

VISVESVARAYA TECHNOLOGICAL UNIVERSITY

BELAGAVI-590018, KARNATAKA

A PROJECT REPORT(15CS85) ON

 “Human Activity Recognition ”

 Submitted in partial fulfilment of the requirement

 for the award of the degree of

Bachelor of Engineering

In

Computer Science & Engineering

 For the academic year 2019-20

Submitted by

USN Name

1CR16CS021 ANKIT KESHRI

 1CR16CS006 ABHISHEK KUMAR

 1CR16CS005 ABHISHEK DASGUPTA

 1CR16IS120 VAIBHAV SANKRIT

Under the guidance of

Mrs. VIVIA JOHN

 ASSISTANT PROFESSOR, DEPARTMENT OF CSE, CMRIT BANGALORE

 Department of Computer Science & Engineering

CMR Institute of Technology, Bengaluru – 560 037

 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 CERTIFICATE

This is to Certify that the dissertation work “Human Activity Recognition using Machine

Learning” carried out by Mr. Ankit Keshri, Mr. Abhishek Kumar, Mr. Vaibhav Sankrit Gupta,

Mr. Abhishek Das Gupta having USN: 1CR16CS021, 1CR16CS006, 1CR16IS120, 1CR16CS005

respectively are bonafide students of CMRIT in partial fulfillment for the award of Bachelor

of Engineering in Computer Science & Engineering of the Visvesvaraya Technological

University, Belagavi, during the academic year 2019-20. It is certified that all

corrections/suggestions indicated for internal assessment have been incorporated in the

report deposited in the departmental library. The project report has been approved as it

satisfies the academic requirements in respect of Project work prescribed for the said degree.

Signature of Guide Signature of HOD Signature of Principal

Mrs. Mrs Vivia Jhon

Assistant Professor

Dr. Prem Kumar

Head of the Department

Dr. Sanjay

Jain

Principal

Dept. of CSE Dept. of CSE, CMRIT,

CMRIT, Bengaluru CMRIT, Bengaluru Bengaluru

DECLARATION

We, the students of Computer Science and Engineering, CMR Institute of Technology,

Bangalore declare that the work entitled "Human Activity Recognition using Machine

Learning" has been successfully completed under the guidance of Mrs Vivia John.,

Assistant Professor, Computer Science and Engineering Department, CMR Institute of

technology, Bangalore. This dissertation work is submitted in partial fulfillment of the

requirements for the award of Degree of Bachelor of Engineering in Computer Science

and Engineering during the academic year 2019 - 2020. Further the matter embodied

in the project report has not been submitted previously by anybody for the award of

any degree or diploma to any university.

Place: Bangalore

Date: 06-Jun-2020

Team members:

ANKIT KESHRI (1CR16CS021)

ABHISHEK KUMAR (1CR16CS006)

VAIBHAV SANKRIT(1CR16IS120)

ABHISHEK DAS GUPTA (1CR16CS005)

 ABSTRACT

The goal of our project is to detect the movement and actions of a person using image

detection taken from a website or the local computer itself. In our project , the image

is treated as an object. We are mainly focusing on four poses of human i.e sitting ,

sleeping ,standing and bending via the image.

Human activity recognition (HAR) aims to recognize activities from a series of

observations on the actions of subjects and the environmental conditions. The vision-

based HAR research is the basis of many applications including video surveillance,

health care, and human-computer interaction (HCI).

 Our project also focuses on the camera inbuilt in our laptop to work as a tracking

device or equipment where the movement of the human is tracked as soon as he

changes its position which makes our project more advanced and futuristic.

Finally, we investigate the directions for future research where its application will be

beneficial and deployable .

ACKNOWLEDGEMENT

We take this opportunity to express our sincere gratitude and respect to CMR

Institute of Technology, Bengaluru for providing us a platform to pursue our

studies and carry out our final year project.

We take great pleasure in expressing our deep sense of gratitude to Dr. Sanjay Jain,

Principal, CMRIT, Bangalore for his constant encouragement.

We would like to thank Dr. Prem Kumar , Professor and Head, Department of

Computer Science &Engineering, CMRIT, Bangalore, who has been a constant

support and encouragement throughout the course of this project.

We express our sincere gratitude and we are greatly indebted to Mrs Kavita ,

Assistant Professor, Department of Computer Science & Engineering, CMRIT,

Bangalore, for her invaluable co-operation and guidance at each point in the project

without whom quick progression in our project was not possible.

We are also deeply thankful to our project guide Mrs. Vivia John , Assistant

Professor, Department of Computer Science & Engineering, CMRIT, Bangalore, for

critically evaluating each step in the development of this project and providing

valuable guidance through our mistakes.

We also extend our thanks to all the faculty of Computer Science & Engineering who

directly or indirectly encouraged us.

Finally, we would like to thank our parents and friends for all their moral support

they have given us during the completion of this work.

TABLE OF CONTENTS Page No

CERTIFICATE (ii)

DECLARATION (iii)

ABSTRACT (iv)

ACKNOWLWDGEMENT (v)

TABLE OF CONTENTS (vi)

LIST OF FIGURES (vii)

1. Introduction 1

2. Literature Survey

2.1 Computer Vision & Digital Image Processing 5

2.2 OpenCV in Image Processing 8

2.3 Pattern Recognition and Classifiers 10

2.4 Moment Variants in Image processing 11

3. System Requirements & Specifications

3.1 General description 13

3.2 Functional Requirements 14

3.3 Non Functional Requirements 14

4. System Analysis

4.1 Feasibility study 17

4.2 Analysis 18

5. System Development

5.1 System Development Methodology 20

5.2 Design Using UML 22

5.3 Data Flow Diagram 23

5.4 Component Diagram 24

5.5 breakUse Case Diagram 25

5.6 Activity Diagram 26

6. Proposed System

6.1 Data Obtaining 27

6.2 Feature Engineering 27

6.3 Classification 29

6.4 Model Used 30

6.5 Explanation 32

6.6 Implementation Code 35

7. Result & Discussion 67

8. Testing

8.1 Quality Assurance 70

8.2 Quality Factors 70

8.3 Functional Test 71

9. Conclusion & Future Scope

9.1 Conclusion 72

9.2 Future Scope 73

References 74

LIST OF FIGURES

Figure

No.

Title Page

No.

