio framework to emulate virtual I/O

devices such as Disk and NIC for the VMs. For example, virtio-blk is used by QEMU to

provide block devices (i.e., disk) to VMs. Normally QEMU is responsible for emulating

VM’s I/O devices.

vhost is a protocol for devices accessible via inter-process communication. vhost is used by

QEMU to optimize performance of virtio devices or offload virtio device functionality to

other components (either in the kernel or a separate application).

QEMU can connect virtio-blk disks to external processes that act as vhost-user-blk device

backends. This makes it possible for QEMU VMs to access disks managed by SPDK or other

software-defined storage appliances. QEMU itself does not offer a vhost-user-blk device

backend and hence depends on other applications like SPDK (Storage Performance

Development Kit) for providing vhost-user backends. However, the QEMU block layer has a

number of features that make QEMU desirable as a software-defined storage appliance in its

own right. For example, multiple VMs could safely access a shared qcow2 disk image file

with one of the QEMUs acting as the vhostuser-blk device backend. Today this can be

worked around using QEMU's NBD (network block device) support, but its performance is

low since it is a network protocol.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 3

1.2 Plan of Implementation

The goal is to add a vhost-user-blk device backend to QEMU so that disks can be exported to

other processes. Specifically, we want to use the vhost-use-blk backend in QEMU to share a

disk with multiple VMs instead of NBD based approach. We will use the following steps:

• Understand libvhost-user which is QEMU's library for implementing vhost-user device

backends.

• Implement a vhost-user-blk device backend using the libvhost-user library.

• Use the vhost-user-blk device backend to implement sharing of a disk among multiple VMs.

• Evaluate the storage performance and compare it with NBD based solution.

1.3 Problem Statement

Implement a vhost-user-blk device backend inside QEMU so guests can efficiently access

shared disk images.

QEMU itself does not offer a vhost-user-blk device backend although the QEMU block layer

has a number of features that make QEMU desirable as a software-defined storage appliance

in its own right. For example, multiple VMs could safely access a shared qcow2 disk image

file with one of the QEMUs acting as the vhost-user-blk device backend. Today this is can be

worked around using QEMU's NBD support, but its performance will always be lower since

it is a network protocol.

 The goal is to add a vhost-user-blk device backend to QEMU so that disks can be exported to

other processes.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 4

1.4 Objective of the Project

• To develop the vhost-user-blk backend in QEMU which will enable QEMU to act as a

software defined storage appliance without using third party vhost targets like SPDK.

• To enable the sharing of a disk among VMs using the vhost-user-blk backend while

improving the performance compared to the NBD based solution.

• Explore other storage services which can be implemented inside QEMU using the vHost

framework (e.g., storage deduplication)

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 5

Chapter 2

Literature Survey

In order to get required knowledge about various concepts related to the present application,

existing literature were studied. Some of the important conclusions were made through those

are listed below.

•Accelerating-VM-Access-with-Storage-Performance-Developer-Kit-SNIA-SDCEMEA-

2018 By Anu H Rao (Product Manager) Intel.

It was a seminar given by Anu H Rao at SDC-EMEA (Storage Developer Conference) in that

he has explained about the working of different Virtual Machine Internals and about how to

accelerate storage performance in a virtual machine.

• https://www.qemu.org/

Official Site and Documentation of QEMU.

• http://linux-kvm.org/

Official Site and Documentation of Linux-Kernel Virtual Machine.

• https://wiki.libvirt.org/page/Virtio virtIO

Official Page and Documentation.

• https://spdk.io/doc/vhost_processing.html

Official SPDK site and explained about how vHost internally work with SPDK.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 6

Chapter 3

Theoretical Background

Theoretical background highlighting some topics related to the project work is given below.

The description contains several topics which are worth to discuss and also highlight some of

their limitation that encourage going on finding solution as well as highlights some of their

advantages for which reason these topics and their features are used in this project.

