
VISVESVARAYA TECHNOLOGICAL UNIVERSITY

Jnana Sangama, Belgaum-590018

A PROJECT REPORT (15CSS86)

on

“A Concise Study on Personalized Recommender Systems”

Submitted in Partial fulfillment of the Requirements for the VIII Semester of the Degree of

Bachelor of Engineering In

Computer Science & Engineering

By

AJAY M (1CR16CS011)

ANISHA RAO (1CR16CS019)

ATHREYA UPPILI (1CR16CS030)

CHAITHRA K K (1CR16CS036)

Under the Guidance of

Mrs. Poonam Vijay Tijare

Assistant Professor,

Dept. of CSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR INSTITUTE OF TECHNOLOGY

#132, AECS LAYOUT, IT PARK ROAD, KUNDALAHALLI, BANGALORE-560037

CMR INSTITUTE OF TECHNOLOGY

#132, AECS LAYOUT, IT PARK ROAD, KUNDALAHALLI,

BANGALORE-560037

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

Certified that the project work entitled “A Concise Study on Personalized Recommender

Systems” carried out by Mr. Ajay M, USN 1CR16CS011, Ms. Anisha Rao, USN

1CR16CS019, Mr. Athreya Uppili, USN 1CR16CS030, Ms. Chaithra K K, USN

1CR16CS036, bonafide students of CMR Institute of Technology, in partial fulfillment for the

award of Bachelor of Engineering in Computer Science and Engineering of the Visvesvaraya

Technological University, Belgaum during the year 2019-2020. It is certified that all

corrections/suggestions indicated for Internal Assessment have been incorporated in the Report

deposited in the departmental library. The project report has been approved as it satisfies the

academic requirements in respect of Project work prescribed for the said Degree.

Mrs. Poonam Vijay Tijare

Assistant Professor

Dept. of CSE, CMRIT

Dr. Prem Kumar Ramesh

Professor & Head

Dept. of CSE, CMRIT

Dr. Sanjay Jain

Principal

CMRIT

 DECLARATION

We, the students of Computer Science and Engineering, CMR Institute of Technology, Bangalore

declare that the work entitled "A Concise Study on Personalized Recommender Systems" has

been successfully completed under the guidance of Prof. Poonam Vijay Tijare, Computer Science

and Engineering Department, CMR Institute of technology, Bangalore. This dissertation work is

submitted in partial fulfillment of the requirements for the award of Degree of Bachelor of

Engineering in Computer Science and Engineering during the academic year 2019 - 2020. Further

the matter embodied in the project report has not been submitted previously by anybody for the

award of any degree or diploma to any university.

Place:

Date:

Team members:

AJAY M (1CR16SCS011) __________________

ANISHA RAO (1CR16SCS019) __________________

ATHREYA UPPILI (1CR16SCS030) __________________

CHAITHRA K K (1CR16SCS036) __________________

iii

ABSTRACT

Recommender systems are tools for interacting with large and complex information spaces. They

are a type of information gathering/analysis system that aims to predict the rating that a particular

user will give to an item. The main goal of such systems is to efficiently recommend relevant items

of interest to their audience for prolonged interaction with the product and maximizing user

satisfaction. They are mainly used in commercial applications, some highly popular examples

being Netflix, Amazon etc. Recommender systems research has incorporated a wide variety of

artificial intelligence techniques such as machine learning, data mining, user modeling, case-based

reasoning, constraint satisfaction, etc. This project aims to provide a descriptive overview of the

different types of recommender systems, their uses and the algorithms present in the field. We

attempt to implement some of the algorithms and document the errors results and the conclusions

we have observed.

iv

ACKNOWLEDGEMENT

We take this opportunity to express our sincere gratitude and respect to CMR Institute of

Technology, Bengaluru for providing us a platform to pursue our studies and carry out our final

year project.

We have great pleasure in expressing our deep sense of gratitude to Dr. Sanjay Jain,

Principal, CMRIT, Bangalore, for his constant encouragement.

We would like to thank Dr. Prem Kumar Ramesh, Professor and Head, Department of

Computer Science and Engineering, CMRIT, Bangalore, who has been a constant support and

encouragement throughout the course of this project.

We consider it a privilege and honor to express our sincere gratitude to our guide

Mrs. Poonam Vijay Tijare, Assistant Professor, Department of Computer Science and

Engineering, for the valuable guidance throughout the tenure of this review.

We also extend our thanks to all the faculty of Computer Science and Engineering who

directly or indirectly encouraged us.

Finally, we would like to thank our parents and friends for all their moral support they

have given us during the completion of this work.

v

TABLE OF CONTENTS

PAGE NO.

Certificate ii

Declaration iii

Abstract iv

Acknowledgement v

Table of contents vi

List of Figures viii

List of Tables xi

1. INTRODUCTION

1.1. Relevance of the project

1.2. Scope of Project

1.3. Approaches

1.4. Datasets Used

1.5. Challenges faced by recommender systems

1

3

4

4

6

7

2. LITERATURE SURVEY

2.1. Jiang Zhang, Yufeng Wang, Zhiyuan Yuan, and Qun Jin -

Personalized Real-Time Movie Recommendation System: Practical

Prototype and Evaluation – 2020

2.2. Khamphaphone Xinchanang, Phonexay Vilakone, and Doo-Soon

Park - Movie Recommendation Algorithm using Social Network

Analysis to alleviate Cold-Start problem – 2019

2.3. Md. Akter Hossain, Mohammed nazim uddin - A Neural Engine for

Movie Recommendation System – 2019

2.4. Rahul Katarya, Om Prakash Varma - An effective collaborative

movie recommender system with cuckoo search – 2017

2.5. Alif Azhar Fakhri, Z K A Baizal and Erwin Budi Setiawan -

Restaurant Recommender System Using User-Based Collaborative

Filtering Approach: A Case Study at Bandung Raya Region – 2019

2.6. Bhagyashree Basudkar, Shruti Bagayatkar, Meghana Chopade,

Sachin Darekar - Restaurant Recommendation System Using

Customer’s Data Analysis – 2018

8

8

8

9

9

10

10

2.7. Ravinarayana A, Pooja M C and K Raghuveer - Using Clustered

Database for Food Recommendation System – 2016

2.8. Sumedh Sawant and Gina Pai - Yelp Food Recommendation

Challenge - 2013

11

11

3. SYSTEM REQUIREMENTS SPECIFICATION

3.1. Functional Requirements

3.2. Non-Functional Requirements

3.3. Hardware Requirements

3.4. Software Requirements

13

13

13

13

14

4. IMPLEMENTATION

4.1. Restaurant Recommendations

4.1.1. Content Based Approach using Cosine Similarity

4.1.2. kNN Item Based Collaborative Filtering

4.2. Movie Recommendation

4.2.1. Built-in Algorithms

4.2.2. Mean and Random Measures

4.2.3. Age-based Clustering

4.2.4. Genre-based Recommendation

4.2.5. Cosine Similarity

4.2.6. K-Nearest Neighbors

4.2.7. Support Vector Decomposition

4.2.8. Neural Networks / Auto Encoders

4.2.9. Restricted Boltzmann Machine

15

15

15

18

20

20

21

23

26

27

30

31

34

36

5. RESULTS AND DISCUSSION 39

6. CONCLUSION

6.1. Future Scope

42

42

REFERENCES 43

vii

LIST OF FIGURES

TITLE PAGE NO.

Fig 1.1 Types of Recommender Systems 2

viii

LIST OF TABLES

ix

TITLE PAGE NO.

Table 1.1: Summary of Various Approaches 5

Table 1.2: A summary of data sets typically used for recommendation

systems
6

Table 4.1: Restaurant Recommendation Using Content Based Approach

using Location
17

Table 4.2: Evaluating RMSE, MAE of algorithm KNNBasic on 2 splits 19

Table 4.3: Evaluation results of Built-in algorithms 21

Table 4.4: How accurate is returning the mean of all ratings or returning

a random value
23

Table 4.5: Analysis of clustering algorithms based on age 26

Table 4.6: Analysis of genre based clustering 27

Table 4.7: Evaluation of Cosine Similarity for Collaborative Filtering 29

Table 4.8: Evaluation for various number of latent factors 33

Table 4.9: Error estimates for varying learning rates 34

Table 4.10: Neural Network Evaluation using RMSprop as optimizer 36

Table 4.11: RBM evaluation on different number of epochs 37

Table 4.12: RBM evaluation on various batch sizes 38

Table 5.1: Overall Results 39

A Concise Study on Personalized Recommender Systems

CHAPTER 1

INTRODUCTION

People rely on technology in almost every aspect of their lives. With the

overload of information over the recent years, recommender systems have grown to

become an important part of people’s everyday lives. Online platforms are an

absolute essential in this digital age. Increasing the utility of recommendation systems

on these platforms has increased user interaction and is also a cost effective method

of the same. Consumers expect a personalized experience and sophisticated

recommendation systems to find relevant products and content, all to save consumers

time and money[1]. Recommendation technologies are widely used to help people

identify relevant products or services or information. YouTube, Amazon, Netflix and

many other such web services are the famously known recommendation systems. The

system is capable of suggesting a set of items to the users and recommending top

items to the user. People are always provided with too many options to choose from,

the recommendation system focuses on the user’s best interest and suggests the best

options by learning from the users.

There are several algorithms that have been developed over time to help

improve the efficiency of these systems. Systems mainly can be categorized into

Content Based and Collaborative-Filtering based.