1.1 Lighting Condition & Background 3

1.2 Based Gesture Recognition Flow Chart 4

2.1 General Pattern Recognition Steps 10

 5.1 Waterfall Model 22

5.2 Data Flow Diagram 23

5.3 Components Diagram 24

5.4 Use Case Diagram 26

6.1 Segmentation 30

6.2 Dilation 30

6.3 Erosion 32

6.4 Features Extraction 32

6.5 Detected Contours of the Image 33

6.6 Detected Convex Hull 34

7.1

 7.2

 7.3

7.4

WebUI

Activity Standing

Activity Sitting

Activity Bending

68

68

69

70

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 1

CHAPTER 1

INTRODUCTION

In today ‘s world, the computers have become an important aspect of life and are

used in various fields however, the systems and methods that we use to interact

with computers are outdated and have various issues, which we will discuss a little

later in this paper. Hence, a very new field trying to overcome these issues has

emerged namely HUMAN COMPUTER INTERACTIONS (HCI). Although,

computers have made numerous advancement in both fields of Software and

Hardware, Still the basic way in which Humans interact with computers remains

the same , using basic pointing device (mouse) and Keyboard or advanced Voice

Recognition System, or maybe Natural Language processing in really advanced

cases to make this communication more human and easy for us. Our proposed

project is activity recognition of humans based on its pose and movements.

 The proposed system uses images as objects where the images are broken into

2.5D coordinate axes and detection is based on the learning of the axes frames.

Human activities have an inherent hierarchical structure that indicates the different levels of it,

which can be considered as a three-level categorization. First, for the bottom level, there is an

atomic element and these action primitives constitute more complex human activities. After

the action primitive level, the action/activity comes as the second level. Finally, the complex

interactions form the top level, which refers to the human activities that involve more than two

persons and objects. In this paper, we follow this three-level categorization namely action

primitives, actions/activities, and interactions. This three-level categorization varies a little

from previous surveys and maintains a consistent theme. Action primitives are those atomic

actions at the limb level, such as “stretching the left arm,” and “raising the right leg.” Atomic

actions are performed by a specific part of the human body, such as the hands, arms, or upper

body part . With the upgrades of camera devices, especially the launch of RGBD cameras in

the year 2010, depth image-based representations have been a new research topic and have

drawn growing concern years.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 2

1.1 Digital Image Processing

Image processing is reckon as one of the most rapidly involving fields of the

software industry with growing applications in all areas of work. It holds the

possibility of developing the ultimate machine in the future, which would be able

to perform the visual function of living beings. As such, it forms the basis of all

kinds of visual automation.

1.2 Activity Detection and Recognition

A Human activity Recognition System recognizes the Shapes and or orientation

depending on implementation to task the system into performing some job.

Movement is a form of nonverbal information. A person can make numerous

movements at a time. As humans through vision perceive human gestures and for

computers we need an image and a camera, it is a subject of great interest for

computer vision researchers such as performing an action based on activity of the

person.

1.2.1 Detection

Activity detection is related to the position of a human at a given time in a stiff

image or sequence of images i.e. moving images. In case of a moving sequence, it

can be followed by tracking of the movement in the scene but this is more relevant

to the applications such as sign language. The underlying concept of activity

detection is that human eyes can detect objects, which machines cannot, with that

much accuracy as that of humans. From a machine point of view it is just like a

man fumble with his senses to find an object.

The factors, which make the activity detection task difficult to solve are:

Variations in image plane and pose

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 3

The human pose in the image varies due to its changing position whether it be

sitting , standing ,bending or sleeping .The rotation can be both in and out of the

plane.

Lighting Condition and Background

As shown in Figure 1.1 the accuracy of the image processed can vary depending

on the lighting condition in which the image was uploaded.

 Figure 1.1: Lighting Condition and Background

 1.2.2 Recognition

Human activity detection and recognition has been a significant subject in the field

of computer vision and image processing in the past 30 years. There have been

considerable achievements and numerous approaches developed in this field.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 4

Movement Recognition is a topic in computer science and language

technology with the goal of interpreting human actions via mathematical

algorithms using images and camera samples. However, the identification and

recognition of posture, gait, proxemics, and human behaviours is also the subject

of gesture recognition techniques. However, the typical approach of a recognition

system has been shown in the below figure:

 Figure 1.2: Hand Gesture Recognition Flow Chart

1.3 Objectives

The objectives of the project are:

1) Study and apply the needed tools namely:

a) Image downloaded from computer or locally saved.

b) Flask Deployed Server and python 3.6.8 Community

c) Algorithms for computer vision and machine learning.

2) Develop a front-end website to upload images to process.

3) Test the computer application and website running

4) Document the result of the project.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 5

1.4 Scope

The scope of our project is to develop a real time activity recognition system which

ultimately controls the image with a jpg extension and the camera samples of real-

time webcam method. During the project, four gestures were chosen to represent

four navigational commands that are sitting, standing, bending and sleeping. A

simple computer vision application was written for the

detection and recognition of the four gestures and their translation into the

corresponding commands for the actions and tracking. . Thereafter, the program

was tested on a webcam with actual movement of the person in real-time and the

results were observed.

CHAPTER 2

LITERATURE SURVEY

2.1 Computer Vision and Digital Image Processing

The sense of sight is arguably the most important of man's five senses. It provides

a huge amount of information about the world that is rich in detail and delivered at

the speed of light. However, human vision is not without its limitations, both

physical and psychological. Through digital imaging technology and computers,

man has transcending many visual limitations. He can see into far galaxies, the

microscopic world, the sub-atomic world, and even “observe” infrared, x-ray,

ultraviolet and other spectra for medical diagnosis, meteorology, surveillance, and

military uses, all with great success.

While computers have been central to this success, for the most part man is the sole

interpreter of all the digital data. For a long time, the central question has been

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 6

whether computers can be design to analyse and acquire information from images

autonomously in the same natural way humans can.

The main difficulty for computer vision as a relatively young discipline is the

current lack of a final scientific paradigm or model for human intelligence and

human vision itself on which to build a infrastructure for computer or machine

learning. The use of images has an obvious drawback. Humans perceive the world

in 3D, but current visual sensors like cameras capture the world in 2D images. The

result is the natural loss of a good deal of information in the captured images.

Without a proper paradigm to explain the mystery of human vision and perception,

the recovery of lost information (reconstruction of the world) from 2D images

represents a difficult

hurdle for machine vision. However, despite this limitation, computer vision has

progressed, riding mainly on the remarkable advancement of decade old digital

image processing techniques, using the science and methods contributed by other

disciplines such as optics, neurobiology, psychology, physics, mathematics,

electronics, computer science, artificial intelligence and others.

Computer vision techniques and digital image processing methods both draw the

proverbial water from the same pool, which is the digital image, and therefore

necessarily overlap. Image processing takes a digital image and subjects it to

processes, such as noise reduction, detail enhancement, or filtering, for producing

another desired image as the result. For example, the blurred image of a car

registration plate might be enhanced by imaging techniques to produce a clear

photo of the same so the police might identify the owner of the car. On the other

hand, computer vision takes a digital image and subjects it to the same digital

imaging techniques but for the purpose of analysing and understanding what the

image depicts. For example, the image of a building can be fed to a computer and

thereafter be identified by the computer as a residential house, a stadium, high-

rise office tower, shopping mall, or a farm barn.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 7

Russell and Norvig identified three broad approaches used in computer vision to

distil useful information from the raw data provided by images. The first is the

feature extraction approach, which focuses on simple computations applied

directly to digital images to measure some useable characteristic, such as size.

