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ABSTRACT 
 

Recommender systems are tools for interacting with large and complex information spaces. They 

are a type of information gathering/analysis system that aims to predict the rating that a particular 

user will give to an item. The main goal of such systems is to efficiently recommend relevant items 

of interest to their audience for prolonged interaction with the product and maximizing user 

satisfaction. They are mainly used in commercial applications, some highly popular examples 

being Netflix, Amazon etc. Recommender systems research has incorporated a wide variety of 

artificial intelligence techniques such as machine learning, data mining, user modeling, case-based 

reasoning, constraint satisfaction, etc. This project aims to provide a descriptive overview of the 

different types of recommender systems, their uses and the algorithms present in the field. We 

attempt to implement some of the algorithms and document the errors results and the conclusions 

we have observed. 
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A Concise Study on Personalized Recommender Systems  
 

CHAPTER 1 

INTRODUCTION  

People rely on technology in almost every aspect of their lives. With the             

overload of information over the recent years, recommender systems have grown to            

become an important part of people’s everyday lives. Online platforms are an            

absolute essential in this digital age. Increasing the utility of recommendation systems            

on these platforms has increased user interaction and is also a cost effective method              

of the same. Consumers expect a personalized experience and sophisticated          

recommendation systems to find relevant products and content, all to save consumers            

time and money[1]. Recommendation technologies are widely used to help people           

identify relevant products or services or information. YouTube, Amazon, Netflix and           

many other such web services are the famously known recommendation systems. The            

system is capable of suggesting a set of items to the users and recommending top               

items to the user. People are always provided with too many options to choose from,               

the recommendation system focuses on the user’s best interest and suggests the best             

options by learning from the users.  

There are several algorithms that have been developed over time to help            

improve the efficiency of these systems. Systems mainly can be categorized into            

Content Based and Collaborative-Filtering based.  

Content Based Filtering 

Content based recommender systems aim mainly to recommend items based          

on their similarity metrics. For example, in a movie recommender system where a             

user has recently seen a movie of horror genre, a simple content based system might               

recommend similar horror movies or movies by the same director or having the same              

actors etc. There are various measures available to compare and compute the            

similarity of two items including but not limited to cosine similarity, Pearson’s            

coefficient, distance. 
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Collaborative Filtering  

Collaborative Filtering deals with a user-item matrix in most cases and tries to             

compute the rating that a particular user will give to an item he has not yet interacted                 

with. One way to do this can be to find other users with similar tastes to the user                  

who’s rating we are trying to predict and take a weighted average of those ratings.               

Till now our discussion was focused on explicit ratings, i.e. the ratings take on              

numbers or values in a given domain. There is also the existence of implicit ratings,               

which can take the form of whether the intended user has viewed, clicked or seen a                

particular item rather than explicitly providing a rating.  

 

Fig 1.1 Types of Recommender Systems [2] 
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1.1 Relevance Of  The Project 

Recommender systems are still of prime importance today through their ability to            

provide a high return on investment when used wisely. 

● By providing better recommendations, the time a user spends on a site is              

maximised thereby directly improving the cart value and helping users to “buy” more. 

● Maximises the engagement and satisfaction of the user. 

● Unlike other applications that degrade with time, recommender systems          

have a high retention rate which implies they perform better over time as they have a                

larger subsection of data to operate upon. 

● Timely recommendations (for say, medical items or research papers) can           

help save a lot of time and increase productivity. 

As stated above the advantages go on and on. We as humans always tend to be                

choosy be it movies, food etc. It all boils down to personal preference and that is                

exactly where recommender systems scintillate. These systems generate user profiles          

by learning the user’s preferences, collaborates these preferences with other users           

(Collaborative filtering) and runs various algorithms on these profiles as discussed in            

the future sections. A detailed study on such a powerful concept helps understand the              

behaviour of the users and tweak the algorithms accordingly. The ultimatum of            

recommender systems to cater the best possible suggestions to the users to their             

vacillating predilections. 

Despite all these advantages, recommender systems are not without their fair share of             

disadvantages. For example, there are no accurate solutions to certain problems that            

plague it like cold start etc. and no “best algorithm” that improves accuracy as such. It                

is a growing field with much research being carried out every single day to improve               

it.  
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1.2 Scope of Project 

Recommender Systems continue to be pivotal in machine learning and serve an            

important role in commercial applications. One of the reasons for widespread           

popularity of websites such as Amazon, Netflix, BestBuy are the strength of their             

recommender systems. Netflix had announced the 1-million-dollar prize for         

collaborative – filtering algorithms that improved the accuracy over their benchmark           

by a factor of 10%.  

The business objective of recommender systems is to maximize user satisfaction. The            

user’s satisfaction is not merely based on the accuracy of the predictions but on a               

variety of other factors such as the novelty of the predictions and their usefulness.  

There is no perfect solution to recommender systems in a field where extensive             

research has been carried out. Even advanced techniques like autoencoders and           

restricted Boltzmann machines do not yield the supreme results that would be            

expected, mainly due to human factors and computing constraints. 

There are also problems like the grey sheep, data sparsity and cold start issues and               

that still need to be addressed completely. 

 

1.3 Approaches  

Below is a table containing brief summaries of the various approaches explored            

during our research and also have implemented each of these approaches and            

documented the error results and conclusions. 
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Table 1.1 Summary of Various Approaches 

Name of Approach Description 

Content Based Filtering User Specific Recommendations based on item’s      
features. If a person liked a particular book, a         
content based system might recommend others      
of a similar plot/genre/type. 

Collaborative Filtering Tries to recommend items by finding out what        
similar users like. 

kNN A distance metric that can be used to find out          
near or “similar” movies given a database of        
movies. 
Can also be used to find similar users 

Clustering The task of partitioning the data set into a few          
groups such that the members in each group        
have minimal differences or are most similar to        
one another. 
For example, k-means clustering tries to assign       
points to clusters based on mean 

Singular Value Decomposition It is a matrix structure used for recommendation 
where rows represent users, columns represent 
items and the value of the cells denote the ratings 
that the users have given to those items. It is a 
collaborative filtering technique that deals with 
matrix factorization and helps in reducing the 
number of dimensions. 

Auto Encoders A type of Artificial Neural Network used to 
learn efficient codings for the input data 
typically for dimensionality reduction. It tries to 
replicate the input as effectively as possible from 
the learnt representation while trying to 
minimise the error. 

Restricted Boltzmann Machine  Given a matrix of users across rows and their 
ratings for movies across columns, it performs a 
binary prediction whether the user would like a 
movie or not. It would act as a sieve over other 
ML algorithms to cater better recommendations. 
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1.4 Datasets Used 

Table 1.2: A summary of data sets typically used for recommendation systems  

Dataset Description 

MovieLens[3] Collection of movie ratings. Comes in 
1M,10M and 20M ratings. The largest 

set uses 1.40.000 users and spans across 
27000 movies. 

Zomato Restaurants Data (Kaggle) All metadata-rating and location 
information about restaurants fetched 

via Zomato’s API. 

Yelp Dataset (Kaggle) A subset of Yelp’s business, reviews 
and user data. It was originally put 

together for the Yelp Dataset Challenge 
for students to conduct research or 

analysis on Yelp’s data and share their 
discoveries 

Restaurant Data (Kaggle) This dataset was used for a study where 
the task was to generate a top-n list of 
restaurants according to the consumer 

preferences. 

Jester List of various jokes and their rating 

Book Crossing A Book rating and metadata dataset 

Last.fm Dataset for songs and includes the top 
song in a playlist and the amount of 
times that song has been listened to. 

OpenStreetMap Contains map related data. Objects in 
the dataset include roads, buildings, 

points-of-interest, etc. 