Content Based Filtering

Content based recommender systems aim mainly to recommend items based

on their similarity metrics. For example, in a movie recommender system where a

user has recently seen a movie of horror genre, a simple content based system might

recommend similar horror movies or movies by the same director or having the same

actors etc. There are various measures available to compare and compute the

similarity of two items including but not limited to cosine similarity, Pearson’s

coefficient, distance.

Dept of CSE, CMRIT 2019-2020 Page 1

A Concise Study on Personalized Recommender Systems

Collaborative Filtering

Collaborative Filtering deals with a user-item matrix in most cases and tries to

compute the rating that a particular user will give to an item he has not yet interacted

with. One way to do this can be to find other users with similar tastes to the user

who’s rating we are trying to predict and take a weighted average of those ratings.

Till now our discussion was focused on explicit ratings, i.e. the ratings take on

numbers or values in a given domain. There is also the existence of implicit ratings,

which can take the form of whether the intended user has viewed, clicked or seen a

particular item rather than explicitly providing a rating.

Fig 1.1 Types of Recommender Systems [2]

Dept of CSE, CMRIT 2019-2020 Page 2

A Concise Study on Personalized Recommender Systems

1.1 Relevance Of The Project

Recommender systems are still of prime importance today through their ability to

provide a high return on investment when used wisely.

● By providing better recommendations, the time a user spends on a site is

maximised thereby directly improving the cart value and helping users to “buy” more.

● Maximises the engagement and satisfaction of the user.

● Unlike other applications that degrade with time, recommender systems

have a high retention rate which implies they perform better over time as they have a

larger subsection of data to operate upon.

● Timely recommendations (for say, medical items or research papers) can

help save a lot of time and increase productivity.

As stated above the advantages go on and on. We as humans always tend to be

choosy be it movies, food etc. It all boils down to personal preference and that is

exactly where recommender systems scintillate. These systems generate user profiles

by learning the user’s preferences, collaborates these preferences with other users

(Collaborative filtering) and runs various algorithms on these profiles as discussed in

the future sections. A detailed study on such a powerful concept helps understand the

behaviour of the users and tweak the algorithms accordingly. The ultimatum of

recommender systems to cater the best possible suggestions to the users to their

vacillating predilections.

Despite all these advantages, recommender systems are not without their fair share of

disadvantages. For example, there are no accurate solutions to certain problems that

plague it like cold start etc. and no “best algorithm” that improves accuracy as such. It

is a growing field with much research being carried out every single day to improve

it.

Dept of CSE, CMRIT 2019-2020 Page 3

A Concise Study on Personalized Recommender Systems

1.2 Scope of Project

Recommender Systems continue to be pivotal in machine learning and serve an

important role in commercial applications. One of the reasons for widespread

popularity of websites such as Amazon, Netflix, BestBuy are the strength of their

recommender systems. Netflix had announced the 1-million-dollar prize for

collaborative – filtering algorithms that improved the accuracy over their benchmark

by a factor of 10%.

The business objective of recommender systems is to maximize user satisfaction. The

user’s satisfaction is not merely based on the accuracy of the predictions but on a

variety of other factors such as the novelty of the predictions and their usefulness.

There is no perfect solution to recommender systems in a field where extensive

research has been carried out. Even advanced techniques like autoencoders and

restricted Boltzmann machines do not yield the supreme results that would be

expected, mainly due to human factors and computing constraints.

There are also problems like the grey sheep, data sparsity and cold start issues and

that still need to be addressed completely.

1.3 Approaches

Below is a table containing brief summaries of the various approaches explored

during our research and also have implemented each of these approaches and

documented the error results and conclusions.

Dept of CSE, CMRIT 2019-2020 Page 4

A Concise Study on Personalized Recommender Systems

Table 1.1 Summary of Various Approaches

Name of Approach Description

Content Based Filtering User Specific Recommendations based on item’s
features. If a person liked a particular book, a
content based system might recommend others
of a similar plot/genre/type.

Collaborative Filtering Tries to recommend items by finding out what
similar users like.

kNN A distance metric that can be used to find out
near or “similar” movies given a database of
movies.
Can also be used to find similar users

Clustering The task of partitioning the data set into a few
groups such that the members in each group
have minimal differences or are most similar to
one another.
For example, k-means clustering tries to assign
points to clusters based on mean

Singular Value Decomposition It is a matrix structure used for recommendation
where rows represent users, columns represent
items and the value of the cells denote the ratings
that the users have given to those items. It is a
collaborative filtering technique that deals with
matrix factorization and helps in reducing the
number of dimensions.

Auto Encoders A type of Artificial Neural Network used to
learn efficient codings for the input data
typically for dimensionality reduction. It tries to
replicate the input as effectively as possible from
the learnt representation while trying to
minimise the error.

Restricted Boltzmann Machine Given a matrix of users across rows and their
ratings for movies across columns, it performs a
binary prediction whether the user would like a
movie or not. It would act as a sieve over other
ML algorithms to cater better recommendations.

Dept of CSE, CMRIT 2019-2020 Page 5

A Concise Study on Personalized Recommender Systems

1.4 Datasets Used

Table 1.2: A summary of data sets typically used for recommendation systems

Dataset Description

MovieLens[3] Collection of movie ratings. Comes in
1M,10M and 20M ratings. The largest

set uses 1.40.000 users and spans across
27000 movies.

Zomato Restaurants Data (Kaggle) All metadata-rating and location
information about restaurants fetched

via Zomato’s API.

Yelp Dataset (Kaggle) A subset of Yelp’s business, reviews
and user data. It was originally put

together for the Yelp Dataset Challenge
for students to conduct research or

analysis on Yelp’s data and share their
discoveries

Restaurant Data (Kaggle) This dataset was used for a study where
the task was to generate a top-n list of
restaurants according to the consumer

preferences.

Jester List of various jokes and their rating

Book Crossing A Book rating and metadata dataset

Last.fm Dataset for songs and includes the top
song in a playlist and the amount of
times that song has been listened to.

OpenStreetMap Contains map related data. Objects in
the dataset include roads, buildings,

points-of-interest, etc.

TMDB-5000
(Replacement by Kaggle)

Contains movie information relating to
the metadata and credits.

Dept of CSE, CMRIT 2019-2020 Page 6

A Concise Study on Personalized Recommender Systems

1.5 Challenges faced by recommender systems

Few of the challenges[4] that are faced by systems include:

1. Cold Start — This problem can occur when a new user enters the recommendation

system and the user's preferences are not known. This can be avoided by asking the

user to indicate his preferences or interests the first time he signs up for the service.

2. Grey Sheep — This takes place when one person's tastes differ from that of the

group thereby rendering the recommendations provided to him/her useless. The easy

way to avoid this is by perusing collaborative filtering systems that provide

recommendations based on the personal interests and profile of the user.

3. Synonymy — This problem can occur when two words or items have different

ways of expression, but they point to the same thing. For example, action movie and

action film mean the same but a rote learning or memory based approach to filtering

systems will not be able to capture this semantic similarity. By using methods like

SVD, this error can be averted.

4. Shilling attacks — This attack happens when a malicious user starts providing false

ratings intentionally in order to sabotage the system and lower the trustworthiness /

relevance of the items recommended. The remedy to this kind of attack involves

identifying prediction shift, hit ratio etc

5. Sparsity — As every user tends to rate a very small set of all the available movies

in the data set, most of the time the rating matrix is sparse, making it difficult in cases

where algorithms that recommend items based on a similarity metric are used as there

are few available ratings. Algorithms like SVD and some content based collaborative

algorithms can counter this effect.

Dept of CSE, CMRIT 2019-2020 Page 7

A Concise Study on Personalized Recommender Systems

CHAPTER 2

LITERATURE SURVEY

This chapter discusses the various research papers involving the same topic and

analyzes the approaches they used and the conclusions and accuracy results they

observed.

2.1 Jiang Zhang, Yufeng Wang , Zhiyuan Yuan, and Qun Jin - Personalized

Real-Time Movie Recommendation System: Practical Prototype and Evaluation

- 2020

Jiang Zhang et al. have presented a personalized real-time movie recommendation

system based on a CF algorithm called Weighted KM-Slope-VU. Firstly, a simple

but high-efficiency recommendation algorithm is proposed, which exploits users’

prole attributes to partition them into several clusters. For each cluster, a virtual

opinion leader is conceived to represent the whole cluster, such that the dimension of

the original user-item matrix can be signicantly reduced, then a Weighted Slope

One-VU method is designed and applied to the virtual opinion leader-item matrix to

obtain the recommendation results.

Weighted KM-Slope-VU, the popular K-means algorithm is chosen to cluster users,

for its simplicity and effectiveness. This method has significantly reduced the time

complexity, also achieving comparable recommendation performance. The proposed

method has achieved an average RMSE of 0.95062 and 0.94676 on 10K and 1M

datasets respectively.[5]

2.2 Khamphaphone Xinchanang, Phonexay Vilakone, and Doo-Soon Park -

Movie Recommendation Algorithm using Social Network Analysis to alleviate

Cold-Start problem - 2019

Khamphaphone Xinchanang et al. have developed a movie recommendation

algorithm using Social Network Analysis and collaborative filtering . This algorithm

uses personal information of users such as age, gender, and occupation to make a

relationship matrix between users, and the relationship matrix is applied to cluster

Dept of CSE, CMRIT 2019-2020 Page 8

A Concise Study on Personalized Recommender Systems

users by using community detection based on edge betweenness centrality. Then the

recommended system will suggest movies which were previously interested by users

in the group to new users.