This relies on generally known image processing algorithms for noise reduction,

filtering, object detection, edge detection, texture analysis, computation of

optical flow, and segmentation, which techniques are commonly used to pre-

process images for subsequent image analysis. This is also considered as an

“uninformed” approach.

The second is the recognition approach, where the focus is on distinguishing and

labelling objects based on knowledge of characteristics that sets of similar objects

have in common, such as shape or appearance or patterns of elements, sufficient

to form classes. Here computer vision uses the techniques of artificial intelligence

in knowledge representation to enable a “classifier” to match classes to objects

based on the pattern of their features or structural description. A classifier has to

“learn” the patterns by being fed a training set of objects, their classes, achieving

the goal of minimizing mistakes, and maximizing successes through a systematic

process of improvement. There are many techniques in artificial intelligence that

can be used for object or pattern recognition, including statistical pattern

recognition, neural nets, genetic algorithms and fuzzy systems.

The third is the reconstruction approach, where the focus is on building a geometric

model of the world suggested by the image or images and which is used as a basis

for action. This corresponds to the stage of image understanding, which represents

the highest and most complex level of computer vision processing. Here the

emphasis is on enabling the computer vision system to construct internal models

based on the data supplied by the images and to discard or update these internal

models as they are verified against the real world or some other criteria. If the

internal model is consistent with the real world, then image understanding takes

place. Thus, image understanding requires the construction, manipulation and

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 8

control of models and now relies heavily upon the science and technology of

artificial intelligence.

2.2 Open CV in Image Processing

OpenCv is a widely used tool in computer vision. It is a computer vision library for

real-time applications, written in C and C++, which works with the Windows, Linux

and Mac platforms. It is freely available as open source software from

http://sourceforge.net/projects/opencvlibrary/.

OpenCv was start by Gary Brodsky at Intel in 1999 to encourage computer vision

research and commercial applications and, side-by-side with these, promote the

use of ever-faster processors from Intel. OpenCV contains optimised code for a

basic computer vision infrastructure so developers do not have to re-invent the

proverbial wheel. Brodsky and Koehler provide the basic tutorial documentation.

According to its website, OpenCV has been downloaded more than two million

times and has a user group of more than 40,000 members. This attests to its

popularity.

 A digital image is generally understood as a discrete number of light

intensities captured by a device such as a camera and organized into a two-

dimensional matrix of picture elements or pixels, each of which may be

represented by number and all of which may be stored in a particular file format

(such as jpg or gif). OpenCV goes beyond representing an image as an array of

pixels. It represents an image as a data structure called an IplImage that makes

immediately accessible useful image data or fields, such as:

http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/opencvlibrary/

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 9

● width – an integer showing the width of the image in pixels

● height – an integer showing the height of the image in pixels

● imageData – a pointer to an array of pixel values

● nChannels – an integer showing the number of colours per pixel

● depth – an integer showing the number of bits per pixel

● widthStep – an integer showing the number of bytes per image row

● geSize – an integer showing the size of in bytes

● roi – a pointer to a structure that defines a region of interest within the image.

OpenCV has a module containing basic image processing and computer vision

algorithms. These include:

● smoothing (blurring) functions to reduce noise,

● dilation and erosion functions for isolation of individual elements,

● flood fill functions to isolate certain portions of the image for further

● processing,

● filter functions, including Sobel, Laplace and Canny for edge detection,

● Hough transform functions for finding lines and circles,

● Affine transform functions to stretch, shrink, warp and rotate images,

● Integral image function for summing sub regions (computing Haar wavelets),

● Histogram equalization function for uniform distribution of intensity values,

● Contour functions to connect edges into curves,

● Bounding boxes, circles and ellipses,

● Moments functions to compute Hu's moment invariants,

● Optical flow functions (Lucas-Kanade method),

● Motion tracking functions (Kalman filters), and

● Face detection/ Haar classifier.

OpenCV also has an ML (machine learning) module containing well-known

statistical classifiers and clustering tools. These include:

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 10

● Normal/ naïve Bayes classifier,

● Decision trees classifier,

● Boosting group of classifiers,

● Neural networks algorithm, and

2.3 Pattern Recognition and Classifiers

In computer, vision a physical object maps to a particular segmented region in the

image from which object descriptors or features may be derive. A feature is any

characteristic of an image, or any region within it, that can be measure. Objects

with common features may be group into classes, where the combination of

features may be considered a pattern. Object recognition may be understood to

be the assignment of classes to objects based on their respective patterns. The

program that does this assignment is called a classifier.

The general steps in pattern recognition may be summarized in Figure below:

 Fig 2.1 Flow Chart

The most important step is the design of the formal descriptors because choices

have to be made on which characteristics, quantitative or qualitative, would best

suit the target object and in turn determines the success of the classifier.

In statistical pattern recognition, quantitative descriptions called features are

used. The set of features constitutes the pattern vector or feature vector, and the

set of all possible patterns for the object form the pattern space X (also known as

feature space). Quantitatively, similar objects in each class will be located near

each other in the feature space forming clusters, which may ideally be separated

from dissimilar objects by lines or curves called discrimination functions.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 11

Determining the most suitable discrimination function or discriminant to use is

part of classifier design.

A statistical classifier accepts n features as inputs and gives 1 output, which is the

classification or decision about the class of the object. The relationship between

the inputs and the output is a decision rule, which is a function that puts in one

space or subset those feature vectors that are associated with a particular output.

The decision rule is based on the particular discrimination function used for

separating the subsets from each other.

The ability of a classifier to classify objects based on its decision rule may be

understood as classifier learning, and the set of the feature vectors (objects)

inputs and corresponding outputs of classifications (both positive and negative

results) is called the training set. It is expected that a well-designed classifier

should get 100% correct answers on its training set. A large training set is generally

desirable to optimize the training of the classifier, so that it may be tested on

objects it has not encountered before, which constitutes its test set. If

the classifier does not perform well on the test set, modifications to the design of

the recognition system may be needed.

2.4 Moment Invariants in Image Processing

As mentioned previously, feature extraction is one approach used in computer

vision. According to A.L.C. Baraka, feature extraction refers to the process of

distilling a limited number of features that would be sufficient to describe a large

set of data, such as the pixels in a digital image . The idea is to use the features as

a unique representation of the image.