TMDB-5000 
(Replacement by Kaggle) 

 

Contains movie information relating to 
the metadata and credits. 
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1.5 Challenges faced by recommender systems 

Few of the challenges[4] that are faced by systems include:  

1. Cold Start — This problem can occur when a new user enters the recommendation 

system and the user's preferences are not known. This can be avoided by asking the 

user to indicate his preferences or interests the first time he signs up for the service. 

2. Grey Sheep — This takes place when one person's tastes differ from that of the 

group thereby rendering the recommendations provided to him/her useless. The easy 

way to avoid this is by perusing collaborative filtering systems that provide 

recommendations based on the personal interests and profile of the user. 

3. Synonymy — This problem can occur when two words or items have different 

ways of expression, but they point to the same thing. For example, action movie and 

action film mean the same but a rote learning or memory based approach to filtering 

systems will not be able to capture this semantic similarity. By using methods like 

SVD, this error can be averted. 

4. Shilling attacks — This attack happens when a malicious user starts providing false 

ratings intentionally in order to sabotage the system and lower the trustworthiness / 

relevance of the items recommended. The remedy to this kind of attack involves 

identifying prediction shift, hit ratio etc 

5. Sparsity — As every user tends to rate a very small set of all the available movies 

in the data set, most of the time the rating matrix is sparse, making it difficult in cases 

where algorithms that recommend items based on a similarity metric are used as there 

are few available ratings. Algorithms like SVD and some content based collaborative 

algorithms can counter this effect. 
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CHAPTER 2 

LITERATURE SURVEY 

This chapter discusses the various research papers involving the same topic and            

analyzes the approaches they used and the conclusions and accuracy results they            

observed.  

2.1 Jiang Zhang, Yufeng Wang , Zhiyuan Yuan, and Qun Jin - Personalized             

Real-Time Movie Recommendation System: Practical Prototype and Evaluation        

- 2020 

Jiang Zhang et al. have presented a personalized real-time movie recommendation           

system based on a CF algorithm called Weighted KM-Slope-VU. Firstly, a simple            

but high-efficiency recommendation algorithm is proposed, which exploits users’         

prole attributes to partition them into several clusters. For each cluster, a virtual             

opinion leader is conceived to represent the whole cluster, such that the dimension of              

the original user-item matrix can be signicantly reduced, then a Weighted Slope            

One-VU method is designed and applied to the virtual opinion leader-item matrix to             

obtain the recommendation results.  

Weighted KM-Slope-VU, the popular K-means algorithm is chosen to cluster users,           

for its simplicity and effectiveness. This method has significantly reduced the time            

complexity, also achieving comparable recommendation performance. The proposed        

method has achieved an average RMSE of 0.95062 and 0.94676 on 10K and 1M              

datasets respectively.[5] 

2.2 Khamphaphone Xinchanang, Phonexay Vilakone, and Doo-Soon Park -         

Movie Recommendation Algorithm using Social Network Analysis to alleviate         

Cold-Start problem - 2019 

Khamphaphone Xinchanang et al. have developed a movie recommendation         

algorithm using Social Network Analysis and collaborative filtering . This algorithm           

uses personal information of users such as age, gender, and occupation to make a              

relationship matrix between users, and the relationship matrix is applied to cluster            
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users by using community detection based on edge betweenness centrality. Then the            

recommended system will suggest movies which were previously interested by users           

in the group to new users. 

The efficiency of the SNA and CF method is compared with the normal CF method,               

kNN and CF method, and Density-based clustering method. The MAE was observed            

to be very less(3.55) using the SNA and CF method when compared with the other               

methods. But this value is a lot much when compared to the latest algorithms              

developed by others. [6] 

2.3 Md. Akter Hossain, Mohammed nazim uddin - A Neural Engine for Movie             

Recommendation System - 2019  

Md. Akter Hossain and Mohammed Nazim uddin proposed a Neural engine for movie             

recommendation system(NERS). In this system(NERS), they have incorporated data         

contents about the user's interests via a standard movie dataset that helps them make              

a neural engine called neural recommender (NR). Firstly, they use a collective            

dataset to predict movie outputs. Secondly, they developed explicit prediction models           

for different types of movies. This model helped both, the system and user, the              

flexibility to fetch information according to user expectations. Then, it uses two            

different types of clustering algorithms for evaluating their approach : Silhouette and            

DaviesBouldin measures and compares the performance with two proficient         

estimators.  

At last, three estimators, mean square error (MSE), mean absolute error (MAE) and             

mean relative error (MRE), were exploiting to demonstrates prediction accuracy of           

NERS approach The MAE, MSE and MRE was calculated to be 1.97, 4.75 and 6.06%               

respectively which is quite a lot compared to many other approaches. [7] 

2.4 Rahul Katarya, Om Prakash Varma - An effective collaborative movie           

recommender system with cuckoo search - 2017 

Rahul Katarya and Om Prakash Varma [8] developed a movie recommendation           

system whose primary objective is to make suggestions through data clustering and            

computational intelligence. It uses k-means clustering algorithm along with cuckoo          
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search optimization algorithm applied on the Movielens datasets. The clusters are           

selected randomly at first then users are inspected one by one by calculating the              

differences in their ratings and the centroid of the clusters, and if their difference is               

smallest, then the user gets allocated to the cluster to which they are closest. Initially               

the k-means clustering algorithm is applied to Movielens 100K dataset. Next cuckoo            

search optimization algorithm is applied to the resultant of the k-means algorithm for             

optimizing the results. This approach was able to provide an MAE of 0.754 and              

RMSE of 1.266. [8] 

2.5 Alif Azhar Fakhri, Z K A Baizal and Erwin Budi Setiawan - Restaurant              

Recommender System Using User-Based Collaborative Filtering Approach: A        

Case Study at Bandung Raya Region - 2019  

Alif Azhar Fakhri, Z K A Baizal and Erwin Budi Setiawan proposed a             

recommendation system that implements a user-based collaborative filtering        

algorithm for recommending restaurants. If the user wants to find a restaurant            

recommended by another user, then the system will search the neighbors who have             

biggest similarity with that target user, The restaurants that have been given a rating              

by neighbors will be recommended to target users who have not rated that restaurant.  

Similarity to find the proximity between users is calculated using two stages: 1)             

calculating the user similarity and 2) calculating the user attribute similarity. They            

found an MAE of 1.492 for calculation without user attributes and 2.166 for             

calculation with user attributes. Lesser the value of MAE, better the performance of             

the system. Hence, the authors concluded that the recommender system performs           

better without computing the user attribute similarity. [9] 

2.6 Bhagyashree Basudkar, Shruti Bagayatkar, Meghana Chopade, Sachin        

Darekar - Restaurant Recommendation System Using Customer’s Data Analysis         

- 2018  

Bhagyashree Basudkar, Shruti Bagayatkar, Meghana Chopadeand Sachin Darekar        

attempt to understand, analyze and suggest restaurants to a particular user on the basis              

of user behavior and the restaurant rankings using Zomato’s API. They have proposed             

an android and web application that focuses on user’s behavior and generates            
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predictions based on the user’s location and the popularity of the restaurant by using              

user ratings. Their application will also notify the user with the nearest restaurants             

when the user is in motion.  