The efficiency of the SNA and CF method is compared with the normal CF method,

kNN and CF method, and Density-based clustering method. The MAE was observed

to be very less(3.55) using the SNA and CF method when compared with the other

methods. But this value is a lot much when compared to the latest algorithms

developed by others. [6]

2.3 Md. Akter Hossain, Mohammed nazim uddin - A Neural Engine for Movie

Recommendation System - 2019

Md. Akter Hossain and Mohammed Nazim uddin proposed a Neural engine for movie

recommendation system(NERS). In this system(NERS), they have incorporated data

contents about the user's interests via a standard movie dataset that helps them make

a neural engine called neural recommender (NR). Firstly, they use a collective

dataset to predict movie outputs. Secondly, they developed explicit prediction models

for different types of movies. This model helped both, the system and user, the

flexibility to fetch information according to user expectations. Then, it uses two

different types of clustering algorithms for evaluating their approach : Silhouette and

DaviesBouldin measures and compares the performance with two proficient

estimators.

At last, three estimators, mean square error (MSE), mean absolute error (MAE) and

mean relative error (MRE), were exploiting to demonstrates prediction accuracy of

NERS approach The MAE, MSE and MRE was calculated to be 1.97, 4.75 and 6.06%

respectively which is quite a lot compared to many other approaches. [7]

2.4 Rahul Katarya, Om Prakash Varma - An effective collaborative movie

recommender system with cuckoo search - 2017

Rahul Katarya and Om Prakash Varma [8] developed a movie recommendation

system whose primary objective is to make suggestions through data clustering and

computational intelligence. It uses k-means clustering algorithm along with cuckoo

Dept of CSE, CMRIT 2019-2020 Page 9

A Concise Study on Personalized Recommender Systems

search optimization algorithm applied on the Movielens datasets. The clusters are

selected randomly at first then users are inspected one by one by calculating the

differences in their ratings and the centroid of the clusters, and if their difference is

smallest, then the user gets allocated to the cluster to which they are closest. Initially

the k-means clustering algorithm is applied to Movielens 100K dataset. Next cuckoo

search optimization algorithm is applied to the resultant of the k-means algorithm for

optimizing the results. This approach was able to provide an MAE of 0.754 and

RMSE of 1.266. [8]

2.5 Alif Azhar Fakhri, Z K A Baizal and Erwin Budi Setiawan - Restaurant

Recommender System Using User-Based Collaborative Filtering Approach: A

Case Study at Bandung Raya Region - 2019

Alif Azhar Fakhri, Z K A Baizal and Erwin Budi Setiawan proposed a

recommendation system that implements a user-based collaborative filtering

algorithm for recommending restaurants. If the user wants to find a restaurant

recommended by another user, then the system will search the neighbors who have

biggest similarity with that target user, The restaurants that have been given a rating

by neighbors will be recommended to target users who have not rated that restaurant.

Similarity to find the proximity between users is calculated using two stages: 1)

calculating the user similarity and 2) calculating the user attribute similarity. They

found an MAE of 1.492 for calculation without user attributes and 2.166 for

calculation with user attributes. Lesser the value of MAE, better the performance of

the system. Hence, the authors concluded that the recommender system performs

better without computing the user attribute similarity. [9]

2.6 Bhagyashree Basudkar, Shruti Bagayatkar, Meghana Chopade, Sachin

Darekar - Restaurant Recommendation System Using Customer’s Data Analysis

- 2018

Bhagyashree Basudkar, Shruti Bagayatkar, Meghana Chopadeand Sachin Darekar

attempt to understand, analyze and suggest restaurants to a particular user on the basis

of user behavior and the restaurant rankings using Zomato’s API. They have proposed

an android and web application that focuses on user’s behavior and generates

Dept of CSE, CMRIT 2019-2020 Page 10

A Concise Study on Personalized Recommender Systems

predictions based on the user’s location and the popularity of the restaurant by using

user ratings. Their application will also notify the user with the nearest restaurants

when the user is in motion.

They have used content-based filtering as well as collaborative filtering to make the

system more effective. The users’ locations are tracked using gps. The recommender

system adopted a user preference model by using the features of user’s visited

restaurants, and also the location information of users and restaurants in order to

dynamically generate the recommendations. [10]

2.7 Ravinarayana A, Pooja M C and K Raghuveer - Using Clustered Database

for Food Recommendation System - 2016

Ravinarayana A, Pooja M C and K Raghuveer attempted to create a food

recommendation system that uses a content based filtering technique to recommend

food items to the user. The system will suggest food items based on user inputs and

also provide users a list of nearby restaurants. The system works as follows: the user

is asked to input his/her favorite food items as well as the location in which he wants

to find restaurants. In turn, a list of top ingredients of the users favorite food items is

fetched. Clusters of food items are maintained along with the list of important

keywords that belong to that respective cluster. They perform clustering by using the

k-means method.

k-Means clustering was chosen to maintain the database as an attempt to increase the

performance of existing systems. They concluded that their proposed system reduces

the time taken to make comparisons for similarity in the database by 94%. The

authors observed that the clustered database addresses the problem of dimensionality.

In order to improve the accuracy even further, they will attempt to use a hybrid

algorithm in future implementations. User specific recommendations can also be

given using a reinforcement learning approach. [11]

2.8 Sumedh Sawant and Gina Pai - Yelp Food Recommendation Challenge -2013

Sumedh Sawant and Gina Pai used the Yelp dataset to implement a food

recommendation system using various algorithms such as singular value

Dept of CSE, CMRIT 2019-2020 Page 11

A Concise Study on Personalized Recommender Systems

decomposition, weighted bipartite graph and hybrid cascade of kNN clustering. In

order to evaluate and compare the performances of the difference implementations,

they have chosen the metrics Root Mean Square Error and Mean Absolute Error.

They concluded that the implementation of the cascaded clustered multi-step

weighted bipartite graph projection algorithm performed the best out of all the

algorithms with RMSE of 1.09262 and MAE of 0.67548. In future implementation,

they will attempt to augment the current analysis to include review text and user

rating evaluations (whether other users thought a particular user’s review was funny,

useful, or helpful) as features in the prediction model. They will also explore further

hybrid approaches and evaluate their performances to current implementations. [12]

Dept of CSE, CMRIT 2019-2020 Page 12

A Concise Study on Personalized Recommender Systems

CHAPTER 3

SYSTEM REQUIREMENTS SPECIFICATION

3.1 Functional Requirements

● Users should be able to get a precise list of recommendations pertaining to his

interest.

● Interface to the ongoing events, plays, movies.

● Performance improvement over time.

● Allow the user to change his preferences without impacting functionality.

3.2 Non-Functional Requirements

● Learnability

● Reusability

● Performance

● Reliability

● Correctness

● Privacy

3.3 Hardware Requirements

● Processors: ​ Intel i3,i5,i7

● Processor Speed: ​ 3.00GHZ

● RAM:​ 4GB

● Storage: ​ 500GB

Dept of CSE, CMRIT 2019-2020 Page 13

A Concise Study on Personalized Recommender Systems

3.4 Software Requirements

● Operating System: ​ Windows

● Web Browser: ​ Google Chrome

● RAM :​ 1GB+

● Python version :​ 3.6.X

Dept of CSE, CMRIT 2019-2020 Page 14

A Concise Study on Personalized Recommender Systems

CHAPTER 4

IMPLEMENTATION

Various recommendation algorithms were implemented and their results and

error metrics were noted.

4.1 Restaurant Recommendations

4.1.1 Content Based Approach using Cosine Similarity

In this implementation, the Zomato Dataset, containing restaurants across the world is

considered. The dataset includes features such as city, locality, cuisine, aggregate

rating as well as the total number of votes for each restaurant mentioned. In order to

provide personalized recommendations to the user, the top, similar restaurants for a

user are recommended by taking into consideration their location as well as the

cuisine of the restaurant.

Using TF-IDF Vectorizer

from ​ sklearn.feature_extraction.text ​import​ TfidfVectorizer

tfv = TfidfVectorizer(min_df= ​3​, max_features= ​5000​,
analyzer= ​'word'​, token_pattern=​r'\w{1,}' ​,
 ngram_range=(​1 ​, ​3 ​),
 stop_words = ​'english' ​)

Using TF-IDF vectorizer, a maximum of 5000 features are extracted in the cuisine

columns across all the restaurants. Sporadic terms are eliminated in order to get rich

and meaningful features.

Cosine similarity is used to calculate the pairwise similarity between the restaurants.

This similarity score calculated will be then used to determine the top ten most

Dept of CSE, CMRIT 2019-2020 Page 15

A Concise Study on Personalized Recommender Systems

similar restaurants with respect to the user’s location and cuisine of the restaurant

specied.