Since a digital image is a two-dimensional matrix of pixels values, region-based object

descriptions are affected by geometric transformations, such as scaling, translation,

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 12

and rotation. For example, the numerical features describing the shape of a 2D object

would change if the shape of the same object changes as seen from a different angle

or perspective. However, to be useful in computer vision applications, object

descriptions must be able to identify the same object irrespective of its position,

orientation, or distortion.

One of the most popular quantitative object descriptors are moments. Hu first

formulated the concept of statistical characteristics or moments that would be

indifferent to geometric transformations in 1962. Moments are polynomials of

increasing order that describe the shape of a statistical distribution . Its exponent

indicates the order of a moment. The geometric moments of different orders

represent different spatial characteristics of the image intensity distribution. A set of

moments can thus form a global shape descriptor of an image.

Hu proposed that the following seven functions (called 2D moment invariants) were

invariant to translation, scale variation, and rotation of an image:

CHAPTER 3

 SYSTEM REQUIREMENTS SPECIFICATION

A System Requirement Specification (SRS) is an organization’s understanding of a

customer or potential client’s system requirements and dependencies at a particular

point prior to any actual design or development work. The information gathered

during the analysis is translated into a document that defines a set of requirements.

It gives the brief description of the services that the system should provide and the

constraints under which, the system should operate. Generally, SRS is a document

that completely describes what the proposed software should do without describing

how the software will do it. A two-way insurance policy assures that both the client

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 13

and the organization understand the other’s requirements from that perspective at a

given point in time.

SRS document itself states in precise and explicit language those functions and

capabilities a software system (i.e., a software application, an ecommerce website and

so on) must provide, as well as states any required constraints by which the system

must abide. SRS also functions as a blueprint for completing a project with as little cost

growth as possible. SRS is often referred to as the “parent” document because all

subsequent project management documents, such as design specifications,

statements of work, software architecture specifications, testing and validation plans,

and documentation plans, are related to it.

Requirement is a condition or capability to which the system must conform.

Requirement Management is a systematic approach towards eliciting, organizing and

documenting the requirements of the system clearly along with the applicable

attributes. The elusive difficulties of requirements are not always obvious and can

come from any number of sources.

3.1 General Description

In this section of the presented thesis, the introduction of software product under

consideration has been presented. It presents the basic characteristics and factors

influencing the software product or system model and its requirements.

3.1.1 Product Perspective

In this project or research work, we have proposed a highly robust and efficient

mechanism for image detection using human activity system. The proposed system

has been emphasized on developing an efficient scheme that can accomplish activity

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 14

recognition without introducing any training related overheads. The proposed system

has to take into consideration of geometrical shape of human pose and based on

defined thresholds and real time parametric variation, the segmentation for human

position is accomplished. Based on retrieved specific shape, certain application-

oriented commands have to be generated. The predominant uniqueness of the

proposed scheme is that it does not employ any kind of prior training and it is

functional in real time without having any databases or training datasets. Unlike

tradition approaches of images, datasets-based recognition system; this approach

achieves human activity recognition in real time, and responds correspondingly. This

developed mechanism neither introduce any computational complexity nor does it

cause any user interferences to achieve tracing of human gesture.

3.1.2 User Characteristics

The user should have at least a basic knowledge of windows and web browsers, such

as install software like Python Pycharm, Python 3.6.8 etc. and executing a program,

and the ability to follow on screen instructions. The user will not need any technical

expertise in order to use this program.

3.2 Functional Requirement

● The image used will be uploaded into the website from where result will be displayed

● with the machine accuracy.

● The software will be able to produce multiple frames and display the image in the

RGB colour space.

● The software will be able to detect the contours of the detected positions.

● The software, which act as an intermediate in passing these, processed image in

order to control the image sent.

3.3 Non-Functional Requirement

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 15

● Usability: The user is facilitated with the control section for the entire process in

which they can arrange the position of hand at the centre of ROI under

consideration, the variation of palm position and respective command generation

etc. can be effectively facilitated by mean of user interface. The implementation

and calibration of camera and its resolution can also be done as per quality and

preciseness requirement.

The frame size, flow rate and its command variation with respect to threshold

developed and colour component of hand colour, can be easily calibrated by

means of certain defined thresholds.

● Security and support: Application will be permissible to be used only in secure

network so there is less feasibility of insecurity over the functionality of the

application. On the other hand, the system functions in a real time application

scenario, therefore the camera, colour and platform compatibility is must in this

case. IN case of command transfer using certain connected devices or wireless

communication, the proper port assignment would also be a predominant factor to

be consider.

● Maintainability: The installation and operation manual of the project will

be provided to the user.

● Extensibility: The project work is also open for any future modification

and hence the work could be define as the one of the extensible work.

3.5 External Interface Requirement

An interface description for short is a specification used for describing a software

component's interface. IDLs are commonly used in remote procedure call software. In

these issues, the machines on moreover last part of the "link" might be utilizing

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 16

Dissimilar Interface Description recommends a bridge between the two diverse systems.

These descriptions are classified into following types:

● User Interface: The external or operating user is an individual who is interested

to introduce a novel Algorithm for shape based hand gesture recognition in real

time application scenario. The user interface would be like axis presenting real

time movement of human hand and its relative position with respect to defined

centroid or morphological thresholds.

● Restoration with Text Removal Software Interface: The Operating Systems

can be any version of Windows, Linux, UNIX or Mac.

● Hardware Interface: In the execution of this project, the hardware interface

used is a normal 32/64 bit operating system supported along with better

integration with network interface card for better communication with other

workstations. For better and precise outcome, a high definition camera with

calibrated functioning with

CHAPTER 4

SYSTEM ANALYSIS

Analysis is the process of finding the best solution to the problem. System analysis is

the process by which we learn about the existing problems, define objects and

requirements and evaluates the solutions. It is the way of thinking about the organization

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 17

and the problem it involves, a set of technologies that helps in solving these problems.

Feasibility study plays an important role in system analysis, which gives the target for

design and development.

4.1 Feasibility Study

All systems are feasible when provided with unlimited resource and infinite time. But

unfortunately, this condition does not prevail in practical world. So it is both necessary

and prudent to evaluate the feasibility of the system at the earliest possible time. Months

or years of effort, thousands of rupees and untold professional embarrassment can be

averted if an ill- conceived system is recognized early in the definition phase. Feasibility

& risk analysis are related in many ways. If project risk is great, the feasibility of

producing quality software is reduced. In this case three key considerations involved in

the feasibility analysis are:

• ECONOMICAL FEASIBILITY

• TECHNICAL FEASIBILITY

• SOCIAL FEASIBILITY

4.1.1 Economic Feasibility

This study is carried out to check the economic impact that the system will have on the

organization. The amount of fund that the company can pour into the research and

development of the system is limited. The expenditures must be justified. Thus, the

developed system as well within the budget and this was achieved because most of the

technologies used are freely available. Only the customized products had to be

purchased.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 18

4.1.2 Technical Feasibility

This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand on the

available technical resources. This will lead to high demands on the available technical

resources. This will lead to high demands being placed on the client. The developed

system must have a modest requirement, as only minimal or null changes are required

for implementing this system.