They have used content-based filtering as well as collaborative filtering to make the             

system more effective. The users’ locations are tracked using gps. The recommender            

system adopted a user preference model by using the features of user’s visited             

restaurants, and also the location information of users and restaurants in order to             

dynamically generate the recommendations. [10] 

2.7 Ravinarayana A, Pooja M C and K Raghuveer - Using Clustered Database             

for Food Recommendation System - 2016  

Ravinarayana A, Pooja M C and K Raghuveer attempted to create a food             

recommendation system that uses a content based filtering technique to recommend           

food items to the user. The system will suggest food items based on user inputs and                

also provide users a list of nearby restaurants. The system works as follows: the user               

is asked to input his/her favorite food items as well as the location in which he wants                 

to find restaurants. In turn, a list of top ingredients of the users favorite food items is                 

fetched. Clusters of food items are maintained along with the list of important             

keywords that belong to that respective cluster. They perform clustering by using the             

k-means method.  

k-Means clustering was chosen to maintain the database as an attempt to increase the              

performance of existing systems. They concluded that their proposed system reduces           

the time taken to make comparisons for similarity in the database by 94%. The              

authors observed that the clustered database addresses the problem of dimensionality.           

In order to improve the accuracy even further, they will attempt to use a hybrid               

algorithm in future implementations. User specific recommendations can also be          

given using a reinforcement learning approach. [11] 

2.8 Sumedh Sawant and Gina Pai - Yelp Food Recommendation Challenge -2013  

Sumedh Sawant and Gina Pai used the Yelp dataset to implement a food             

recommendation system using various algorithms such as singular value         
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decomposition, weighted bipartite graph and hybrid cascade of kNN clustering. In           

order to evaluate and compare the performances of the difference implementations,           

they have chosen the metrics Root Mean Square Error and Mean Absolute Error.  

They concluded that the implementation of the cascaded clustered multi-step          

weighted bipartite graph projection algorithm performed the best out of all the            

algorithms with RMSE of 1.09262 and MAE of 0.67548. In future implementation,            

they will attempt to augment the current analysis to include review text and user              

rating evaluations (whether other users thought a particular user’s review was funny,            

useful, or helpful) as features in the prediction model. They will also explore further              

hybrid approaches and evaluate their performances to current implementations. [12] 
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CHAPTER 3 

SYSTEM REQUIREMENTS SPECIFICATION 

 

3.1 Functional Requirements 

● Users should be able to get a precise list of recommendations pertaining to his              

interest. 

● Interface to the ongoing events, plays, movies. 

● Performance improvement over time. 

● Allow the user to change his preferences without impacting functionality. 

 

3.2 Non-Functional Requirements 

● Learnability 

● Reusability 

● Performance 

● Reliability 

● Correctness 

● Privacy 

 

3.3 Hardware Requirements 

● Processors: ​ Intel i3,i5,i7 

● Processor Speed: ​ 3.00GHZ 

● RAM:​ 4GB 

● Storage: ​ 500GB  
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3.4 Software Requirements 

● Operating System: ​ Windows 

● Web Browser: ​ Google Chrome 

● RAM :​ 1GB+ 

● Python version :​  3.6.X 
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CHAPTER 4 

IMPLEMENTATION 

Various recommendation algorithms were implemented and their results and         

error metrics were noted. 

4.1 Restaurant Recommendations 

4.1.1 Content Based Approach using Cosine Similarity 

In this implementation, the Zomato Dataset, containing restaurants across the world is            

considered. The dataset includes features such as city, locality, cuisine, aggregate           

rating as well as the total number of votes for each restaurant mentioned. In order to                

provide personalized recommendations to the user, the top, similar restaurants for a            

user are recommended by taking into consideration their location as well as the             

cuisine of the restaurant. 

Using TF-IDF Vectorizer 

from ​ sklearn.feature_extraction.text ​import​ TfidfVectorizer 
 

tfv = TfidfVectorizer(min_df= ​3​, max_features= ​5000​, 
analyzer= ​'word'​, token_pattern=​r'\w{1,}' ​,  
                     ngram_range=( ​1 ​, ​3 ​), 
                     stop_words = ​'english' ​) 

 

Using TF-IDF vectorizer, a maximum of 5000 features are extracted in the cuisine             

columns across all the restaurants. Sporadic terms are eliminated in order to get rich              

and meaningful features.  

Cosine similarity is used to calculate the pairwise similarity between the restaurants.            

This similarity score calculated will be then used to determine the top ten most              
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similar restaurants with respect to the user’s location and cuisine of the restaurant             

specied.  

Code snippet 

#Cosine Similarity 

#Compute the cosine similarity matrix 

cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)  

#Get indices  

corpus_index=[n ​for ​ n ​in ​ data_sample[ ​'Split'​]] 
indices=pd.Series(data_sample.index,index=data_sample[​'Restau
rant Name' ​]).drop_duplicates()  
 ​#index of the restaurant matchs the cuisines 
idx = indices[title] 

   ​#Aggregate rating added with cosine score in sim_score 
list. 

   sim_scores=[] 

   ​for​ i,j ​in ​ enumerate(cosine_sim[idx]): 
        k=data_sample[​'Aggregate rating' ​].iloc[i] 
        ​if ​ j != ​0 ​ : 
            sim_scores.append((i,j,k)  

    ​#Sort the restaurant names based on the similarity scores 
    sim_scores = sorted(sim_scores, key=​lambda ​ x: (x[​1​],x[ ​2 ​]) 
, reverse= ​True​) 
    ​# 10 similar cuisines 
    sim_scores = sim_scores[ ​0 ​:​10 ​] 
    rest_indices = [i[​0 ​] ​for ​ i ​in ​ sim_scores]  
   data_x =data_sample[[​'Restaurant Name' ​, ​'Aggregate 
rating'​]].iloc[rest_indices] 
    data_x[ ​'Cosine Similarity'​]= ​0 
    ​for​ i,j ​in​ enumerate(sim_scores): 
        data_x[​'Cosine 
Similarity' ​].iloc[i]=round(sim_scores[i][​1 ​], ​2 ​) 
    ​return​ data_x 
restaurant_recommend_func(‘Connaught Place’,’Sbarro’) 

  

Cosine similarity is chosen as the similarity metric as it is proven to be better when                

compared with other similarity metrics like Euclidean distance and Pearson’s          

correlation as it measures the similarity between items irregardless of their size.            

Cosine Similarity measures the cosine of the angle between two vectors (or            
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documents) projected in a multi-dimensional space. Therefore, even if two documents           

are far apart with respect to their Euclidean distance, there may be a chance they               

could have a smaller angle between them as smaller the angle, greater its similarity.  

Table 4.1 Restaurant Recommendation Using Content Based Approach using 
Location  

Restaurant ID Restaurant Name Aggregate Rating  Cosine Similarity 

63 Pizza Hut 3.5 0.86 

26 Caffe Tonino 3.9 0.79 

32 Domino’s Pizza 3.7 0.70 

91 Ovenstory Pizza 0.0 0.70 

24 Cafe Public Connection 3.7 0.33 

12 The Immigrant Cafe 3.2 0.33 

1 Attitude Kitchen & Bar  2.9 0.33 

112 Smoke on Water  4.1 0.33 

95 Ardor 2.1 4.1 0.28 

94 Ambrosia Bliss  4.0 0.28 

 

A reason why content based systems are useful and easy to implement is because they               

do not require any data about other users using the system which makes it easier for                

the system to scale to a large number of users. Another advantage of this approach is                

that the recommendations made for the target user are specific to that user only. For               

this reason, content based systems work well if a user has an interest that is not very                 

common among all users.  

Content based systems also come with their limitations. Implementing such a system            

requires extensive knowledge of that particular domain. In addition to this, these            

systems only provide recommendations based on the user’s current likes and has no             

way of expanding the user’s interest beyond this. Due to these disadvantages, content             

based systems are not used in all situations. 
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4.1.2 kNN Item Based Collaborative Filtering  

Collaborative Filtering is a machine learning technique that is used to make            

predictions based on the past behavior of users. It can be either item-based or              

user-based. The bottleneck in traditional collaborative ltering algorithms is         

searching for neighbors among a large user population of potential neighbors.           