Code snippet

#Cosine Similarity

#Compute the cosine similarity matrix

cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)

#Get indices

corpus_index=[n ​for ​ n ​in ​ data_sample[​'Split'​]]
indices=pd.Series(data_sample.index,index=data_sample[​'Restau
rant Name' ​]).drop_duplicates()
 ​#index of the restaurant matchs the cuisines
idx = indices[title]

 ​#Aggregate rating added with cosine score in sim_score
list.

 sim_scores=[]

 ​for​ i,j ​in ​ enumerate(cosine_sim[idx]):
 k=data_sample[​'Aggregate rating' ​].iloc[i]
 ​if ​ j != ​0 ​ :
 sim_scores.append((i,j,k)

 ​#Sort the restaurant names based on the similarity scores
 sim_scores = sorted(sim_scores, key=​lambda ​ x: (x[​1​],x[​2 ​])
, reverse= ​True​)
 ​# 10 similar cuisines
 sim_scores = sim_scores[​0 ​:​10 ​]
 rest_indices = [i[​0 ​] ​for ​ i ​in ​ sim_scores]
 data_x =data_sample[[​'Restaurant Name' ​, ​'Aggregate
rating'​]].iloc[rest_indices]
 data_x[​'Cosine Similarity'​]= ​0
 ​for​ i,j ​in​ enumerate(sim_scores):
 data_x[​'Cosine
Similarity' ​].iloc[i]=round(sim_scores[i][​1 ​], ​2 ​)
 ​return​ data_x
restaurant_recommend_func(‘Connaught Place’,’Sbarro’)

Cosine similarity is chosen as the similarity metric as it is proven to be better when

compared with other similarity metrics like Euclidean distance and Pearson’s

correlation as it measures the similarity between items irregardless of their size.

Cosine Similarity measures the cosine of the angle between two vectors (or

Dept of CSE, CMRIT 2019-2020 Page 16

A Concise Study on Personalized Recommender Systems

documents) projected in a multi-dimensional space. Therefore, even if two documents

are far apart with respect to their Euclidean distance, there may be a chance they

could have a smaller angle between them as smaller the angle, greater its similarity.

Table 4.1 Restaurant Recommendation Using Content Based Approach using
Location

Restaurant ID Restaurant Name Aggregate Rating Cosine Similarity

63 Pizza Hut 3.5 0.86

26 Caffe Tonino 3.9 0.79

32 Domino’s Pizza 3.7 0.70

91 Ovenstory Pizza 0.0 0.70

24 Cafe Public Connection 3.7 0.33

12 The Immigrant Cafe 3.2 0.33

1 Attitude Kitchen & Bar 2.9 0.33

112 Smoke on Water 4.1 0.33

95 Ardor 2.1 4.1 0.28

94 Ambrosia Bliss 4.0 0.28

A reason why content based systems are useful and easy to implement is because they

do not require any data about other users using the system which makes it easier for

the system to scale to a large number of users. Another advantage of this approach is

that the recommendations made for the target user are specific to that user only. For

this reason, content based systems work well if a user has an interest that is not very

common among all users.

Content based systems also come with their limitations. Implementing such a system

requires extensive knowledge of that particular domain. In addition to this, these

systems only provide recommendations based on the user’s current likes and has no

way of expanding the user’s interest beyond this. Due to these disadvantages, content

based systems are not used in all situations.

Dept of CSE, CMRIT 2019-2020 Page 17

A Concise Study on Personalized Recommender Systems

4.1.2 kNN Item Based Collaborative Filtering

Collaborative Filtering is a machine learning technique that is used to make

predictions based on the past behavior of users. It can be either item-based or

user-based. The bottleneck in traditional collaborative ltering algorithms is

searching for neighbors among a large user population of potential neighbors.

Item-based ltering algorithms avoid this bottleneck by exploring the relationships

between items ratings instead of the relationships between users as user behavior

tends to be dynamic in nature whereas items’ ratings tend to remain static. Item-based

algorithms provide recommendations for users by nding items that are similar to

other items the user has liked in the past.

An item based collaborative ltering technique using k-Nearest Neighbors algorithm

is implemented. kNN algorithm is a supervised machine learning technique that uses

labeled input data for learning in order to make predictions on new, unlabeled data.

For the implementation, Restaurant Dataset (Kaggle) [13] which contains user ratings

for particular restaurants is used. Then combine all the ratings given by users for a

particular restaurant in order to nd out the total number of ratings each restaurant

has.

A ‘popularity threshold’ is considered in order to recommend restaurants having more

number of ratings than the ’popularity threshold’. The threshold we have considered

in ’25’. Then a pivot table is created containing the ratings given by each user for a

particular restaurant. The table has restaurant names are the indices and the user id as

the columns. This table is then converted into an array matrix by importing the

csr.matrix library from the scipy.sparse package. The metric chosen for calculating

the distance between items is Cosine Similarity and the number of neighbors chosen

is 5.

Code Snippet

popularity_threshold = ​25
rating_popular_rest=rating_with_totalRatingCount.query(​'total
RatingCount>= @popularity_threshold' ​)
rating_popular_rest.head()

Dept of CSE, CMRIT 2019-2020 Page 18

A Concise Study on Personalized Recommender Systems

rest_features_df=rating_popular_rest.pivot_table(index=​'name'
,columns= ​'userID'​,values=​'rating'​).fillna(​0 ​)
rest_features_df.head()

from ​ scipy.sparse ​import​ csr_matrix
rest_df_matrix = csr_matrix(rest_features_df.values)

from ​ sklearn.neighbors ​import ​ NearestNeighbors
model_knn = NearestNeighbors(metric = ​'cosine' ​, algorithm =
'brute'​)
model_knn.fit(rest_df_matrix)

query_index = np.random.choice(rest_features_df.shape[​0 ​])
print(query_index)

distances,indices=model_knn.kneighbors(rest_features_df.iloc[

query_index,:].values.reshape(​1 ​, ​-1 ​), n_neighbors = ​4 ​)

Figure 4.1 Output for kNN Item Based Collaborative Filtering

The surprise module is used to calculate the RMSE and the MAE by importing
KNNBasic.

Table 4.2 Evaluating RMSE, MAE of algorithm KNNBasic on 2 splits

 Fold 1 Fold 2 Mean Std

RMSE 0.8218 0.8324 0.8271 0.0053

MAE 0.6584 0.6636 0.6610 0.0026

Fit time 0.03 0.05 0.04 0.01

Test time 0.0 0.0 0.0 0.0

The advantage of using a kNN algorithm based approach is that it does not require

any training before making predictions and adding new items does not affect the

accuracy of the algorithm. Another reason as to why kNN is a popular approach is

Dept of CSE, CMRIT 2019-2020 Page 19

A Concise Study on Personalized Recommender Systems

that it is relatively simpler to implement as it considers only two parameters: the

value chosen for ’k’ and the distance measured between items.

Item based Collaborative filtering algorithms are advantageous because the average

rating of items don’t change as often so the user-item matrix does not need to be

computed frequently leading to lower computation costs.

4.2 Movie Recommendation

4.2.1 Built-in Algorithms

Code Snippet

from ​ surprise ​import ​ SVD , SVDpp , NMF , KNNBasic ,
NormalPredictor

from ​ surprise ​import ​ Dataset
from ​ surprise.model_selection ​import ​ cross_validate
#Base-lines

data = Dataset.load_builtin(​'ml-100k' ​) ​#Movielens 100k
Dataset- preloaded

algorithms = [SVD() , KNNBasic() , NormalPredictor()] ​#SVD++
, Matrix Factorization Models

for ​ algo ​in ​ algorithms:
 cross_validate(algo, data, measures=[​'RMSE'​, ​'MAE'​],
cv= ​5 ​, verbose=​True ​)

The surprise module is a specialized module built to provide users complete control

over their recommender systems research and experiments as well as a method for

evaluation of such systems. Another advantage of using this module is that few

datasets such as MovieLens are built-in along with implementations of popular

algorithms.

A few of the built-in popular algorithms like SVD, kNN are run on the movielens

100k dataset to establish baseline metrics. 5-fold cross validation was conducted and

the mean is documented.

Dept of CSE, CMRIT 2019-2020 Page 20

A Concise Study on Personalized Recommender Systems

Table 4.3 Evaluation results of Built-in algorithms

Built-in Algorithm Root Mean Square
Error(RMSE)

Mean Absolute
Error(MAE)

SVD 0.9364 0.7385

kNN 0.9790 0.7730

Normal Predictor 1.5233 1.2232

4.2.2 Mean and Random Measures

Using the surprise module, one can implement and execute one’s own algorithms by

implementing two of the methods t and estimate derived from AlgoBase as shown

below:

Code Snippet

from ​ surprise ​import ​ Dataset
from ​ surprise.model_selection ​import ​ cross_validate
from ​ surprise ​import ​ AlgoBase
import​ random
#Dumb Sample Model to get started

class ​ ​ZeroAl ​(AlgoBase):

 ​def​ ​__init__​(self):
 AlgoBase.__init__(self)

 ​def​ ​fit ​(self , trainset):
 AlgoBase.fit(self , trainset)

 ​return​ self

 ​def​ ​estimate​(self, u, i): ​#Have to predict rating
 ​return​ ​0
 ​#If we return 0 , the maximum deviation will be there
from rating as ratings are from 1-5

data = Dataset.load_builtin(​'ml-100k' ​)
algo = ZeroAl()

cross_validate(algo, data, verbose= ​True​)

Dept of CSE, CMRIT 2019-2020 Page 21

A Concise Study on Personalized Recommender Systems

In order to build our recommendation algorithm with surprise, one needs to

encapsulate the idea into a class while providing definitions for three methods - init ,

fit and estimate.