4.1.3 Social Feasibility

The aspect of study is to check the level of acceptance of the system by the user. This

includes the process of training the user to use the system efficiently. The user must not

feel threatened by the system, instead must accept it as a necessity. The level of

acceptance by the users solely depends on the methods that are employed to educate the

user about the system and to make him familiar with it. His level of confidence must be

raised so that he is also able to make some constructive criticism, which is welcome, as

he is the final user of the system.

4.2 Analysis

4.2.1 Performance Analysis

For the complete functionality of the project work, the project is run with the help of

healthy networking environment. Performance analysis is done to find out whether the

proposed system. It is essential that the process of performance analysis and definition

must be conduct in parallel.

4.2.2 Technical Analysis

System is only beneficial only if it can be turn into information systems that will meet

the organization’s technical requirement. Simply stated this test of feasibility asks

whether the system will work or not when developed & installed, whether there are

implementation. Regarding all these issues in technical analysis there are several

points to focus on:

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 19

Changes to bring in the system: All changes should be in positive direction, there

would be increased level of efficiency and better customer service.

Required skills: Platforms & tools used in this project are widely used. Therefore, the

skilled work force is readily available in the industry.

Acceptability: The structure of the system is kept feasible enough so that there

should not be any problem from the user’s point of view.

4.2.3 Economic Analysis

Economic analysis is perform to evaluate the development cost weighed against the

ultimate income or benefits derived from the developed system. For running this system,

we need not have any routers, which are highly economical. Therefore, the system is

economically feasible enough.

CHAPTER 5

SYSTEM DESIGN

Design is a meaningful engineering representation of something that is to be built. It is

the most crucial phase in the developments of a system. Software design is a process

through which the requirements are translated into a representation of software. Design

is a place where design is fostered in software Engineering. Based on the user

requirements and the detailed analysis of the existing system, the new system must be

designed. This is the phase of system designing. Design is the perfect way to accurately

translate a customer’s requirement in the finished software product. Design creates a

representation or model, provides details about software data structure, architecture,

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 20

interfaces and components that are necessary to implement a system. The logical system

design arrived at because of systems analysis is converted into physical system design.

5.1 System Development methodology

System development method is a process through which a product will get completed

or a product gets rid from any problem. Software development process is described as

a number of phases, procedures and steps that gives the complete software. It follows

series of steps, which are used for product progress. The development method followed

in this project is waterfall model.

5.1.1 Model Phases

The waterfall model is a sequential software development process, in which progress is

seen as flowing steadily downwards (like a waterfall) through the phases of

Requirement initiation, Analysis, Design, Implementation, Testing and maintenance.

Requirement Analysis: This phase is concerned about collection of requirements of

the system. This process involves generating document and requirement review.

System Design: Keeping the requirements in mind the system specifications are

translate in to a software representation. In this phase, the designer emphasizes on-

algorithm, data structure, software architecture etc.

Coding: In this phase, programmer starts his coding in order to give a full sketch of

product. In other words, system specifications are only convert in to machine-readable

compute code.

Implementation: The implementation phase involves the actual coding or

programming of the software. The output of this phase is typically the library,

executables, user manuals and additional software documentation

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 21

Testing: In this phase, all programs (models) are integrated and tested to ensure that the

complete system meets the software requirements. The testing is concerned with

verification and validation.

Maintenance: The maintenance phase is the longest phase in which the software is

updated to fulfil the changing customer need, adapt to accommodate change in the

external environment, correct errors and oversights previously undetected in the testing

phase,

5.1.2 Advantages of Waterfall Model

● Clear project objectives.

● Stable project requirements.

● Progress of system is measurable.

● Strict sign-off requirements.

● Helps you to be perfect.

● Logic of software development is clearly understood.

● Production of a formal specification.

● Better resource allocation.

● Improves quality. The emphasis on requirements and design before writing a single

line of code ensures minimal wastage of time and effort and reduces the risk of

schedule slippage.

•

• Less human resources required as once one phase is finished those people can

start working on to the next phase

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 22

 Fig 5.1 Waterfall Model

5.2 Design Using UML

Designing UML diagram specifies, how the process within the system communicates

along with how the objects with in the process collaborate using both static as well as

dynamic UML diagrams since in this ever-changing world of Object Oriented

application development, it has been getting harder and harder to develop and manage

high quality applications in reasonable amount of time. Because of this challenge and

the need for a universal object modelling language

everyone could use, the Unified Modelling Language (UML) is the Information

industries version of blue print. It is a method for describing the systems architecture in

detail. Easier to build or maintains system, and to ensure that the system will hold up to

the requirement changes.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 23

5.3 Data Flow Diagram

The DFD is also called as bubble chart. It is a simple graphical formalism that can be

used to represent a system in terms of the input data to the system, various processing

carried out on these data, and the output data is generate by the system.

 Fig 5.2 Data Flow Model

The data flow diagram essentially shows how the data control flows from one module

to another. Unless the input filenames are correctly given the program cannot proceed

to the next module. Once the user gives, the correct input filenames parsing is done

individually for each file. The required information is taken in parsing and an adjacency

matrix is generated for that. From the adjacency matrix, a lookup table is generated

giving paths for blocks. In addition, the final sequence is computed with the

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 24

lookup table and the final required code is generated in an output file. In case of

multiple file inputs, the code for each is generated and combined together.

5.4 COMPONENT DIAGRAM

 In the Unified Modelling Language, a component diagram depicts how components are

wired together to form larger components and or software systems. They are used to

illustrate the structure of arbitrarily complex systems.

 Fig 5.3 Component Diagram

The component diagram for the decentralized system ideally consists of different

modules that are represented together via a common module for the user. The user is

required to have the input files in the current folder where the application is being used.

It is interesting to note that all the sequence of activities that are taking place are via this

module itself, i.e. the parsing and the process of computing the final sequence. The

parsing redirects across the other modules until the final code is generated.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 25

5.5 Use Case Diagram

A use case defines a goal-oriented set of interactions between external entities and the

system under consideration. The external entities, which interact with the system, are

its actors. A set of use cases describe the complete functionality of the system at a

particular level of detail and the use case diagram can graphically denote it.