Item-based ltering algorithms avoid this bottleneck by exploring the relationships          

between items ratings instead of the relationships between users as user behavior            

tends to be dynamic in nature whereas items’ ratings tend to remain static. Item-based              

algorithms provide recommendations for users by nding items that are similar to            

other items the user has liked in the past.  

An item based collaborative ltering technique using k-Nearest Neighbors algorithm          

is implemented. kNN algorithm is a supervised machine learning technique that uses            

labeled input data for learning in order to make predictions on new, unlabeled data.  

For the implementation, Restaurant Dataset (Kaggle) [13] which contains user ratings           

for particular restaurants is used. Then combine all the ratings given by users for a               

particular restaurant in order to nd out the total number of ratings each restaurant              

has.  

A ‘popularity threshold’ is considered in order to recommend restaurants having more            

number of ratings than the ’popularity threshold’. The threshold we have considered            

in ’25’. Then a pivot table is created containing the ratings given by each user for a                 

particular restaurant. The table has restaurant names are the indices and the user id as               

the columns. This table is then converted into an array matrix by importing the              

csr.matrix library from the scipy.sparse package. The metric chosen for calculating           

the distance between items is Cosine Similarity and the number of neighbors chosen             

is 5.  

Code Snippet 

popularity_threshold = ​25 
rating_popular_rest=rating_with_totalRatingCount.query(​'total
RatingCount>= @popularity_threshold' ​) 
rating_popular_rest.head() 
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rest_features_df=rating_popular_rest.pivot_table(index=​'name'
,columns= ​'userID'​,values=​'rating'​).fillna( ​0 ​) 
rest_features_df.head() 

from ​ scipy.sparse ​import​ csr_matrix 
rest_df_matrix = csr_matrix(rest_features_df.values) 

from ​ sklearn.neighbors ​import ​ NearestNeighbors 
model_knn = NearestNeighbors(metric = ​'cosine' ​, algorithm = 
'brute'​) 
model_knn.fit(rest_df_matrix) 

query_index = np.random.choice(rest_features_df.shape[​0 ​]) 
print(query_index) 

distances,indices=model_knn.kneighbors(rest_features_df.iloc[

query_index,:].values.reshape(​1 ​, ​-1 ​), n_neighbors = ​4 ​) 

 

Figure 4.1 Output for kNN Item Based Collaborative Filtering  

 

The surprise module is used to calculate the RMSE and the MAE by importing              
KNNBasic. 

Table 4.2  Evaluating RMSE, MAE of algorithm KNNBasic on 2 splits 

 Fold 1 Fold 2 Mean  Std 

RMSE 0.8218  0.8324  0.8271  0.0053  

MAE 0.6584  0.6636 0.6610 0.0026 

Fit time 0.03 0.05 0.04 0.01 

Test time 0.0 0.0 0.0 0.0 

 

The advantage of using a kNN algorithm based approach is that it does not require               

any training before making predictions and adding new items does not affect the             

accuracy of the algorithm. Another reason as to why kNN is a popular approach is               
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that it is relatively simpler to implement as it considers only two parameters: the              

value chosen for ’k’ and the distance measured between items. 

Item based Collaborative filtering algorithms are advantageous because the average          

rating of items don’t change as often so the user-item matrix does not need to be                

computed frequently leading to lower computation costs.  

4.2 Movie Recommendation 

4.2.1 Built-in Algorithms 

Code Snippet 

from ​ surprise ​import ​ SVD , SVDpp , NMF , KNNBasic , 
NormalPredictor 

from ​ surprise ​import ​ Dataset 
from ​ surprise.model_selection ​import ​ cross_validate 
#Base-lines 

data = Dataset.load_builtin( ​'ml-100k' ​) ​#Movielens 100k 
Dataset- preloaded 

algorithms = [SVD() , KNNBasic() , NormalPredictor()] ​#SVD++ 
, Matrix Factorization Models 

for ​ algo ​in ​ algorithms: 
    cross_validate(algo, data, measures=[ ​'RMSE'​, ​'MAE'​], 
cv= ​5 ​, verbose=​True ​) 

 

The surprise module is a specialized module built to provide users complete control             

over their recommender systems research and experiments as well as a method for             

evaluation of such systems. Another advantage of using this module is that few             

datasets such as MovieLens are built-in along with implementations of popular           

algorithms. 

A few of the built-in popular algorithms like SVD, kNN are run on the movielens               

100k dataset to establish baseline metrics. 5-fold cross validation was conducted and            

the mean is documented. 
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Table 4.3  Evaluation results of Built-in algorithms 

Built-in Algorithm Root Mean Square 
Error(RMSE) 

Mean Absolute 
Error(MAE) 

SVD 0.9364  0.7385  

kNN 0.9790  0.7730  

Normal Predictor 1.5233 1.2232 

 

4.2.2 Mean and Random Measures 

Using the surprise module, one can implement and execute one’s own algorithms by             

implementing two of the methods t and estimate derived from AlgoBase as shown             

below:  

Code Snippet 

from ​ surprise ​import ​ Dataset 
from ​ surprise.model_selection ​import ​ cross_validate 
from ​ surprise ​import ​ AlgoBase 
import​ random 
#Dumb Sample Model to get started 

class ​ ​ZeroAl ​(AlgoBase): 
 

    ​def​ ​__init__​(self): 
        AlgoBase.__init__(self) 

  

    ​def​ ​fit ​(self , trainset): 
        AlgoBase.fit(self , trainset) 

        ​return​ self 
 

    ​def​ ​estimate​(self, u, i): ​#Have to predict rating 
        ​return​ ​0 
    ​#If we return 0 , the maximum deviation will be there 
from rating as ratings are from 1-5 

 

data = Dataset.load_builtin( ​'ml-100k' ​) 
algo = ZeroAl() 

 

cross_validate(algo, data, verbose= ​True​) 
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In order to build our recommendation algorithm with surprise, one needs to            

encapsulate the idea into a class while providing definitions for three methods - init ,               

fit and estimate.  

__init__() - This is a basic python constructor that instantiates the super class             

AlgoBase 

fit(self , trainset) - This method is called once on the entire training set. Here, weights                

are learned and features are processed etc.  

estimate(self , u , i) - This method takes in two parameters: the User Id and Item Id. It                   

is called for every row of the test set. Based on the learning done in the fit method,                  

this method is expected to return a numeric value of the rating which this user would                

have provided for this particular item. In the case of movies, this method is called for                

every (User Id , Item Id) in the testing set and outputs a numeric value (1-5) the                 

particular user is expected to provide for the movie under consideration based on a              

variety of factors that may include history, interests etc.  

The mentioned model is built to serve the purpose of proving that with surprise,              

building models are very simple and also to provide an example of a bad algorithm               

that should be steered clear of. By mindlessly returning 0 regardless on what userId              

and movieId is being tested, we achieve the most deviation from the observed ratings              

providing us with an abysmal RMSE of 2.7690 and MAE of 2.5299 as expected 

So to summarize, in order to build algorithms in surprise, a dataset must be loaded,               

implement the algorithm / use built-in ones and then it gives the error estimates. In               

case, the need arises to test our own model, one must rst implement the t and                

estimate methods. The t method is called once on the training set and the estimate               

method is called for every row of the test set and expects the predicted rating for                

given user id (u) and item id (i) taken as parameters. (Reminisce that the data set is                 

organized into User Id, Movie Id, Rating and Time Stamp) Now once we get this out                

of the way, we can continue on our road of experimenting with various other simple               

ideas slowly progressing in difficulty and improving the accuracy.  
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First we try to find the RMSE and MAE in two cases, when we return the mean of all                   

the ratings and when we randomly return an acceptable value 

Table 4.4  How accurate is returning the mean of all ratings or returning a random 

value  

Algorithm RMSE MAE 

Mean of all ratings 1.1257  0.9447  

A random rating  value(1-5) 1.8869  1.5129 

 

4.2.3 Age-based Clustering 

Here, classification of people is done according to their age into certain age groups              

and try to ascertain the rating they would provide to a particular movie based on the                

cluster in which they belong. Some Exploratory Data Analysis on the data reveals that              

the youngest person in the data set is 7 years old and the oldest person is 73 years old.                   