3.1 Virtualization

In computing, virtualization refers to the act of creating a virtual (rather than actual) version

of something, including virtual computer hardware platforms, storage devices, and computer

network resources.

Different types of hardware virtualization include:

• Full virtualization – almost complete simulation of the actual hardware to allow software

environments, including a guest operating system and its apps, to run unmodified.

• Paravirtualization – the guest apps are executed in their own isolated domains, as if they

are running on a separate system, but a hardware environment is not simulated. Guest

programs need to be specifically modified to run in this environment.

3.2 Full Virtualization vs Paravirtualization

Paravirtualization works differently from the full virtualization. It doesn’t need to simulate

hardware for the virtual machines. The hypervisor is installed on the physical server (host)

and the guest OS is installed into the environment. Virtual guests are aware that it has been

virtualized, unlike the full virtualization (where the guest doesn’t know that it has been

virtualized) to take advantage of the functions. In this virtualization method, guest source

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 7

codes will be modified with sensitive information to communicate with the host. Guest

Operating Systems require extensions to make API calls to the hypervisor. In full

virtualization, guests will issue a hardware call but in paravirtualization, guest will directly

communicate with the host (hypervisor) using the drivers.

Fig 3.2: Full Virtualization vs Para-virtualization

3.3 Storage Performance Development Kit

The storage Performance Development Kit (SPDK) provides a set of tools and libraries for

writing high performance, scalable, user-mode storage applications. It achieves high

performance through the use of number of key techniques.

• Moving all the necessary drivers into user space, which avoids system call and

enables zero copy access from the application.

• Polling hardware for completions instead of relying on interrupts, which lowers both

total latency and latency variance.

• Avoiding all locks in the I/O path, instead of relying on message passing.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 8

3.4 QEMU

QEMU (Quick EMUlator) is a free and open-source emulator that performs hardware

virtualization. QEMU is a hosted virtual machine monitor: it emulates the machine's

processor through dynamic binary translation and provides a set of different hardware and

device models for the machine, enabling it to run a variety of guest operating system. It also

can be used with KVM to run virtual machines at near-native speed (by taking advantage of

hardware extensions such as Intel VT-x). QEMU can also do emulation for user-level

processes, allowing applications compiled for one architecture to run on another.

3.4.1 Operating Modes

 QEMU has multiple Operating Modes:

 • User-mode Emulation

 In this mode QEMU runs single Linux or Darwin/macOS programs that were compiled for a

different instruction set. System calls are thunked for endianness and for 32/64 bit

mismatches. Fast cross-compilation and cross-debugging are the main targets for user-mode

emulation.

• System Emulation

In this mode QEMU emulates a full computer system, including peripherals. It can be used to

provide virtual hosting of several virtual computers on a single computer. QEMU can boot

many guests operating systems, including Linux, Solaris, Microsoft Windows, DOS, and

• KVM Hosting

Here QEMU deals with the setting up and migration of KVM images. It is still involved in

the emulation of hardware, but the execution of the guest is done by KVM as requested by

QEMU.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 9

• XEN Housing

QEMU is involved only in the emulation of hardware; the execution of the guest is done

within Xen and is totally hidden from QEMU.

3.5 Kernel Virtual Machine

KVM (for Kernel-based Virtual Machine) is a full virtualization solution for Linux on x86

hardware containing virtualization extensions (Intel VT or AMD-V). It consists of a loadable

kernel module, kvm.ko, that provides the core virtualization infrastructure and a processor

specific module, kvm-intel.ko or kvm-amd.ko. Using KVM, one can run multiple virtual

machines running unmodified Linux or Windows images. Each virtual machine has private

virtualized hardware: a network card, disk, graphics adapter, etc. KVM is open source

software. The kernel component of KVM is included in mainline Linux, as of 2.6.20. The

userspace component of KVM is included in mainline QEMU, as of 1.3.