A use case diagram at its simplest is a representation of a user's interaction with the

system that shows the relationship between the user and the different use cases in which

the user is involved. A use case diagram can identify the different types of users of a

system and the different use cases and will often be accompanied by other types of

diagrams as well.

In software and systems engineering, a use case is a list of steps, typically defining

interactions between a role (known in Unified Modelling Language (UML) as an

"actor") and a system, to achieve a goal. The actor can be a human, an external system,

or time.

In systems engineering, use cases are use at a higher level than within software

engineering, often representing missions or stakeholder goals. The detailed

requirements may then be capture in Systems Modelling Language (SysML) or as

contractual statements.

The Sequence of activities that are carried out are the same as the other diagrams .Use

case for this module indicates the users interaction with the system as a whole rather

than individual modules .All the encryption mechanisms are carried out via the login

page that redirects the user to the particular functionality that he or she wishes to

implement.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 26

5.6 Activity Diagram

An activity diagram shows the sequence of steps that make up a complex process. An

activity is shown as a round box containing the name of the operation. An outgoing

solid arrow attached to the end of the activity symbol indicates a transition triggered by

the completion.

Activity diagrams are graphical representations of workflows of stepwise activities and

actions with support for choice, iteration and concurrency. In the Unified Modelling

Language, activity diagrams are intended to model both computational and

organisational processes (i.e. workflows). Activity diagrams show the overall flow of

control.

 Fig 5.4 Use Case Diagram

Activity diagrams are constructed from a limited number of shapes, connected with

arrows. The most important shape types:

● rounded rectangles represent actions;

● diamonds represent decisions;

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 27

● bars represent the start (split) or end (join) of concurrent activities;

● a black circle represents the start (initial state) of the workflow;

● An encircled black circle represents the end (final state).

The basic purposes of activity diagrams are similar to other four diagrams. It captures

the dynamic behaviour of the system. Other four diagrams are used to show the message

flow from one object to another but activity diagram is used to show message flow from

one activity to another.

Activity is a particular operation of the system. Activity diagrams are not only use for

visualizing dynamic nature of a system but they are also used to construct the executable

system by using forward and reverse engineering techniques. The only missing thing in

activity diagram is the message part.

CHAPTER 6

PROPOSED SYSTEM

6.1 Data Obtaining

The initial move is to capture the image from camera and to define a region of Interest

in the frame, it is important as the image can contain a lot of variables and these variables

can result in unwanted results and the data that needs to be processed is reduced to a

large extent. To capture the image a web-camera is used that continuously captures

frames and is used to get the raw data for processing. The input picture we have here is

uint8. The Procured image is RGB and must be process before i.e. pre-processed before

the components are separated and acknowledgement is made.

6.2 Feature Engineering

Our preliminary analysis emphasizes on the dire need of new features. We transform the raw

data to a new feature space, where the classification task is better defined. This is an

extremely crucial step since the choice of our new features strongly influence the final

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 28

prediction . Human Activity Recognition: Feature generation To enhance the feature space,

we calculated the pitch, roll and normal value for each of the accelerometer using the

following equations,

𝑝𝑖𝑡𝑐ℎ = atan (𝑦 √𝑥 2+𝑧 2)

𝑟𝑜𝑙𝑙 = atan (−𝑥/ 𝑧)

𝑛𝑜𝑟𝑚 = √𝑥 2 + 𝑦 2 + 𝑧 2

This increased the feature space from 12 attributes to 24 attributes. Segmentation For

segmentation, our approach was to consider sliding windows [5], of various

sizes, to aggregate the data points within the window. This helps us capture the chronological

variation between the data points. Performing this activity, mitigates the risk that the

classifier itself isn’t temporal in nature. Figure 6. Sliding Window For our analysis, we

considered both overlapping and non-overlapping sliding windows. We found that the

accuracy for prediction for non-overlapping windows is higher, however the confidence

interval is also wide. Here, if the window size is n, then the new data set would be 1/n the

original data set. This increases the risks of over-fitting, due to decrease in training points.

Next, we took overlapping windows, wherein though the size of dataset still reduces, it is

greater than 1/n. Also overlapping windows ensure that the transition of time is maintained

and the data points are not independent of each other. We used mean and standard deviation

as aggregation functions initially and performed segmentation on raw dataset. This new

dataset was then tested against Naïve Bayes and Random Forest, the top two classifiers from

our preliminary analysis. Figure 7. Non-overlapping windows vs. overlapping window In

both the cases, we found the peak to be around window size of 13-14, i.e. 1.95s -2.10s.

Further to confirm our findings, we tested the overlapping window for newly generated

features. Again, Human Activity Recognition: Group C | 6 this time we considered the mean

and variance for each attribute across the window. This time we only considered Random

Forest, since it had given us the best results in previous case. Figure 8. Accuracy across

different window sizes for Random Forest with new features Finally, we concluded that

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 29

window size of 14 gave us the best results. Next, we moved on to feature extraction. 7.3.

Feature Extraction Having multiple accelerometer increases redundancy in the data being

observed. Thus, as the first step of feature extraction we decided to test which accelerometers

give us new information and are relevant as opposed to the redundant ones. For carry out this

analysis, we took all the 48 new features, and grouped them by the accelerometer number.

Then we performed the performance test on the exhaustive combination of sensors using

Random Forest. Accuracy comparison for exhaustive combination set of sensors. From the

Figure 9, it is clear that if we were to consider single accelerometer then sensor 1, the

accelerometer placed on waist gives the best results. Also, we find that the best results are

obtained using combination of sensor 1 and 3, i.e. ones placed on waist and right arm. All our

further analysis is carried by considered just the features corresponding to sensor 1 and 3. In

our next step to reduce the feature space, we carried our principle component analysis as well

as backward elimination of features.

Initially we performed backward feature elimination and found that the accuracy peaked at

feature subset of size 11. The attributes in consideration at this point were, mean and variance

of pitch and normal of sensor 1 and 3 and the variance of roll of both sensor but mean of roll

of only sensor 1. To evaluate further, we decided to perform principle components analysis,

to check if that yields better performance. We found that even with PCA, the optimal number

of components considered would be 12.

6.3 Classification

Classification was a continuous ongoing process in our analysis. We performed 4-folds cross

validation to ensure that we were not over-fitting. Instead of typical 10-cross validation, we

took 4- folds by considering each subject as test case for one iteration and the remaining as

training set. While performing cross validation to retain the temporal aspect of the data, we

did not randomize our folds. In case of 10-folds, the accuracy of the classifier would increase,

but that would be overfitting since a section of the test subject’s data would already be there

in the training set. Initially, we considered four classification methods for HAR analysis,

however we kept on eliminating them if there was no significant improvement in prediction

power, with increasing complexity of feature transformation. Human Activity Recognition:

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 30

the final comparison between the models generated by random forest for raw attributed and

processed final 11 attributes. They show the error rate of the models as well as the variable

importance plot. Model for these plots was trained using data from all the four subjects.