Based on this, the age groups that are identied are 7-17, 18-29, 30-40, 41-50, 51-60               

and 61-73. The reasoning behind this approach is the idea that few movies are              

targeted towards certain age groups, taking the average of the ratings of other users in               

a similar age group for a particular movie, the ratings are computed. However, it must               

be noted that this isn’t a foolproof method as an individual’s taste may differ f

rom the group/cluster allotted to him and few movies are marketed as being for all               

age groups or there may be a few outliers. It should also be kept in mind that after                  

analyzing the data, it is found that the most common rating users provided to a movie                

was 4. A few variations of this method were tried, one involving taking just the               

average of all ratings of users in the same cluster as the one to be predicted                

irrespective of the rating as in if the rating of a user is to be predicted who happens to                   

fall in cluster 3 (30-40), the average of all ratings in that age group is returned. The                 

second method takes into consideration the movie too, as in if we are trying to predict                

the rating a user(u) would give to a movie(m) and the user lies in the group 2(18-29),                 

the average rating of movie m in that age group is returned. It should be noted that                 

these two algorithms from scratch to the best of our ability. 
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Code Snippet 

user= files_path+ ​'u.user' 
age = {}  

#Some EDA 

maximumAge = ​-1  
minimumAge = ​2​** ​15 
for ​ line ​in ​ open(user): 
    array = line.split(​'|' ​) 
    age[(int(array[ ​0 ​]) - ​1 ​)] = array[ ​1​] ​#age[userId] = age of 
that person 

    ​if​ int(array[ ​1 ​]) > maximumAge: 
        maximumAge = int(array[​1 ​]) 
    ​if​ int(array[ ​1 ​]) < minimumAge: 
        minimumAge = int(array[​1 ​]) 
print(​'The oldest person in the dataset is ' ​ , maximumAge , ​' 
years old' ​) 
print(​'The youngest person in the dataset is ' ​ , minimumAge , 
' years old' ​) 
 

#A short sample snippet deciding which people belong to 

particular clusters  

def ​ ​fit​(self, trainset): 
        AlgoBase.fit(self, trainset) 

        self.count+= ​1  
        ​if ​ self.count==​1 ​: 
            c = [(userId, movieId, rating) ​for ​ (userId, 
movieId, rating) ​in ​ self.trainset.all_ratings()] 
            ​for​ userId , movieId , rating ​in ​ c: 
                ageOfUser = age[userId]  

                ageInt = int(ageOfUser) 

                ​if ​ ageInt >= ​1 ​ ​and ​ ageInt <= ​6 ​: 
                    rateAge[ ​0 ​] = rateAge.get(​0 ​ , ​0 ​)+rating 
                    ratingCount[str( ​0 ​) +​" " ​+str(rating)] = 
ratingCount.get(str( ​0 ​) +​" " ​+str(rating) , ​0 ​)+ ​1 
                    countAge[ ​0​] = countAge.get( ​0 ​ , ​0 ​)+​1 
                ​elif ​ ageInt >=​7 ​ ​and ​ ageInt <= ​17​: 
                    rateAge[ ​1 ​] = rateAge.get(​1 ​ , ​0 ​)+rating 
                    ratingCount[str( ​1 ​) +​" " ​+str(rating)] = 
ratingCount.get(str( ​1 ​) +​" " ​+str(rating) , ​0 ​)+ ​1 
                    countAge[ ​1​] = countAge.get( ​1 ​ , ​0 ​)+​1 
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#Similar short sample snippet for classification - complete 

code not displayed 

def ​ ​estimate​(self, u, i): 
        ageInt = int(age[u]) 

        cluster = ​0  
        self.count2+= ​1 
  

        ​#Cluster Finding Code here (not shown) 
        Rating = rateAge.get(cluster)/countAge.get(cluster) 

  

        ratings = [ ​"1"​ , ​"2" ​ , ​"3" ​ , ​"4"​ , ​"5" ​] 
        estimatedRating = Rating 

        maxCount = ​-1 
        ​for ​ rating ​in ​ ratings: 
            key = str(cluster)+​" " ​+str(float(rating)) 
            ​if​ ratingCount.get(key , ​0​) > maxCount: 
                maxCount = ratingCount.get(key, ​0 ​) 
                estimatedRating = int(rating) 

        prob = random.randint(​0 ​ , ​1 ​) 
        ​if ​ prob==​0 ​ ​or ​ prob==​1 ​: ​#50% of the time , by making 
this 100% , RMSE becomes 1.21 but MAE is 0.89 always  

            ​return​ estimatedRating 
        ​else ​: 
            ​return​ Rating 

 

Here, the above code shows the general idea of the described approach. By splitting              

people according to their age groups, an attempt was made to find similar users in the                

target user’s age group with similar interests in order to recommend relevant movies.  

The approaches tried included trying out the age-metric alone, supplementing the age            

data with the movie information and trying to return the most common rating within a               

given cluster. 
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Table 4.5: Analysis of clustering algorithms based on age  

Technique RMSE MAE 

Age-Based 1.254  0.9436  

Age-Based along with movie 1.26 1.00 

Most common rating 1.2199  0.8942 

 

4.2.4 Genre Based Recommendation 

In accordance with the movie lens dataset, the movies.csv file provides movie id,             

movie name and genres of the movie. The user’s previous ratings on the movies are               

grouped into three groups i.e. ratings 3, 4 and 5 respectively.  

Code Snippet 

rating3 = {} 

rating4 = {} 

rating5 = {} 

r3=training_set[training_set[ ​2​]== ​3 ​] 
r4=training_set[training_set[ ​2​]== ​4 ​] 
r5=training_set[training_set[ ​2​]== ​5 ​] 
# Rating 3 

for ​ i ​in ​ range(len(r3)): 
    movieid = r3.iloc[i,​1 ​] 
    userid = r3.iloc[i,​0 ​] 
    ​try​: 
        ​if ​ movieid <= len(movies): 
            genres = movies.loc[movieid,​2 ​].split(​'|' ​) 
            ​for​ genre ​in ​ genres: 
                ​if ​ (userid,genre) ​in ​ rating3: 
                    rating3[(userid,genre)] += ​1 
                ​else ​: 
                    rating3[(userid,genre)] = ​1 
    ​except​: 
        ​pass 
# Similarly for rating 4 and 5 
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To predict how the user would rate an unprecedented movie, the genres of the movies               

the user rated previously is stored and the frequency of each genre occurring in each               

group is calculated. For instance, if the user rated 5 for Action movies 10 times, rated                

4 three times, then the user is most likely to rate the action movie 5 again.                

Considering the genres comprised in a movie, the mean of ratings cohering with the              

frequency is computed. The error metrics evidently proves a decent score for a genre              

based proposed approach. 

Table 4.6: Analysis of genre based clustering  

Technique RMSE MAE 

Genre 1.45199 1.14648 

Genre with supplemented rating 1.24133 0.90754 

 

4.2.5 Cosine Similarity 

Cosine similarity is a metric that is generally used to determine how similar             

documents are based on their content. Formally, it is a measure of similarity between              

two non-zero vectors of an inner product space. 