3.6 virtIO

 VirtIO is a standardized interface which allows virtual machines access to simplified

"virtual" devices, such as block devices, network adapters and consoles. Accessing devices

through VirtIO on a guest VM improves performance over more traditional "emulated"

devices, as VirtIO devices require only the bare minimum setup and configuration needed to

send and receive data, while the host machine handles the majority of the setup and

maintenance of the actual physical hardware.

3.6.1 Technical Details

VirtIO devices appear, to the guest VM, to be normal PCI devices with a specific VendorID

and DeviceID. All VirtIO devices have a Vendor ID of 0x1AF4, and have a DeviceID

between 0x1000 and 0x103F. The type of VirtIO device (Network Adapter, Block Device,

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 10

etc.) can be determined by the Subsystem ID field in the PCI Configuration Space for the

device. The currently defined types are:

Subsystem

Name

01

Network Card

02

Block Device

03

Console

04

Entropy Source

05

Memory Ballooning

06

IO Memory

07

RPMSG

08

SCSI Host

09

9P Transport

10

MAC802.11 WLAN

Fig 3.6.1: Defined subsystem types

3.7 QEMU Server Architecture

• One QEMU application acts as the vHost target (a.k.a. QEMU Server) which provides the

shared disk access to other QEMU VMs.

• Server QEMU provides access to the shared disk to its own Virtual Machine.

• Other QEMU VMs (clients) access the shared disk through the QEMU Server using vHost

protocol.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 11

Chapter 4

System Requirements Specification

A software requirements specification (SRS) is a description of a software system to be

developed. It lays out functional and non-functional requirements, and may include a set of

use cases that describe user interactions that the software must provide. In order to fully

understand one’s project, it is very important that they come up with an SRS listing out their

requirements, how are they going to meet it and how will they complete the project. SRS also

functions as a blueprint for completing a project with as little cost growth as possible. SRS is

often referred to as the parent document because all subsequent project management

documents, such as design specifications, statements of work, software architecture

specifications, testing and validation plans, and documentation plans, are related to it.

Requirement is a condition or capability to which the system must conform. Requirement

Management is a systematic approach towards eliciting, organizing and documenting the

requirements of the system clearly along with the applicable attributes. The elusive

difficulties of requirements are not always obvious and can come from any number of

sources.

4.1 System Requirement

Hardware System Configuration

• Processor - Intel i5-6200U @2.30 GHz (As fast as possible to run multiple VMs)

• Memory – 8GB (Preferred 16 GB)

• Disk – 256GB Solid Disk Drive for Faster Experience

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 12

Software System Configuration

• Operating System – Linux

• Language – C

• Virtual Machine Framework – KVM/QEMU

• Various Operating System to Run as Guest OS.

4.2 Technology Used

• Virtualisation

• Storage Virtualisation

• SPDK (Storage Performance Development Kit)

• DPDK (Data Plain Development Kit)

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 13

Chapter 5

System Analysis

Analysis is the process of finding the best solution to the problem. System analysis is the

process by which we learn about the existing problems, define objects and

requirements and evaluates the solutions. It is the way of thinking about the

organization and the problem it involves, a set of technologies that helps in solving these

problems. Feasibility study plays an important role in system analysis which gives the target

for design and development.

5.1 Feasibility Study

All systems are feasible when provided with unlimited resource and infinite time. But

unfortunately this condition does not prevail in practical world. Soit is both necessary

and prudent to evaluate the feasibility of the system at the earliest possible time. Months or

years of effort, thousands of rupees and untold professional embarrassment can be

averted if an illconceived system is recognized early in the definition phase. Feasibility &

risk analysis are related in many ways. If project risk is great, the feasibility of

producing quality software is reduced. In this case three key considerations involved in the

feasibility analysis are

• ECONOMICAL FEASIBILITY

• TECHNICAL FEASIBILITY

• SOCIAL FEASIBILITY

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 14

5.1.1 Economical Feasibility

This study is carried out to check the economic impact that the system will have on the

organization. The amount of fund that the company can pour into the research and

development of the system is limited. The expenditures must be justified. Thus the developed

system as well within the budget and this was achieved because most of the

technologies used are freely available. Only the customized products had to be purchased.