6.4 Model Used

RECURRENT NEUTRAL NETWORKS: RNN’s are a type of artificial neural network

designed to recognise patterns in a sequence of data, such as text, grammar, handwriting,

spoken word or numeric time series data emanating from sensors, stock markets &

government agencies.

Fig 6.1 RNN Flow

LONG SHORT-TERM MEMORY NETWORKS: They are special kind of recurrent

neutral networks. They are capable of learning and handling long term dependencies.

The compact forms of the equations for the forward pass of an LSTM unit with a forget gate

are:

Fig 6.2 LSTM EQUATIONS

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 31

where the initial values are and the operator denotes the Hadamard product (element-

wise product). The subscript indexes the time step.

Variables

• : input vector to the LSTM unit

• : forget gate's activation vector

• : input/update gate's activation vector

• : output gate's activation vector

• : hidden state vector also known as output vector of the LSTM unit

• : cell state vector

• : weight matrices and bias vector parameters which need to be learned during

training.

where the superscripts and refer to the number of input features and number of hidden

units, respectively.

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 32

Fig 6.3 Data Used

6.5 Explanation

LSTM is a recurrent neural network (RNN) architecture that REMEMBERS values over

arbitrary intervals. LSTM is well-suited to classify, process and predict time series given time

lags of unknown duration. Relative insensitivity to gap length gives an advantage to LSTM

over alternative RNNs, hidden Markov models and other sequence learning methods.

RNN structure

Fig 6.4 RNN Structure

Random Forest SVM

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 33

The structure of RNN is very similar to hidden Markov model. However, the main difference

is with how parameters are calculated and constructed. One of the advantage with LSTM

is insensitivity to gap length. RNN and HMM rely on the hidden state before emission /

sequence. If we want to predict the sequence after 1,000 intervals instead of 10, the model

forgot the starting point by then.

Fig 6.5 Cell Diagram

LSTM Cell

The long-term memory is usually called the cell state. The looping arrows indicate recursive

nature of the cell. This allows information from previous intervals to be stored with in the

LSTM cell. Cell state is modified by the forget gate placed below the cell state and also adjust

by the input modulation gate. From equation, the previous cell state forgets by multiply with

the forget gate and adds new information through the output of the input gates.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 34

Forget Gate Equation

The remember vector is usually called the forget gate. The output of the forget

gate tells the cell state which information to forget by multiplying 0 to a position

in the matrix. If the output of the forget gate is 1, the information is kept in the cell state. From

equation, sigmoid function is applied to the weighted input/observation and previous hidden

state.

The save vector Is usually called the input gate. These gates determine which information

should enter the cell state / long-term memory. The important parts are the activation functions

for each gates. The input gate is a sigmoid function and have a range of [0,1]. Because the

equation of the cell state is a summation between the previous cell state, sigmoid function

alone will only add memory and not be able to remove/forget memory. If you can only add a

float number between [0,1], that number will never be zero / turned-off / forget. This is why

the input modulation gate has an tanh activation function. Tanh has a range of [-1, 1] and

allows the cell state to forget memory.

Fig 6.6 LSTM NETWORKING

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 35

The first sigmoid activation function is the forget gate. Which information should be

forgotten from the previous cell state (Ct-1). The second sigmoid and first tanh activation

function is our input gate. Which information should be saved to the cell state or should be

forgotten? The last sigmoid is the output gate and highlights which information should be

going to the next hidden state.

 Proposed System Implementation Code

import collections

import os

import time

import numpy as np

import tensorflow as tf

from object_detection.core import box_list

from object_detection.core import box_list_ops

from object_detection.core import keypoint_ops

from object_detection.core import standard_fields as fields

from object_detection.metrics import coco_evaluation

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 36

from object_detection.utils import label_map_util

from object_detection.utils import object_detection_evaluation

from object_detection.utils import ops

from object_detection.utils import shape_utils

from object_detection.utils import visualization_utils as vis_utils

slim = tf.contrib.slim

EVAL_METRICS_CLASS_DICT = {

 'coco_detection_metrics':

 coco_evaluation.CocoDetectionEvaluator,

 'coco_mask_metrics':

 coco_evaluation.CocoMaskEvaluator,

 'oid_challenge_detection_metrics':

 object_detection_evaluation.OpenImagesDetectionChallengeEvaluator,

 'pascal_voc_detection_metrics':

 object_detection_evaluation.PascalDetectionEvaluator,

 'weighted_pascal_voc_detection_metrics':

 object_detection_evaluation.WeightedPascalDetectionEvaluator,

 'pascal_voc_instance_segmentation_metrics':

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 37

 object_detection_evaluation.PascalInstanceSegmentationEvaluator,

 'weighted_pascal_voc_instance_segmentation_metrics':

 object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator,

 'oid_V2_detection_metrics':

 object_detection_evaluation.OpenImagesDetectionEvaluator,

}

EVAL_DEFAULT_METRIC = 'coco_detection_metrics'

def write_metrics(metrics, global_step, summary_dir):

 tf.logging.info('Writing metrics to tf summary.')

 summary_writer = tf.summary.FileWriterCache.get(summary_dir)

 for key in sorted(metrics):

 summary = tf.Summary(value=[

 tf.Summary.Value(tag=key, simple_value=metrics[key]),

])

 summary_writer.add_summary(summary, global_step)

 tf.logging.info('%s: %f', key, metrics[key])

 tf.logging.info('Metrics written to tf summary.')

def visualize_detection_results(result_dict,

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 38

 tag,

 global_step,

 categories,

 summary_dir='',

 export_dir='',

 agnostic_mode=False,

 show_groundtruth=False,

 groundtruth_box_visualization_color='black',

 min_score_thresh=.5,

 max_num_predictions=20,

 skip_scores=False,

 skip_labels=False,

 keep_image_id_for_visualization_export=False):

detection_fields = fields.DetectionResultFields

 input_fields = fields.InputDataFields

 if not set([

 input_fields.original_image,

 detection_fields.detection_boxes,

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 39

 detection_fields.detection_scores,

 detection_fields.detection_classes,

]).issubset(set(result_dict.keys())):

 raise ValueError('result_dict does not contain all expected keys.')

 if show_groundtruth and input_fields.groundtruth_boxes not in result_dict:

 raise ValueError('If show_groundtruth is enabled, result_dict must contain '

 'groundtruth_boxes.')

 tf.logging.info('Creating detection visualizations.')

 category_index = label_map_util.create_category_index(categories)

 image = np.squeeze(result_dict[input_fields.original_image], axis=0)

 if image.shape[2] == 1: # If one channel image, repeat in RGB.