__init__() - This is a basic python constructor that instantiates the super class

AlgoBase

fit(self , trainset) - This method is called once on the entire training set. Here, weights

are learned and features are processed etc.

estimate(self , u , i) - This method takes in two parameters: the User Id and Item Id. It

is called for every row of the test set. Based on the learning done in the fit method,

this method is expected to return a numeric value of the rating which this user would

have provided for this particular item. In the case of movies, this method is called for

every (User Id , Item Id) in the testing set and outputs a numeric value (1-5) the

particular user is expected to provide for the movie under consideration based on a

variety of factors that may include history, interests etc.

The mentioned model is built to serve the purpose of proving that with surprise,

building models are very simple and also to provide an example of a bad algorithm

that should be steered clear of. By mindlessly returning 0 regardless on what userId

and movieId is being tested, we achieve the most deviation from the observed ratings

providing us with an abysmal RMSE of 2.7690 and MAE of 2.5299 as expected

So to summarize, in order to build algorithms in surprise, a dataset must be loaded,

implement the algorithm / use built-in ones and then it gives the error estimates. In

case, the need arises to test our own model, one must rst implement the t and

estimate methods. The t method is called once on the training set and the estimate

method is called for every row of the test set and expects the predicted rating for

given user id (u) and item id (i) taken as parameters. (Reminisce that the data set is

organized into User Id, Movie Id, Rating and Time Stamp) Now once we get this out

of the way, we can continue on our road of experimenting with various other simple

ideas slowly progressing in difficulty and improving the accuracy.

Dept of CSE, CMRIT 2019-2020 Page 22

A Concise Study on Personalized Recommender Systems

First we try to find the RMSE and MAE in two cases, when we return the mean of all

the ratings and when we randomly return an acceptable value

Table 4.4 How accurate is returning the mean of all ratings or returning a random

value

Algorithm RMSE MAE

Mean of all ratings 1.1257 0.9447

A random rating value(1-5) 1.8869 1.5129

4.2.3 Age-based Clustering

Here, classification of people is done according to their age into certain age groups

and try to ascertain the rating they would provide to a particular movie based on the

cluster in which they belong. Some Exploratory Data Analysis on the data reveals that

the youngest person in the data set is 7 years old and the oldest person is 73 years old.

Based on this, the age groups that are identied are 7-17, 18-29, 30-40, 41-50, 51-60

and 61-73. The reasoning behind this approach is the idea that few movies are

targeted towards certain age groups, taking the average of the ratings of other users in

a similar age group for a particular movie, the ratings are computed. However, it must

be noted that this isn’t a foolproof method as an individual’s taste may differ f

rom the group/cluster allotted to him and few movies are marketed as being for all

age groups or there may be a few outliers. It should also be kept in mind that after

analyzing the data, it is found that the most common rating users provided to a movie

was 4. A few variations of this method were tried, one involving taking just the

average of all ratings of users in the same cluster as the one to be predicted

irrespective of the rating as in if the rating of a user is to be predicted who happens to

fall in cluster 3 (30-40), the average of all ratings in that age group is returned. The

second method takes into consideration the movie too, as in if we are trying to predict

the rating a user(u) would give to a movie(m) and the user lies in the group 2(18-29),

the average rating of movie m in that age group is returned. It should be noted that

these two algorithms from scratch to the best of our ability.

Dept of CSE, CMRIT 2019-2020 Page 23

A Concise Study on Personalized Recommender Systems

Code Snippet

user= files_path+ ​'u.user'
age = {}

#Some EDA

maximumAge = ​-1
minimumAge = ​2​** ​15
for ​ line ​in ​ open(user):
 array = line.split(​'|' ​)
 age[(int(array[​0 ​]) - ​1 ​)] = array[​1​] ​#age[userId] = age of
that person

 ​if​ int(array[​1 ​]) > maximumAge:
 maximumAge = int(array[​1 ​])
 ​if​ int(array[​1 ​]) < minimumAge:
 minimumAge = int(array[​1 ​])
print(​'The oldest person in the dataset is ' ​ , maximumAge , ​'
years old' ​)
print(​'The youngest person in the dataset is ' ​ , minimumAge ,
' years old' ​)

#A short sample snippet deciding which people belong to

particular clusters

def ​ ​fit​(self, trainset):
 AlgoBase.fit(self, trainset)

 self.count+= ​1
 ​if ​ self.count==​1 ​:
 c = [(userId, movieId, rating) ​for ​ (userId,
movieId, rating) ​in ​ self.trainset.all_ratings()]
 ​for​ userId , movieId , rating ​in ​ c:
 ageOfUser = age[userId]

 ageInt = int(ageOfUser)

 ​if ​ ageInt >= ​1 ​ ​and ​ ageInt <= ​6 ​:
 rateAge[​0 ​] = rateAge.get(​0 ​ , ​0 ​)+rating
 ratingCount[str(​0 ​) +​" " ​+str(rating)] =
ratingCount.get(str(​0 ​) +​" " ​+str(rating) , ​0 ​)+ ​1
 countAge[​0​] = countAge.get(​0 ​ , ​0 ​)+​1
 ​elif ​ ageInt >=​7 ​ ​and ​ ageInt <= ​17​:
 rateAge[​1 ​] = rateAge.get(​1 ​ , ​0 ​)+rating
 ratingCount[str(​1 ​) +​" " ​+str(rating)] =
ratingCount.get(str(​1 ​) +​" " ​+str(rating) , ​0 ​)+ ​1
 countAge[​1​] = countAge.get(​1 ​ , ​0 ​)+​1

Dept of CSE, CMRIT 2019-2020 Page 24

A Concise Study on Personalized Recommender Systems

#Similar short sample snippet for classification - complete

code not displayed

def ​ ​estimate​(self, u, i):
 ageInt = int(age[u])

 cluster = ​0
 self.count2+= ​1

 ​#Cluster Finding Code here (not shown)
 Rating = rateAge.get(cluster)/countAge.get(cluster)

 ratings = [​"1"​ , ​"2" ​ , ​"3" ​ , ​"4"​ , ​"5" ​]
 estimatedRating = Rating

 maxCount = ​-1
 ​for ​ rating ​in ​ ratings:
 key = str(cluster)+​" " ​+str(float(rating))
 ​if​ ratingCount.get(key , ​0​) > maxCount:
 maxCount = ratingCount.get(key, ​0 ​)
 estimatedRating = int(rating)

 prob = random.randint(​0 ​ , ​1 ​)
 ​if ​ prob==​0 ​ ​or ​ prob==​1 ​: ​#50% of the time , by making
this 100% , RMSE becomes 1.21 but MAE is 0.89 always

 ​return​ estimatedRating
 ​else ​:
 ​return​ Rating

Here, the above code shows the general idea of the described approach. By splitting

people according to their age groups, an attempt was made to find similar users in the

target user’s age group with similar interests in order to recommend relevant movies.

The approaches tried included trying out the age-metric alone, supplementing the age

data with the movie information and trying to return the most common rating within a

given cluster.

Dept of CSE, CMRIT 2019-2020 Page 25

A Concise Study on Personalized Recommender Systems

Table 4.5: Analysis of clustering algorithms based on age

Technique RMSE MAE

Age-Based 1.254 0.9436

Age-Based along with movie 1.26 1.00

Most common rating 1.2199 0.8942

4.2.4 Genre Based Recommendation

In accordance with the movie lens dataset, the movies.csv file provides movie id,

movie name and genres of the movie. The user’s previous ratings on the movies are

grouped into three groups i.e. ratings 3, 4 and 5 respectively.

Code Snippet

rating3 = {}

rating4 = {}

rating5 = {}

r3=training_set[training_set[​2​]== ​3 ​]
r4=training_set[training_set[​2​]== ​4 ​]
r5=training_set[training_set[​2​]== ​5 ​]
Rating 3

for ​ i ​in ​ range(len(r3)):
 movieid = r3.iloc[i,​1 ​]
 userid = r3.iloc[i,​0 ​]
 ​try​:
 ​if ​ movieid <= len(movies):
 genres = movies.loc[movieid,​2 ​].split(​'|' ​)
 ​for​ genre ​in ​ genres:
 ​if ​ (userid,genre) ​in ​ rating3:
 rating3[(userid,genre)] += ​1
 ​else ​:
 rating3[(userid,genre)] = ​1
 ​except​:
 ​pass
Similarly for rating 4 and 5

Dept of CSE, CMRIT 2019-2020 Page 26

A Concise Study on Personalized Recommender Systems

To predict how the user would rate an unprecedented movie, the genres of the movies

the user rated previously is stored and the frequency of each genre occurring in each

group is calculated. For instance, if the user rated 5 for Action movies 10 times, rated

4 three times, then the user is most likely to rate the action movie 5 again.

Considering the genres comprised in a movie, the mean of ratings cohering with the

frequency is computed. The error metrics evidently proves a decent score for a genre

based proposed approach.

Table 4.6: Analysis of genre based clustering

Technique RMSE MAE

Genre 1.45199 1.14648

Genre with supplemented rating 1.24133 0.90754

4.2.5 Cosine Similarity

Cosine similarity is a metric that is generally used to determine how similar

documents are based on their content. Formally, it is a measure of similarity between

two non-zero vectors of an inner product space.