5.1.2 Technical Feasibility

This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand on the

available technical resources. This will lead to high demands on the available technical

resources. This will lead tohigh demands being placed on the client. Thedeveloped

system must have a modest requirement, as only minimal or null changes are required for

implementing this system.

5.1.3 Social Feasibility

The aspect of study is to check the level of acceptance of the system by the user. This

includes the process of training the user to use the system efficiently. The user must

not feel threatened by the system, instead must accept it as a necessity. The level of

acceptance by the users solely depends on the methods that are employed to educate the user

about the system and to make him familiar with it. His level of confidence must be raised so

that he is also able to make some constructive criticism, which is welcomed, as he is the final

user of the system.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 15

5.2 Analysis

5.2.1 Performance Analysis

For the complete functionality of the project work, the project is run with the help of

healthy networking environment. Performance analysis is done to find out whether the

proposed system. It is essential that the process of performance analysis anddefinition must

be conducted in parallel.

5.1.2 Technical Analysis

System is only beneficial only if it can be turned into information systems that will meet the

organization’s technical requirement. Simply stated this test of feasibility asks whether the

system will work or not when developed & installed, whether there are any major

barriers to implementation. Regarding all these issues in technical analysis there are several

points to focus on:-

Changes to bring in the system: All changes should be in positive direction, there

will be increased level of efficiency and better customer service.

Required skills: Platforms & tools used in this project are widely used. So the skilled

manpower is readily available in the industry.

Acceptability: The structure of the system is kept feasible enough so that there should not be

any problem from the user’s point of view.

5.1.3 Economical Analysis

Economic analysis is performed to evaluate the development cost weighed against the

ultimate income or benefits derived from the developed system. For running this system,

we need not have any routers which are highly economical. So the system is economically

feasible enough.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 16

Chapter-6

System Design

Design is a meaningful engineering representation of something that is to be built. It is the

most crucial phase in the developments of a system. Software design is a process through

which the requirements are translated into a representation of software. Design is a place

where design is fostered in software Engineering. Based on the user requirements and the

detailed analysis of the existing system, the new system must be designed. This is the phase

of system designing. Design is the perfect way to accurately translate a customer’s

requirement in the finished software product. Design creates a representation or model,

provides details about software data structure, architecture, interfaces and components that

are necessary to implement a system. The logical system design arrived at as a result of

systems analysis is converted into physical system design.

6.1 System development methodology

System development method is a process through which a product will get completed or a

product gets rid from any problem. Software development process is described as a number of

phases, procedures and steps that gives the complete software. It follows series of steps which

is used for product progress. The development method followed in this project is waterfall

model.

6.1.1 Model phases

The waterfall model is a sequential software development process, in which progress is seen

as flowing steadily downwards (like a waterfall) through the phases of Requirement

initiation,, Analysis, Design, Implementation, Testing and maintenance.

Requirement Analysis: This phase is concerned about collection of requirement of the

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Waterfall
http://en.wikipedia.org/wiki/Analysis
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_maintenance

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 17

system. This process involves generating document and requirement review.

System Design: Keeping the requirements in mind the system specifications are translated in

to a software representation. In this phase the designer emphasizes on:-algorithm, data

structure, software architecture etc.

Coding: In this phase programmer starts his coding in order to give a full sketch of product.

In other words system specifications are only converted in to machine readable compute

code.

Implementation: The implementation phase involves the actual coding or programming of

the software. The output of this phase is typically the library, executables, user manuals and

additional software documentation

Testing: In this phase all programs (models) are integrated and tested to ensure that the

complete system meets the software requirements. The testing is concerned with verification

and validation.