Code Snippet 

from ​ sklearn.feature_extraction.text ​import​ TfidfVectorizer 
 

tfidfObj = TfidfVectorizer(stop_words=​'english' ​) 
movies[​'overview' ​] = movies[ ​'overview'​].fillna( ​'' ​) 
tfidf_matrix = tfidfObj.fit_transform(movies[ ​'overview'​]) 
 

from ​ sklearn.metrics.pairwise ​import ​ linear_kernel 
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix) 

indices = pd.Series(movies.index, 

index=movies[ ​'title'​]).drop_duplicates() 

 

The simplest form of a cosine similarity metric is described above. In this code,              

similar movies are recommended to the users on the basis of how similar their plot               
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vectors are. This could be made more intuitive by using the features of the movie like                

Director , Actor , Genre etc as shown in the sample (not complete code) below: 

Code Snippet 

from ​ ast ​import​ literal_eval 
 

features = [ ​'cast'​, ​'crew'​ , ​'keywords'​ , ​'genres'​] ​#First 
two are in one dataset 

movies[​'cast' ​] = credz[​'cast' ​].apply(literal_eval) 
movies[​'crew' ​] = credz[​'crew' ​].apply(literal_eval) 
 

import​ numpy ​as​ np 
def ​ ​get_director​(x): 
    ​for​ i ​in ​ x: 
        ​if ​ i[ ​'job'​]== ​'Director'​: 
            ​return​ i[ ​'name'​] 
    ​return​ np.nan 
#Trying to add more weight to the director or a specific 

feature 

def ​ ​weighted_feature​(x , feature=​'director' ​ , times= ​100​): 
    feature_list = [ ​'keywords'​ , ​'cast'​ , ​'director' ​ , 
'genres'​] 
    string = ​' ' 
    ​for​ feat ​in​ feature_list: 
        ​if ​ feat!=feature: 
            string+= ​' '​.join(x[feat])+​' ' 
        ​else ​: 
            ​for​ j ​in ​ range(times): 
                string+=​'' ​.join(x[feat])+​' ' 
                ​#print(string) 
    string.rstrip() 

    ​return​ string 
movies[​'weighted_director1' ​] = movies.apply(weighted_feature 
, axis=​1 ​) 

 

The idea behind this is that we can use a combination of different features to guide                

our recommendations, not only plot and to provide more weight to a certain feature,              

we use the weighted_feature function which operates by appending the specified           
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feature given number of times to the feature string. This works because instead of              

plot, our target feature string is now a space delimited concatenated string containing             

data like director, actor, genre, etc. By appending one string many times to that string,               

the relative importance of that particular feature is increased. 

This is all done on the TMDB-5000 data set provided by Kaggle. But this helps us for                 

content-based filtering. In order to utilise this approach for collaborative filtering, we            

need to modify it a bit. 

A sort of hybrid approach is utilized by including two data sets - The Kaggle TMDB                

replacement dataset which has information regarding 5000 movies and the existing           

MovieLens data set. Cosine similarity measures were used in order to identify similar             

movies based on how similar the plot vectors of two movies are providing more              

weight to the "director" factor thereby getting movies with similar plot along with             

good movies from the same director. Apart from this a different similarity measure             

was also tried where the metric of comparison wasn’t weighted in terms of director              

but rather was considered to be a mixture of actors , genre and plot. 

So our idea involved fetching similar movies (in the other data set) to the one we’re                

currently trying to predict (in MovieLens) and our estimated predicted was the            

weighted average of these 

Table 4.7: Evaluation of Cosine Similarity for Collaborative Filtering 

Metric RMSE MAE 

Similarity of Plot (giving 

director weight) 

1.2323 0.9433 

Mixture of plot , genres , 

actors etc.  

1.2208  0.9355 
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4.2.6 k-Nearest Neighbors 

This machine learning algorithm is used to nd clusters of similar users based on              

common movie ratings, and make predictions using the average rating of top-k            

nearest neighbors. Using the MovieLens 2M dataset from GroupLens, a ratings           

matrix is constructed, with the matrix having one row for each movie and one column               

for each user. Then, the k items that have the most similar user engagement vectors               

are found. This algorithm uses Brute force implementation to compute the nearest            

neighbors and cosine metric to calculate the cosine similarity between rating vectors.  

Code Snippet 

from ​ sklearn.neighbors ​import ​ NearestNeighbors model_ 
knn = NearestNeighbors(metric = ​'cosine'​, algorithm = 
'brute'​) 
model_knn.fit(user_rating_matrix) 

 

Next, the closeness of instances are determined by calculating the distance. Then the             

algorithm classies an instance by nding its nearest neighbors, and picks the most             

popular class among the neighbors.  

Code Snippet 

query_index = np.random.choice(user_rating_pivot.shape[​0 ​]) 
distances, indices = model_knn.kneighbors(user_rating_pivot. 

iloc[query_index,:].values.reshape( ​1 ​,−​1 ​), n_neighbors = ​6 ​) 
for ​ i ​in ​ range(​0 ​, len(distances.flatten())): 
if ​ i == ​0 ​: 
print(​'Recommendations for {0}:\n' ​.format( 
user_rating_pivot.index[query_index])) 

else ​: 
print(​'{0}: {1}, with distance of {2}:' ​ .format(i, 
user_rating_pivot.index[indices.flatten()[i]], 

distances.flatten()[i] 
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4.2.7 Support Vector Decomposition 

Inspiration was drawn from Nicolas’ article[22] on matrix factorization for this           

section and an attempt was made to implement SVD from scratch with stochastic             

gradient descent for optimization. The problem involves nding the two matrices (p ,             

q) whose product gives us the rating matrix (R). To this end the equation(1) has to be                 

minimised. 

                                                 ------------------------------- (1) 

The vector p(u) is used to represent the affinity of the user towards the latent factors.                

If the factors are Action, Romance, Horror and let’s say a particular user (say, Raul)               

is prone to those factors. In other words, an effort is being made to decompose the                

user as 10% , 30% , 60% etc. which means that this user particularly likes Horror.  

The vector q(i) is used to represent the affinity of the items towards these same latent                

factors. For example if the example of movie “Shining” is considered with respect to              

the factors like Comedy, Action, Horror , the matrix might be like 0% , 10% , 80%                 

indicating that this particular movie has an affinity for Horror. 

Now if an estimation of Raul’s rating for “Shining” was needed to be made, the               

product of the two matrices is necessary to be found but here it is reasonable to                

assume that he would provide a high rating for this movie. 

Gradient Descent is used as an optimisation technique used to minimise a given             

function by iteratively moving in the direction of steepest descent (-ve gradient) 

In this case , p(u) denotes the row vector of the matrix p and q(i) denotes the column                  

matrix at position i. Assuming a stochastic gradient descent approach to minimize the             

above expression by starting with random values for p and q and for a given number                

of epochs updating those parameters by subtracting the product of the derivative and             

learning rate. One of the dening characteristics of the rating matrix is that it is most                

of the time sparse. We assume that SVD will help identify the latent factors and the                

corresponding strength of each factor (In a simple sense in the case of movies, it can                

be stated as how much a user is prone to some factors like action, comedy etc and                 
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how much the strength of that factor is in each movie in the dataset. Thus, the                

multiplication of the two factored matrices would provide a way of constructing back             

the matrix and guessing the values which is not known). 