Code Snippet

from ​ sklearn.feature_extraction.text ​import​ TfidfVectorizer

tfidfObj = TfidfVectorizer(stop_words=​'english' ​)
movies[​'overview' ​] = movies[​'overview'​].fillna(​'' ​)
tfidf_matrix = tfidfObj.fit_transform(movies[​'overview'​])

from ​ sklearn.metrics.pairwise ​import ​ linear_kernel
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)

indices = pd.Series(movies.index,

index=movies[​'title'​]).drop_duplicates()

The simplest form of a cosine similarity metric is described above. In this code,

similar movies are recommended to the users on the basis of how similar their plot

Dept of CSE, CMRIT 2019-2020 Page 27

A Concise Study on Personalized Recommender Systems

vectors are. This could be made more intuitive by using the features of the movie like

Director , Actor , Genre etc as shown in the sample (not complete code) below:

Code Snippet

from ​ ast ​import​ literal_eval

features = [​'cast'​, ​'crew'​ , ​'keywords'​ , ​'genres'​] ​#First
two are in one dataset

movies[​'cast' ​] = credz[​'cast' ​].apply(literal_eval)
movies[​'crew' ​] = credz[​'crew' ​].apply(literal_eval)

import​ numpy ​as​ np
def ​ ​get_director​(x):
 ​for​ i ​in ​ x:
 ​if ​ i[​'job'​]== ​'Director'​:
 ​return​ i[​'name'​]
 ​return​ np.nan
#Trying to add more weight to the director or a specific

feature

def ​ ​weighted_feature​(x , feature=​'director' ​ , times= ​100​):
 feature_list = [​'keywords'​ , ​'cast'​ , ​'director' ​ ,
'genres'​]
 string = ​' '
 ​for​ feat ​in​ feature_list:
 ​if ​ feat!=feature:
 string+= ​' '​.join(x[feat])+​' '
 ​else ​:
 ​for​ j ​in ​ range(times):
 string+=​'' ​.join(x[feat])+​' '
 ​#print(string)
 string.rstrip()

 ​return​ string
movies[​'weighted_director1' ​] = movies.apply(weighted_feature
, axis=​1 ​)

The idea behind this is that we can use a combination of different features to guide

our recommendations, not only plot and to provide more weight to a certain feature,

we use the weighted_feature function which operates by appending the specified

Dept of CSE, CMRIT 2019-2020 Page 28

A Concise Study on Personalized Recommender Systems

feature given number of times to the feature string. This works because instead of

plot, our target feature string is now a space delimited concatenated string containing

data like director, actor, genre, etc. By appending one string many times to that string,

the relative importance of that particular feature is increased.

This is all done on the TMDB-5000 data set provided by Kaggle. But this helps us for

content-based filtering. In order to utilise this approach for collaborative filtering, we

need to modify it a bit.

A sort of hybrid approach is utilized by including two data sets - The Kaggle TMDB

replacement dataset which has information regarding 5000 movies and the existing

MovieLens data set. Cosine similarity measures were used in order to identify similar

movies based on how similar the plot vectors of two movies are providing more

weight to the "director" factor thereby getting movies with similar plot along with

good movies from the same director. Apart from this a different similarity measure

was also tried where the metric of comparison wasn’t weighted in terms of director

but rather was considered to be a mixture of actors , genre and plot.

So our idea involved fetching similar movies (in the other data set) to the one we’re

currently trying to predict (in MovieLens) and our estimated predicted was the

weighted average of these

Table 4.7: Evaluation of Cosine Similarity for Collaborative Filtering

Metric RMSE MAE

Similarity of Plot (giving

director weight)

1.2323 0.9433

Mixture of plot , genres ,

actors etc.

1.2208 0.9355

Dept of CSE, CMRIT 2019-2020 Page 29

A Concise Study on Personalized Recommender Systems

4.2.6 k-Nearest Neighbors

This machine learning algorithm is used to nd clusters of similar users based on

common movie ratings, and make predictions using the average rating of top-k

nearest neighbors. Using the MovieLens 2M dataset from GroupLens, a ratings

matrix is constructed, with the matrix having one row for each movie and one column

for each user. Then, the k items that have the most similar user engagement vectors

are found. This algorithm uses Brute force implementation to compute the nearest

neighbors and cosine metric to calculate the cosine similarity between rating vectors.

Code Snippet

from ​ sklearn.neighbors ​import ​ NearestNeighbors model_
knn = NearestNeighbors(metric = ​'cosine'​, algorithm =
'brute'​)
model_knn.fit(user_rating_matrix)

Next, the closeness of instances are determined by calculating the distance. Then the

algorithm classies an instance by nding its nearest neighbors, and picks the most

popular class among the neighbors.

Code Snippet

query_index = np.random.choice(user_rating_pivot.shape[​0 ​])
distances, indices = model_knn.kneighbors(user_rating_pivot.

iloc[query_index,:].values.reshape(​1 ​,−​1 ​), n_neighbors = ​6 ​)
for ​ i ​in ​ range(​0 ​, len(distances.flatten())):
if ​ i == ​0 ​:
print(​'Recommendations for {0}:\n' ​.format(
user_rating_pivot.index[query_index]))

else ​:
print(​'{0}: {1}, with distance of {2}:' ​ .format(i,
user_rating_pivot.index[indices.flatten()[i]],

distances.flatten()[i]

Dept of CSE, CMRIT 2019-2020 Page 30

A Concise Study on Personalized Recommender Systems

4.2.7 Support Vector Decomposition

Inspiration was drawn from Nicolas’ article[22] on matrix factorization for this

section and an attempt was made to implement SVD from scratch with stochastic

gradient descent for optimization. The problem involves nding the two matrices (p ,

q) whose product gives us the rating matrix (R). To this end the equation(1) has to be

minimised.

 ------------------------------- (1)

The vector p(u) is used to represent the affinity of the user towards the latent factors.

If the factors are Action, Romance, Horror and let’s say a particular user (say, Raul)

is prone to those factors. In other words, an effort is being made to decompose the

user as 10% , 30% , 60% etc. which means that this user particularly likes Horror.

The vector q(i) is used to represent the affinity of the items towards these same latent

factors. For example if the example of movie “Shining” is considered with respect to

the factors like Comedy, Action, Horror , the matrix might be like 0% , 10% , 80%

indicating that this particular movie has an affinity for Horror.

Now if an estimation of Raul’s rating for “Shining” was needed to be made, the

product of the two matrices is necessary to be found but here it is reasonable to

assume that he would provide a high rating for this movie.

Gradient Descent is used as an optimisation technique used to minimise a given

function by iteratively moving in the direction of steepest descent (-ve gradient)

In this case , p(u) denotes the row vector of the matrix p and q(i) denotes the column

matrix at position i. Assuming a stochastic gradient descent approach to minimize the

above expression by starting with random values for p and q and for a given number

of epochs updating those parameters by subtracting the product of the derivative and

learning rate. One of the dening characteristics of the rating matrix is that it is most

of the time sparse. We assume that SVD will help identify the latent factors and the

corresponding strength of each factor (In a simple sense in the case of movies, it can

be stated as how much a user is prone to some factors like action, comedy etc and

Dept of CSE, CMRIT 2019-2020 Page 31

https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Br_%7Bui%5C%3B%5Cin%20R%7D%7D(r_%7Bui%5C%3B%7D-%5C%3Bp_u.q_i)%5E2#0

A Concise Study on Personalized Recommender Systems

how much the strength of that factor is in each movie in the dataset. Thus, the

multiplication of the two factored matrices would provide a way of constructing back

the matrix and guessing the values which is not known).

Code Snippet

#Inspired by Nicolas Hug's Blog

from ​ surprise ​import ​ Dataset
from ​ surprise.model_selection ​import ​ cross_validate
from ​ surprise ​import ​ AlgoBase
import​ random
import​ numpy ​as​ np

class ​ ​SVDIn ​(AlgoBase):
 p = []

 q = []

 c = ​0
 est = ​4
 learningRate = ​0.001
 noOfFactors = ​10
 ​def​ ​__init__​(self , learningRate=learningRate ,
noOfFactors=noOfFactors):

 AlgoBase.__init__(self)

 self.learningRate = learningRate

 self.noOfFactors = noOfFactors

 ​def​ ​fit ​(self, trainset):
 AlgoBase.fit(self, trainset)

 self.trainset = trainset

 p = np.random.normal(​0​ , ​0.1 ​ ,
(self.trainset.n_users, self.noOfFactors)) ​#Normal
distribution pick

 q = np.random.normal(​0​ , ​0.1 ​ , (self.trainset.n_items
, self.noOfFactors))

 self.c+=​1
 ​if ​(self.c== ​1 ​):
 print(len(q) , len(q[​0 ​]) , len(p) , len(p[​0 ​]))
 ​for ​ epoch ​in ​ range(​15 ​):
 ​for​ u, i, rating ​in​ trainset.all_ratings():
 estimatedRating = np.dot(p[u] , q[i])

Dept of CSE, CMRIT 2019-2020 Page 32

A Concise Study on Personalized Recommender Systems

 self.c+=​1
 ​if ​(self.c== ​2 ​):
 print(p[u])

 print(q[i])

 error = rating - estimatedRating

 p[u]+=self.learningRate * error * q[i]

 q[i]+=self.learningRate * error * p[u]

 self.p = p

 self.q = q

 ​return​ self

 ​def​ ​estimate​(self, u, i): ​#Have to predict rating
 ​if ​ self.trainset.knows_user(u) ​and
self.trainset.knows_item(i):

 ​return​ np.dot(self.p[u] , self.q[i])
 ​else ​:
 ​return​ self.est ​#Or Global Mean
data = Dataset.load_builtin(​'ml-100k' ​)
algo = SVDIn()

cross_validate(algo, data, cv = ​5 ​ , verbose= ​True​)

The main SVD part takes up less than 15 lines of the above snippet. It should be

noted this simple attempt at SVD performs well enough to beat some of the built-in

algorithms reaffirming the strength of matrix based factorization models.