Maintenance: The maintenance phase is the longest phase in which the software is updated

to fulfill the changing customer need, adapt to accommodate change in the external

environment, correct errors and oversights previously undetected in the testing phase,

enhance the efficiency of the software.

6.1.2 Advantages of the Waterfall Model

• Clear project objectives.

• Stable project requirements.

• Progress of system is measurable.

• Strict sign-off requirements.

• Helps you to be perfect.

• Logic of software development is clearly understood.

• Production of a formal specification

• Better resource allocation.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 18

• Improves quality. The emphasis on requirements and design before writing a single

line of code ensures minimal wastage of time and effort and reduces the risk of

schedule slippage.

• Less human resources required as once one phase is finished those people can start

working on to the next phase.

Fig 6.1: Waterfall model

6.2 Design Using UML

 Designing UML diagram specifies, how the process within the system communicates along

with how the objects with in the process collaborate using both static as well as dynamic

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 19

UML diagrams since in this ever-changing world of Object Oriented application

development, it has been getting harder and harder to develop and manage high quality

applications in reasonable amount of time. As a result of this challenge and the need for a

universal object modeling language every one could use, the Unified Modeling Language

(UML) is the Information industries version of blue print. It is a method for describing the

systems architecture in detail. Easier to build or maintains system, and to ensure that the

system will hold up to the requirement changes.

Sl.

No

Symbol

Name
Symbol Description

1

Class

Classes represent

a collection of

similar entities

grouped

together.

2

Association

Association

represents a static

relation

 betwee

n

classes.

3

Aggregation

Aggregation is a

form of

association. It

 aggregat

es several classes

into

a single class.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 20

4

Composition

Composition is a

special type of

aggregation that

denotes a strong

ownership

between

classes.

5

Actor

Actor is the user

of the system that

reacts with the

system.

6

Use Case

A use case is an

interaction

between system

and the external

environment.

7

Relation
(Uses)

It is used for

additional

 purpos

e communication.

8

Communicatio

n

It is

 the

communication

between use
cases.

9

State

It represents the

state of process.

Each state goes

through various

flows.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 21

10 Initial State

It represents initial

state of object.

11 Final State

It represents final

state of object.

12

Control Flow

It
 represent
s

decision

 makin

g process for

object.

13

Decision Box

It represents the

decision making

process from a

constraint.

14

Data

Process

/ State

A circle in a DFD

represents a state

or process which

has been

triggered due to

some other event

or action.

15

External Entity

It represents

external entity

such as

 Keyboard

, sensors, etc

which are used in

the

system.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 22

16

Transition

It represents any

communication

that occurs

between

processes.

17

Object Lifeline

Object lifeline

represents

 the

vertical dimension

that

 object

communicates.

18

Message

It

 represen

ts messages

exchanged.

Table 6.2: Symbols used in UML

6.3 Sequence Diagram

Sequence diagram are an easy and intuitive way of describing the behavior of a system by

viewing the interaction between the system and the environment. A sequence diagram shows

an interaction arranged in a time sequence. A sequence diagram has two dimensions: vertical

dimension represents time, the horizontal dimension represents the objects existence during

the interaction.

A Sequence diagram is an interaction diagram that shows how processes operate with one

another and what is their order. It is a construct of a Message Sequence Chart. A sequence

diagram shows object interactions arranged in time sequence. It depicts the objects and

classes involved in the scenario and the sequence of messages exchanged between the objects

needed to carry out the functionality of the scenario. Sequence diagrams are typically

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 23

associated with use case realizations in the Logical View of the system under development.

Sequence diagrams are sometimes called event diagrams or event scenarios.

A sequence diagram shows, as parallel vertical lines (lifelines), different processes or objects

that live simultaneously, and, as horizontal arrows, the messages exchanged between them, in

the order in which they occur. This allows the specification of simple runtime scenarios in a

graphical manner.