 

Code Snippet 

#Inspired by Nicolas Hug's Blog 

from ​ surprise ​import ​ Dataset 
from ​ surprise.model_selection ​import ​ cross_validate 
from ​ surprise ​import ​ AlgoBase 
import​ random 
import​ numpy ​as​ np 
 

class ​ ​SVDIn ​(AlgoBase): 
    p =  [] 

    q =  [] 

    c = ​0  
    est = ​4 
    learningRate = ​0.001 
    noOfFactors = ​10 
    ​def​ ​__init__​(self , learningRate=learningRate , 
noOfFactors=noOfFactors): 

        AlgoBase.__init__(self) 

        self.learningRate = learningRate  

        self.noOfFactors = noOfFactors 

  

    ​def​ ​fit ​(self, trainset): 
        AlgoBase.fit(self, trainset) 

        self.trainset = trainset 

        p = np.random.normal( ​0​ ,  ​0.1 ​ , 
(self.trainset.n_users, self.noOfFactors)) ​#Normal 
distribution pick 

        q = np.random.normal( ​0​ , ​0.1 ​ , (self.trainset.n_items 
, self.noOfFactors)) 

        self.c+=​1 
        ​if ​(self.c== ​1 ​): 
            print(len(q) , len(q[ ​0 ​]) , len(p)  , len(p[​0 ​])) 
        ​for ​ epoch ​in ​ range(​15 ​): 
            ​for​ u, i, rating ​in​ trainset.all_ratings(): 
                estimatedRating = np.dot(p[u] , q[i]) 
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                self.c+=​1 
                ​if ​(self.c== ​2 ​): 
                    print(p[u]) 

                    print(q[i]) 

                error = rating - estimatedRating 

                p[u]+=self.learningRate * error * q[i] 

                q[i]+=self.learningRate * error * p[u] 

        self.p = p  

        self.q = q 

        ​return​ self 
  

    ​def​ ​estimate​(self, u, i): ​#Have to predict rating 
        ​if ​ self.trainset.knows_user(u) ​and 
self.trainset.knows_item(i): 

            ​return​ np.dot(self.p[u] , self.q[i]) 
        ​else ​: 
            ​return​ self.est   ​#Or Global Mean 
data = Dataset.load_builtin( ​'ml-100k' ​) 
algo = SVDIn() 

cross_validate(algo, data, cv = ​5 ​ , verbose= ​True​) 

 

The main SVD part takes up less than 15 lines of the above snippet. It should be                 

noted this simple attempt at SVD performs well enough to beat some of the built-in               

algorithms reaffirming the strength of matrix based factorization models. 

Table 4.8: Evaluation for various number of latent factors  

No. of factors RMSE MAE 

10 0.9598  0.7521  

15 0.9600  0.7534 

20 0.9587 0.7522 

50 0.9696  0.7614 

100 0.9807  0.7696 
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In the above experiments, learning rate was xed to 0.01 and the number of epochs               

were 10, now the error estimates are calculated if factors are 20 and learning rate is                

slowly varied.  

Table 4.9: Error estimates for varying learning rates  

Learning Rate RMSE MAE 

0.001 1.5000  1.1771  

0.01 0.9602  0.7501  

0.02 1.0000  0.7776 

 

This takes a large amount of time if the number of epochs are very large as it is                  

implemented in the t method and for each iteration the entire training set is              

processed. Large nudges to the learning rate are avoided so as to prevent overshooting              

the minima. The best learning rate seems to be 0.01. 

4.2.8 Neural Networks / Auto Encoders 

An autoencoder is a specialised type of Artificial Neural Network, typically used for             

dimensionality reduction that tries to learn efficient encodings for the input. There are             

various kinds like Sparse, De-Noising , Stacked , Contractive etc. [21] 

The main part of the code is described below: 

class ​ ​StackedAutoencoders ​(nn.Module): 
    ​def​ ​__init__​(self ,  ): 
        super(StackedAutoencoders , self).__init__() 

        self.firstConn = nn.Linear(noOfMovies , ​20 ​) 
        self.secondConn = nn.Linear( ​20​ , ​10 ​) 
        self.thirdConn = nn.Linear( ​10 ​ , ​20 ​) 
        self.fourthConn = nn.Linear( ​20​ , noOfMovies) 
        self.act = nn.Sigmoid()  

    ​def​ ​forward​(self , x): ​#Input 
        x = self.act(self.firstConn(x)) 

        x = self.act(self.secondConn(x)) 

        x = self.act(self.thirdConn(x)) 

        x = self.fourthConn(x) 
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        ​return​ x  
obj = StackedAutoencoders() 

criteria = nn.MSELoss() 

optimizer = optim.RMSprop(obj.parameters() , lr=​0.01 ​ , 
weight_decay= ​0.5​) ​#Learning Rate 
noOfepochs = ​300 
xd = ​0  
for ​ iteration ​in ​ range(​1 ​, noOfepochs+ ​1​): 
    trainLoss = ​0 
    noOfProper = ​0.0 
    ​for​ userId ​in ​ range(noOfUsers): 
        currentInput = 

Variable(trainSet[userId]).unsqueeze( ​0​) 
        target = currentInput.clone() 

        ​if ​ torch.sum(target.data > ​0 ​) > ​0 ​: 
            predictedRating = obj(currentInput) 

            target.require_grad = ​False 
            predictedRating[target == ​0 ​] = ​0 
            loss = criteria(predictedRating , target) 

            mean_correct = noOfMovies 

/float(torch.sum(target.data > ​0 ​) + ​1e-10​) 
            loss.backward() 

            trainLoss+= np.sqrt(loss.data * mean_correct) 

  

            noOfProper+=​1.0 
            optimizer.step() 

    print( ​'Iteration : '​+str(iteration) + ​' 
loss:'​+str(trainLoss / noOfProper)) 

 

Using the existing les in the movie lens data set for cross validation (u1.base,              

u1.test, .... u5.base, u5.test), a stacked autoencoder with pytorch is constructed and            

trained on the u4.base and tested on u4.test. Running the SVD built-in on the              

mentioned les we get an RMSE of 0.9337. The auto-encoder results are as follows: 
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Table 4.10: Neural Network Evaluation using RMSprop as optimiser 

No. of Epochs RMSE 

50 0.9754  

100 0.9409 

150 0.9419  

200 0.9450  

We have tried to use other optimisers like Adagrad and SGD but RMSprop seems to               

give us the best output with the least hassle. 

4.2.9 Restricted Boltzmann Machine 

Restricted Boltzmann Machine (RBM) is a probabilistic graphical articial neural          

network model that learns from probability distribution over a set of inputs. ​RBMs             

are a variant of Boltzmann machin ​es​, with the restriction that their neurons must form              

a bipartite graph: a pair of nodes from each of the two groups of units (commonly                

referred to as the "visible" and "hidden" units respectively) may have a symmetric             

connection between them; and there are no connections between nodes within a            

group. By contrast, "unrestricted" Boltzmann machines may have connections         

between hidden units. This restriction allows for more efficient training algorithms           

than are available for the general class of Boltzmann machines, in particular the             

gradient-based contrastive divergence algorithm. 