Table 4.8: Evaluation for various number of latent factors

No. of factors RMSE MAE

10 0.9598 0.7521

15 0.9600 0.7534

20 0.9587 0.7522

50 0.9696 0.7614

100 0.9807 0.7696

Dept of CSE, CMRIT 2019-2020 Page 33

A Concise Study on Personalized Recommender Systems

In the above experiments, learning rate was xed to 0.01 and the number of epochs

were 10, now the error estimates are calculated if factors are 20 and learning rate is

slowly varied.

Table 4.9: Error estimates for varying learning rates

Learning Rate RMSE MAE

0.001 1.5000 1.1771

0.01 0.9602 0.7501

0.02 1.0000 0.7776

This takes a large amount of time if the number of epochs are very large as it is

implemented in the t method and for each iteration the entire training set is

processed. Large nudges to the learning rate are avoided so as to prevent overshooting

the minima. The best learning rate seems to be 0.01.

4.2.8 Neural Networks / Auto Encoders

An autoencoder is a specialised type of Artificial Neural Network, typically used for

dimensionality reduction that tries to learn efficient encodings for the input. There are

various kinds like Sparse, De-Noising , Stacked , Contractive etc. [21]

The main part of the code is described below:

class ​ ​StackedAutoencoders ​(nn.Module):
 ​def​ ​__init__​(self ,):
 super(StackedAutoencoders , self).__init__()

 self.firstConn = nn.Linear(noOfMovies , ​20 ​)
 self.secondConn = nn.Linear(​20​ , ​10 ​)
 self.thirdConn = nn.Linear(​10 ​ , ​20 ​)
 self.fourthConn = nn.Linear(​20​ , noOfMovies)
 self.act = nn.Sigmoid()

 ​def​ ​forward​(self , x): ​#Input
 x = self.act(self.firstConn(x))

 x = self.act(self.secondConn(x))

 x = self.act(self.thirdConn(x))

 x = self.fourthConn(x)

Dept of CSE, CMRIT 2019-2020 Page 34

A Concise Study on Personalized Recommender Systems

 ​return​ x
obj = StackedAutoencoders()

criteria = nn.MSELoss()

optimizer = optim.RMSprop(obj.parameters() , lr=​0.01 ​ ,
weight_decay= ​0.5​) ​#Learning Rate
noOfepochs = ​300
xd = ​0
for ​ iteration ​in ​ range(​1 ​, noOfepochs+ ​1​):
 trainLoss = ​0
 noOfProper = ​0.0
 ​for​ userId ​in ​ range(noOfUsers):
 currentInput =

Variable(trainSet[userId]).unsqueeze(​0​)
 target = currentInput.clone()

 ​if ​ torch.sum(target.data > ​0 ​) > ​0 ​:
 predictedRating = obj(currentInput)

 target.require_grad = ​False
 predictedRating[target == ​0 ​] = ​0
 loss = criteria(predictedRating , target)

 mean_correct = noOfMovies

/float(torch.sum(target.data > ​0 ​) + ​1e-10​)
 loss.backward()

 trainLoss+= np.sqrt(loss.data * mean_correct)

 noOfProper+=​1.0
 optimizer.step()

 print(​'Iteration : '​+str(iteration) + ​'
loss:'​+str(trainLoss / noOfProper))

Using the existing les in the movie lens data set for cross validation (u1.base,

u1.test, u5.base, u5.test), a stacked autoencoder with pytorch is constructed and

trained on the u4.base and tested on u4.test. Running the SVD built-in on the

mentioned les we get an RMSE of 0.9337. The auto-encoder results are as follows:

Dept of CSE, CMRIT 2019-2020 Page 35

A Concise Study on Personalized Recommender Systems

Table 4.10: Neural Network Evaluation using RMSprop as optimiser

No. of Epochs RMSE

50 0.9754

100 0.9409

150 0.9419

200 0.9450

We have tried to use other optimisers like Adagrad and SGD but RMSprop seems to

give us the best output with the least hassle.

4.2.9 Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is a probabilistic graphical articial neural

network model that learns from probability distribution over a set of inputs. ​RBMs

are a variant of Boltzmann machin ​es​, with the restriction that their neurons must form

a bipartite graph: a pair of nodes from each of the two groups of units (commonly

referred to as the "visible" and "hidden" units respectively) may have a symmetric

connection between them; and there are no connections between nodes within a

group. By contrast, "unrestricted" Boltzmann machines may have connections

between hidden units. This restriction allows for more efficient training algorithms

than are available for the general class of Boltzmann machines, in particular the

gradient-based contrastive divergence algorithm.

This algorithm uses the movie lens 100k ratings dataset and is trained and tested on

the train-test splits (u1.base, u1.test,, u5.base, u5.test) The algorithm performs

binary classication i.e., if user likes the movie it returns 1 else 0. The ratings dataset

is pre-processed to achieve a matrix having users as rows and movies as columns. If

the movie is rated below 3, it implies the user didn’t enjoy the movie but if he/she

rated 3 and above they enjoyed it. So ratings of 1 and 2 are made 0 in the matrix

while the ratings 3, 4 and 5 are given 1. Note that a rating of -1 is used if the user

hasn’t rated the movie.

Dept of CSE, CMRIT 2019-2020 Page 36

https://en.wikipedia.org/wiki/Boltzmann_machine

A Concise Study on Personalized Recommender Systems

Code Snippet

class ​ ​RBM ​():
 ​def​ ​__init__​(self, nv, nh):
 self.W = torch.randn(nh, nv)

 self.a = torch.randn(​1​, nh)
 self.b = torch.randn(​1​, nv)
 ​def​ ​sample_h​(self, x):
 wx = torch.mm(x , self.W.t())

 activation = wx + self.a.expand_as(wx)

 p_h_given_v = torch.sigmoid(activation)

 ​return​ p_h_given_v, torch.bernoulli(p_h_given_v)
 ​def​ ​sample_v​(self, y):
 wy = torch.mm(y , self.W)

 activation = wy + self.b.expand_as(wy)

 p_v_given_h = torch.sigmoid(activation)

 ​return​ p_v_given_h, torch.bernoulli(p_v_given_h)
 ​def​ ​train ​(self, v0, vk, ph0, phk):
 self.W += (torch.mm(v0.t(), ph0) - torch.mm(vk.t(),

phk)).t()

 self.b += torch.sum((v0 - vk), ​0 ​)
 self.a += torch.sum((ph0 - phk), ​0 ​)

This class is used to sample the hidden and visible nodes using Gibbs sampling

technique. Pytorch libraries have been used for sampling probability distributions. K

step contrastive divergence is performed to minimize the overall cost function.

Computing gradients are computationally expensive and hence techniques like

Contrastive Divergence have been employed to approximate the likelihood gradient.

Training has been done for various epochs on u5 train-test splits as seen in the results

below:

Table 4.11: RBM evaluation on different number of epochs

No. of Epochs RMSE MAE

10 0.41866 0.23041

20 0.41144 0.22523

50 0.40545 0.22369

Dept of CSE, CMRIT 2019-2020 Page 37

A Concise Study on Personalized Recommender Systems

75 0.40373 0.21915

100 0.41502 0.23174

75 epochs seem to be giving the best results overall. Now we try to tweak the batch

size which determines for how many input rows supplied to the neural network, the

weights and bias get updated.

Table 4.12: RBM evaluation on various batch sizes

Batch Size RMSE MAE

1 0.44339 0.25367

10 0.43074 0.24167

20 0.42073 0.23402

50 0.41354 0.22840

75 0.41669 0.22786

100 0.41304 0.22756

200 0.41952 0.23083

Batch size of 100 works well to produce the best results as seen. From the results it

can be concluded that 75% of the times i.e. 3 out of 4 times given a movie, the

algorithm is able to predict whether the user will like the movie or not. This algorithm

nds correlations purely based on user ratings. Hence, it can be used as a good

ltering technique on some other base algorithms like auto encoders etc where we

curate a list of movies for the user and further sift out the movies the user will enjoy

and recommend them.

Dept of CSE, CMRIT 2019-2020 Page 38

A Concise Study on Personalized Recommender Systems

CHAPTER 5

RESULTS AND DISCUSSION

This is a summary of the approaches that is used and the error metrics associated.

Table 5.1: Overall Results

Approach RMSE MAE

Mean 1.1257 0.9447

Random 1.8869 1.5129

Age Cluster 1.2199 0.8942

Genre Cluster 1.2413 0.9075

Cosine Similarity 1.2208 0.9355

SVD 0.9587 0.7522

Auto encoders 0.9409 -

Restricted Boltzmann
Machine

0.4037 0.2191

The best values for each algorithm have been noted. Each algorithm has been run on

the dataset multiple times, each time changing some parameters in order to report the

best findings.

RBM gives the least error values however RBM doesn’t fully qualify as a

recommendation algorithm in the implementation done. It classifies whether the user

would like a movie or not (binary prediction). The future scope of this algorithm

would be to predict ratings 1 through 5 like other neural network models (eg:

auto-encoders).