Fig 6.3 Sequence Diagram

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 24

The sequence diagram shows the set of events that occur once the input file has been given.

The first step is to parse, where the required data will be put into a structure. Then the

adjacency matrix is created which will be used when the lookup table is created and also

while computing the final sequence. Once the final sequence is generated, the final code is

generated which also uses the structure that was created during parsing. The user will get the

generated code for the file that he has inputted.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 25

Chapter 7

Implementation

The following are the commands that are required for the working of the project.

7.1 Commands

• The command to start the QEMU machine:

sudo qemu-system-x86_64 -machine q35,usb=off -m 2048 -name ubuntu16 -drive

file=/var/lib/libvirt/images/ubuntu16.img,format=raw,if=none,id=drive-virtio-disk0-device

virtio-blk-pci,scsi=off,drive=drive-virtio-disk0,id=virtio-disk0-bios

/usr/local/share/qemu/bios.bin -enable-kvm

• This is followed by starting the VNCviewer-

 vncviewer 127.0.0.1:port

• To start and close the QEMU console

ctrl+alt+2

ctrl+alt+1

• In Server QEMU Console:

 runinfoblock - to see the name of the disk

 runvhost_user_server_start /tmp/vhost-user-blk_vhost.socket

• Starting the second Virtual Machine in Ubuntu 2

sudo qemu-system-x86_64 -machine q35,usb=off -m 2048 -name ubuntu2 -drive

file=/var/lib/libvirt/images/ubuntu2.img,format=raw,if=none,id=drive-virtio-disk0 -device

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 26

virtio-blk-pci,scsi=off,drive=drive-virtio-disk0,id=virtio-disk0 -bios

/usr/local/share/qemu/bios.bin -enable-kvm -chardevsocket,id=char1,path=/tmp/vhost-user-

blk_vhost.socket -device vhost-user-blk-pci,id=blk0,chardev=char1 -object memory-

backend-memfd,id=mem,size=2048M,share=on -numanode,memdev=mem

• To mount the disk

sudo mount -o ro,noload /dev/vdb1 /mnt

This will enable us to access the server's file.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 27

Chapter-8

Results and Performance Analysis

In this section, the snapshots shows the implementation of the vhost-user-blk device backend

inside QEMU so guests can efficiently access shared disk images.

8.1 Snapshots

Fig 8.1: The first Virtual Machine

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 28

Fig 8.2: QEMU Console to see the shared disk

Fig 8.3: Starting the server

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 29

Fig 8.4: List of block disks

Fig 8.5: Mounting to the server disk

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 30

Fig 8.6: Shared disks images being accessed by the Virtual Machines

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 31

Chapter-9

Conclusion and Future Scope

In the project we implemented a vhost-user-block backend service in QEMU. The vhost-user-

block backend service was used to enable a QEMU to act as a server and share a virtual disk

with another client QEMU VM. This solution should provide better performance compared to

existing NBD based solution in QEMU. As part of future work, we plan to evaluate our

implementation’s performance and compare it to NBD based solution. We also plan to extend

the implement to enable multiple QEMU clients to connect to the QEMU server to enabling

sharing virtual disks between more than 2 VMs. If the QEMU client caches the shared disk

data, it doesn’t immediately see the updates made by other clients or QEMU server. We plan

to implement more consistent updates to the shared disk so that each client can see the

updated data immediately.

Implementing backend tool to share disc images among VMs

Dept. of ISE, CMRIT 2019-20 Page 32

References

1. Official Website of QEMU https://www.qemu.org/

2. Official Website of Linux-KVM http://linuxkvm.org/

3. virtio official page https://wiki.libvirt.org/page/Virtio

4. Virtualised I/O with vhost-user https://spdk.io/doc/vhost_processing.html

http://linuxkvm.org/
https://wiki.libvirt.org/page/Virtio
https://spdk.io/doc/vhost_processing.html