This algorithm uses the movie lens 100k ratings dataset and is trained and tested on               

the train-test splits (u1.base, u1.test, ...., u5.base, u5.test) The algorithm performs           

binary classication i.e., if user likes the movie it returns 1 else 0. The ratings dataset                

is pre-processed to achieve a matrix having users as rows and movies as columns. If               

the movie is rated below 3, it implies the user didn’t enjoy the movie but if he/she                 

rated 3 and above they enjoyed it. So ratings of 1 and 2 are made 0 in the matrix                   

while the ratings 3, 4 and 5 are given 1. Note that a rating of -1 is used if the user                     

hasn’t rated the movie. 
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Code Snippet  

class ​ ​RBM ​(): 
    ​def​ ​__init__​(self, nv, nh): 
        self.W = torch.randn(nh, nv) 

        self.a = torch.randn( ​1​, nh) 
        self.b = torch.randn( ​1​, nv) 
    ​def​ ​sample_h​(self, x): 
        wx = torch.mm(x , self.W.t()) 

        activation = wx + self.a.expand_as(wx) 

        p_h_given_v = torch.sigmoid(activation) 

        ​return​ p_h_given_v, torch.bernoulli(p_h_given_v) 
    ​def​ ​sample_v​(self, y): 
        wy = torch.mm(y , self.W) 

        activation = wy + self.b.expand_as(wy) 

        p_v_given_h = torch.sigmoid(activation) 

        ​return​ p_v_given_h, torch.bernoulli(p_v_given_h) 
    ​def​ ​train ​(self, v0,  vk, ph0, phk): 
        self.W += (torch.mm(v0.t(), ph0) - torch.mm(vk.t(), 

phk)).t()  

        self.b += torch.sum((v0 - vk), ​0 ​) 
        self.a += torch.sum((ph0 - phk), ​0 ​) 

 

This class is used to sample the hidden and visible nodes using Gibbs sampling              

technique. Pytorch libraries have been used for sampling probability distributions. K           

step contrastive divergence is performed to minimize the overall cost function.           

Computing gradients are computationally expensive and hence techniques like         

Contrastive Divergence have been employed to approximate the likelihood gradient.          

Training has been done for various epochs on u5 train-test splits as seen in the results                

below: 

Table 4.11: RBM evaluation on different number of epochs  

No. of Epochs RMSE MAE 

10 0.41866  0.23041  

20 0.41144 0.22523  

50 0.40545  0.22369 
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75 0.40373 0.21915  

100 0.41502 0.23174 

 

75 epochs seem to be giving the best results overall. Now we try to tweak the batch                 

size which determines for how many input rows supplied to the neural network, the              

weights and bias get updated.  

Table 4.12: RBM evaluation on various batch sizes 

Batch Size RMSE MAE 

1 0.44339  0.25367  

10 0.43074  0.24167  

20 0.42073  0.23402  

50 0.41354  0.22840  

75 0.41669 0.22786 

100 0.41304 0.22756  

200 0.41952  0.23083 

 

Batch size of 100 works well to produce the best results as seen. From the results it                 

can be concluded that 75% of the times i.e. 3 out of 4 times given a movie, the                  

algorithm is able to predict whether the user will like the movie or not. This algorithm                

nds correlations purely based on user ratings. Hence, it can be used as a good               

ltering technique on some other base algorithms like auto encoders etc where we             

curate a list of movies for the user and further sift out the movies the user will enjoy                  

and recommend them. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

This is a summary of the approaches that is used and the error metrics associated. 

Table 5.1: Overall Results 

Approach RMSE MAE 

Mean 1.1257 0.9447 

Random 1.8869 1.5129 

Age Cluster 1.2199 0.8942 

Genre Cluster 1.2413 0.9075 

Cosine Similarity 1.2208 0.9355 

SVD 0.9587 0.7522 

Auto encoders 0.9409 - 

Restricted Boltzmann 
Machine 

0.4037 0.2191 

 

The best values for each algorithm have been noted. Each algorithm has been run on               

the dataset multiple times, each time changing some parameters in order to report the              

best findings. 

RBM gives the least error values however RBM doesn’t fully qualify as a             

recommendation algorithm in the implementation done. It classifies whether the user           

would like a movie or not (binary prediction). The future scope of this algorithm              

would be to predict ratings 1 through 5 like other neural network models (eg:              

auto-encoders). 

The best approaches for recommendation systems from our results are SVD , RBM             

and Auto Encoders (AE was run on u5 base, test of the cross validation set for                

MovieLens). These approaches seem to be the best chance at rivalling the best             
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algorithms of the surprise library. However, out-classing those algorithms is still very            

much a task in progress. 

Restaurant recommendations using content based approaches gave commendable        

results however, in the absence of an evaluation metric like RMSE or MAE, it cannot               

be compared with predefined results. Instead, considering offline evaluation is a           

viable option for evaluation.  

Till here, the approaches proposed have been compared to baseline/standard models           

in the field. Now, it is time to look at how these fare when compared to the best                  

methods. [14] 

A quick search on the internet reveals that the best RMSE achieved on the MovieLens               

100K dataset seems to be 0.905 followed  by approaches achieving 0.929 and 0.945 

The best approach [15] is based around Graph Convolutional Matrix Completion           

which deals with recommender systems as a problem of link prediction in graphs.             

Based on the recent progress in deep learning on graphs, the authors propose a graph               

based AE (Auto-Encoder) Structure based on differential message passing. The          

authors claim that if supplementary information or structured data (social network) is            

provided to their models, it beats almost all state of the art models. They approach the                

problem by representing the movie data as a bipartite graph between user and items              

with edges having the value of rating. 

Another approach[16] boasting the same RMSE of 0.905 does not make use of extra              

information unlike the previous method. The paper deals with inductive matrix           

completion. The authors state that most matrix factorization models- breaking down           

the matrix into the product of low-dimensional latent embeddings is transductive and            

cannot be generalized beyond the given training set and inorder to create inductive             

models, most people make use of additional information. The authors of the paper             

under discussion try to create an inductive state of the art recommendation model             

using only the data available by using a graph neural network (GNN) based on 1-hop               

subgraph pairs (user, item) and map these subgraphs to their ratings. They            

successfully implement this method and show that the inductive model they had            

trained on the MovieLens Dataset generalises very well and shows good results on the              
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Douban Dataset establishing the fact that the model can pick up user-item interactions             

it hasn’t seen before. 

The next approach[17] has an RMSE of 0.91 and is based on deep learning again to                

model the interaction between two sets. They state that the canonical representation of             

such interactions is a matrix with a property - permuting the rows or columns does not                

change the meaning of the encoding (exchangeability). They propose that such           

models be Permutation-Equivariant - same predictions across such permutations. The          

authors propose a parameter-sharing scheme and prove that it cannot be more            

expressive without violating the previous condition and show that the system has            

good generalization (Model trained on movies gave good predictions for music etc) 

It should be noted that most of the approaches above either used Matrix Factorization              

methods or graphs and deep learning like Neural Networks , Auto encoders etc. The              

RMSE of our best approaches (SVD , RBM and AE) are not too far off from state of                  

the art models. 
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CHAPTER 6 

CONCLUSION 

An attempt has been made to study existing literature surveys and research papers to              

obtain knowledge about the various types of recommender systems, their uses, the            

algorithms implemented and the challenges faced in each of them. Using this            

knowledge, implementation of some of the known algorithms as well implementation           

of our own techniques was carried out. The errors obtained for each algorithm and              

approach have been documented extensively. 

Altogether, this paper has provided an elaborate overview to those entering the field             

of recommendation systems and arm them with more than sufficient intuition to select             

the best algorithm suited for their task. 

6.1 Future Scope  

One of the main goals moving forward is towards developing a recommendation            

algorithm that would decisively beat the existing baseline measures.  

Apart from that, a few ideas for future scrutinization include:  

1. Exploring the possibility of probing Genetic Algorithms for selecting         

population size and features and adopting at each iteration the sets with most             

potential. 

2. How to be more informed while predicting the rating of movies? Trying out             

ensemble algorithms, a mix of different algorithms taking the majority vote in            

case of a mismatch in case of collaborative and content filtering algorithms. 

3. Is it possible to recognize enough outliers (people who always give high            

ratings, people who like one type of movie, people who are swayed by trends)              

to radically change the performance accuracy? 

4. Explore the accuracy of graph based models. How to intelligently find similar            

users? Can giving weight to different parameters play a role?  
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