The best approaches for recommendation systems from our results are SVD , RBM

and Auto Encoders (AE was run on u5 base, test of the cross validation set for

MovieLens). These approaches seem to be the best chance at rivalling the best

Dept of CSE, CMRIT 2019-2020 Page 39

A Concise Study on Personalized Recommender Systems

algorithms of the surprise library. However, out-classing those algorithms is still very

much a task in progress.

Restaurant recommendations using content based approaches gave commendable

results however, in the absence of an evaluation metric like RMSE or MAE, it cannot

be compared with predefined results. Instead, considering offline evaluation is a

viable option for evaluation.

Till here, the approaches proposed have been compared to baseline/standard models

in the field. Now, it is time to look at how these fare when compared to the best

methods. [14]

A quick search on the internet reveals that the best RMSE achieved on the MovieLens

100K dataset seems to be 0.905 followed by approaches achieving 0.929 and 0.945

The best approach [15] is based around Graph Convolutional Matrix Completion

which deals with recommender systems as a problem of link prediction in graphs.

Based on the recent progress in deep learning on graphs, the authors propose a graph

based AE (Auto-Encoder) Structure based on differential message passing. The

authors claim that if supplementary information or structured data (social network) is

provided to their models, it beats almost all state of the art models. They approach the

problem by representing the movie data as a bipartite graph between user and items

with edges having the value of rating.

Another approach[16] boasting the same RMSE of 0.905 does not make use of extra

information unlike the previous method. The paper deals with inductive matrix

completion. The authors state that most matrix factorization models- breaking down

the matrix into the product of low-dimensional latent embeddings is transductive and

cannot be generalized beyond the given training set and inorder to create inductive

models, most people make use of additional information. The authors of the paper

under discussion try to create an inductive state of the art recommendation model

using only the data available by using a graph neural network (GNN) based on 1-hop

subgraph pairs (user, item) and map these subgraphs to their ratings. They

successfully implement this method and show that the inductive model they had

trained on the MovieLens Dataset generalises very well and shows good results on the

Dept of CSE, CMRIT 2019-2020 Page 40

A Concise Study on Personalized Recommender Systems

Douban Dataset establishing the fact that the model can pick up user-item interactions

it hasn’t seen before.

The next approach[17] has an RMSE of 0.91 and is based on deep learning again to

model the interaction between two sets. They state that the canonical representation of

such interactions is a matrix with a property - permuting the rows or columns does not

change the meaning of the encoding (exchangeability). They propose that such

models be Permutation-Equivariant - same predictions across such permutations. The

authors propose a parameter-sharing scheme and prove that it cannot be more

expressive without violating the previous condition and show that the system has

good generalization (Model trained on movies gave good predictions for music etc)

It should be noted that most of the approaches above either used Matrix Factorization

methods or graphs and deep learning like Neural Networks , Auto encoders etc. The

RMSE of our best approaches (SVD , RBM and AE) are not too far off from state of

the art models.

Dept of CSE, CMRIT 2019-2020 Page 41

A Concise Study on Personalized Recommender Systems

CHAPTER 6

CONCLUSION

An attempt has been made to study existing literature surveys and research papers to

obtain knowledge about the various types of recommender systems, their uses, the

algorithms implemented and the challenges faced in each of them. Using this

knowledge, implementation of some of the known algorithms as well implementation

of our own techniques was carried out. The errors obtained for each algorithm and

approach have been documented extensively.

Altogether, this paper has provided an elaborate overview to those entering the field

of recommendation systems and arm them with more than sufficient intuition to select

the best algorithm suited for their task.

6.1 Future Scope

One of the main goals moving forward is towards developing a recommendation

algorithm that would decisively beat the existing baseline measures.

Apart from that, a few ideas for future scrutinization include:

1. Exploring the possibility of probing Genetic Algorithms for selecting

population size and features and adopting at each iteration the sets with most

potential.

2. How to be more informed while predicting the rating of movies? Trying out

ensemble algorithms, a mix of different algorithms taking the majority vote in

case of a mismatch in case of collaborative and content filtering algorithms.

3. Is it possible to recognize enough outliers (people who always give high

ratings, people who like one type of movie, people who are swayed by trends)

to radically change the performance accuracy?

4. Explore the accuracy of graph based models. How to intelligently find similar

users? Can giving weight to different parameters play a role?

Dept of CSE, CMRIT 2019-2020 Page 42

A Concise Study on Personalized Recommender Systems

REFERENCES

[1] How to build a Recommendation Engine quick and simple:

https://towardsdatascience.com/how-to-build-a-recommendation-engine-quick-and-si

mple-aec8c71a823e ​ accessed on 16/05/2020 9:47 AM

[2] ​https://towardsdatascience.com/brief-on-recommender-systems-b86a1068a4dd

accessed on 16/05/2020 10:00 AM

[3] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:

History and Context. ACM Transactions on Interactive Intelligent

Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages.

DOI=http://dx.doi.org/10.1145/2827872

[4] Khusro, Shah & Ali, Zafar & Ullah, Irfan. (2016). Recommender Systems: Issues,

Challenges, and Research Opportunities. 10.1007/978-981-10-0557-2_112.

[5] ​Jiang Zhang, Yufeng Wang , Zhiyuan Yuan, and Qun Jin - (Personalized

Real-Time Movie Recommendation System: Practical Prototype and Evaluation -

2020

[6] Khamphaphone Xinchanang, Phonexay Vilakone, and Doo-Soon Park - Movie

Recommendation Algorithm using Social Network Analysis to alleviate Cold-Start

problem - 2019

[7] Md. Akter Hossain, Mohammed nazim uddin - A Neural Engine for Movie

Recommendation System - 2019

[8] Rahul Katarya, Om Prakash Varma-An effective collaborative movie

recommender system with cuckoo search - 2017

[9] Alif Azhar Fakhri, Z K A Baizal and Erwin Budi Setiawan - Restaurant

Recommender System Using User-Based Collaborative Filtering Approach: A Case

Study at Bandung Raya Region - 2019

Dept of CSE, CMRIT 2019-2020 Page 43

https://towardsdatascience.com/how-to-build-a-recommendation-engine-quick-and-simple-aec8c71a823e
https://towardsdatascience.com/how-to-build-a-recommendation-engine-quick-and-simple-aec8c71a823e
https://towardsdatascience.com/brief-on-recommender-systems-b86a1068a4dd

A Concise Study on Personalized Recommender Systems

[10] Bhagyashree Basudkar, Shruti Bagayatkar, Meghana Chopade, Sachin Darekar -

Restaurant Recommendation System Using Customer’s Data Analysis - 2018

[11] Ravinarayana A, Pooja M C and K Raghuveer - Using Clustered Database for

Food Recommendation System - 2016

[12] Sumedh Sawant and Gina Pai - Yelp Food Recommendation Challenge -2013

[13] ​https://www.kaggle.com/uciml/restaurant-data-with-consumer-ratings , accessed

on 16/05/2020 10:25 AM

[14] ​M​ovieLens 100K Leaderboard -

https://paperswithcode.com/sota/collaborative-filtering-on-movielens-100k​ Accessed

on 20/05/20 10:00 PM

[15] ​Rianne van den Berg, Thomas N. Kipf, & Max Welling. (2017). Graph

Convolutional Matrix Completion.

[16] Muhan Zhang, & Yixin Chen. (2019). Inductive Matrix Completion Based on

Graph Neural Networks.

[17] Jason Hartford, Devon R Graham, Kevin Leyton-Brown, & Siamak

Ravanbakhsh. (2018). Deep Models of Interactions Across Sets.

[18] ​https://towardsdatascience.com/how-did-we-build-book-recommender-systems-in

-an-hour-part-2-k-nearest-neighbors-and-matrix-c04b3c2ef55c ​, ​accessed on

10/04/2020 10:00 AM

[19] ​https://towardsdatascience.com/k-nearest-neighbours-introduction-to-machine-lea

rning-algorithms-18e7ce3d802a ​, accessed on 03/05/2020 12:30 AM

[20] Alka Lamba , Dharmender Kumar (2016). Survey on KNN and Its Variants

[21] Autoencoders - ​https://www.jeremyjordan.me/autoencoders/ accessed on

12/04/20 09:00 AM

[22] Understanding matrix factorization - ​http://nicolas-hug.com/blog/matrix_facto_1

accessed on 12/04/20 4:00 PM

Dept of CSE, CMRIT 2019-2020 Page 44

https://www.kaggle.com/uciml/restaurant-data-with-consumer-ratings
https://paperswithcode.com/sota/collaborative-filtering-on-movielens-100k
https://paperswithcode.com/sota/collaborative-filtering-on-movielens-100k
https://towardsdatascience.com/how-did-we-build-book-recommender-systems-in-an-hour-part-2-k-nearest-neighbors-and-matrix-c04b3c2ef55c
https://towardsdatascience.com/how-did-we-build-book-recommender-systems-in-an-hour-part-2-k-nearest-neighbors-and-matrix-c04b3c2ef55c
https://towardsdatascience.com/k-nearest-neighbours-introduction-to-machine-learning-algorithms-18e7ce3d802a
https://towardsdatascience.com/k-nearest-neighbours-introduction-to-machine-learning-algorithms-18e7ce3d802a
https://www.jeremyjordan.me/autoencoders/
http://nicolas-hug.com/blog/matrix_facto_1