 image = np.tile(image, [1, 1, 3])

 detection_boxes = result_dict[detection_fields.detection_boxes]

 detection_scores = result_dict[detection_fields.detection_scores]

 detection_classes = np.int32((result_dict[

 detection_fields.detection_classes]))

 detection_keypoints = result_dict.get(detection_fields.detection_keypoints)

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 40

 detection_masks = result_dict.get(detection_fields.detection_masks)

 detection_boundaries = result_dict.get(detection_fields.detection_boundaries)

 # Plot groundtruth underneath detections

 if show_groundtruth:

 groundtruth_boxes = result_dict[input_fields.groundtruth_boxes]

 groundtruth_keypoints = result_dict.get(input_fields.groundtruth_keypoints)

 vis_utils.visualize_boxes_and_labels_on_image_array(

 image=image,

 boxes=groundtruth_boxes,

 classes=None,

 scores=None,

 category_index=category_index,

 keypoints=groundtruth_keypoints,

 use_normalized_coordinates=False,

 max_boxes_to_draw=None,

 groundtruth_box_visualization_color=groundtruth_box_visualization_color)

 vis_utils.visualize_boxes_and_labels_on_image_array(

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 41

 image,

 detection_boxes,

 detection_classes,

 detection_scores,

 category_index,

 instance_masks=detection_masks,

 instance_boundaries=detection_boundaries,

 keypoints=detection_keypoints,

 use_normalized_coordinates=False,

 max_boxes_to_draw=max_num_predictions,

 min_score_thresh=min_score_thresh,

 agnostic_mode=agnostic_mode,

 skip_scores=skip_scores,

 skip_labels=skip_labels)

 if export_dir:

 if keep_image_id_for_visualization_export and result_dict[fields.

 InputDataFields()

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 42

 .key]:

 export_path = os.path.join(export_dir, 'export-{}-{}.png'.format(

 tag, result_dict[fields.InputDataFields().key]))

 else:

 export_path = os.path.join(export_dir, 'export-{}.png'.format(tag))

 vis_utils.save_image_array_as_png(image, export_path)

 summary = tf.Summary(value=[

 tf.Summary.Value(

 tag=tag,

 image=tf.Summary.Image(

 encoded_image_string=vis_utils.encode_image_array_as_png_str(

 image)))

])

 summary_writer = tf.summary.FileWriterCache.get(summary_dir)

 summary_writer.add_summary(summary, global_step)

 tf.logging.info('Detection visualizations written to summary with tag %s.',

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 43

 tag)

def _run_checkpoint_once(tensor_dict,

 evaluators=None,

 batch_processor=None,

 checkpoint_dirs=None,

 variables_to_restore=None,

 restore_fn=None,

 num_batches=1,

 master='',

 save_graph=False,

 save_graph_dir='',

 losses_dict=None,

 eval_export_path=None):

 if max_number_of_evaluations and max_number_of_evaluations <= 0:

 raise ValueError(

 '`number_of_steps` must be either None or a positive number.')

 if not checkpoint_dirs:

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 44

 raise ValueError('`checkpoint_dirs` must have at least one entry.')

 last_evaluated_model_path = None

 number_of_evaluations = 0

 while True:

 start = time.time()

 tf.logging.info('Starting evaluation at ' + time.strftime(

 '%Y-%m-%d-%H:%M:%S', time.gmtime()))

 model_path = tf.train.latest_checkpoint(checkpoint_dirs[0])

 if not model_path:

 tf.logging.info('No model found in %s. Will try again in %d seconds',

 checkpoint_dirs[0], eval_interval_secs)

 elif model_path == last_evaluated_model_path:

 tf.logging.info('Found already evaluated checkpoint. Will try again in '

 '%d seconds', eval_interval_secs)

 else:

 last_evaluated_model_path = model_path

 global_step, metrics = _run_checkpoint_once(

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 45

 tensor_dict,

 evaluators,

 batch_processor,

 checkpoint_dirs,

 variables_to_restore,

 restore_fn,

 num_batches,

 master,

 save_graph,

 save_graph_dir,

 losses_dict=losses_dict,

 eval_export_path=eval_export_path)

 write_metrics(metrics, global_step, summary_dir)

 number_of_evaluations += 1

 if (max_number_of_evaluations and

 number_of_evaluations >= max_number_of_evaluations):

 tf.logging.info('Finished evaluation!')

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 46

 break

 time_to_next_eval = start + eval_interval_secs - time.time()

 if time_to_next_eval > 0:

 time.sleep(time_to_next_eval)

 return metrics

def _scale_box_to_absolute(args):

 boxes, image_shape = args

 return box_list_ops.to_absolute_coordinates(

 box_list.BoxList(boxes), image_shape[0], image_shape[1]).get()

def _resize_detection_masks(args):

 detection_boxes, detection_masks, image_shape = args

 detection_masks_reframed = ops.reframe_box_masks_to_image_masks(

 detection_masks, detection_boxes, image_shape[0], image_shape[1])

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 47

 return tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)

def _resize_groundtruth_masks(args):

 mask, image_shape = args

 mask = tf.expand_dims(mask, 3)

 mask = tf.image.resize_images(

 mask,

 image_shape,

 method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,

 align_corners=True)

 return tf.cast(tf.squeeze(mask, 3), tf.uint8)

def _scale_keypoint_to_absolute(args):

 keypoints, image_shape = args

 return keypoint_ops.scale(keypoints, image_shape[0], image_shape[1])

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 48

def result_dict_for_single_example(image,

 key,

 detections,

 groundtruth=None,

 class_agnostic=False,

 scale_to_absolute=False): if groundtruth:

 max_gt_boxes = tf.shape(

 groundtruth[fields.InputDataFields.groundtruth_boxes])[0]

 for gt_key in groundtruth:

 # expand groundtruth dict along the batch dimension.

 groundtruth[gt_key] = tf.expand_dims(groundtruth[gt_key], 0)

 for detection_key in detections:

 detections[detection_key] = tf.expand_dims(

 detections[detection_key][0], axis=0)

 batched_output_dict = result_dict_for_batched_example(

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 49

 image,

 tf.expand_dims(key, 0),

 detections,

 groundtruth,

 class_agnostic,

 scale_to_absolute,

 max_gt_boxes=max_gt_boxes)

 exclude_keys = [

 fields.InputDataFields.original_image,

 fields.DetectionResultFields.num_detections,

 fields.InputDataFields.num_groundtruth_boxes

]

 output_dict = {

 fields.InputDataFields.original_image:

 batched_output_dict[fields.InputDataFields.original_image]

 }

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 50

 for key in batched_output_dict:

 # remove the batch dimension.

 if key not in exclude_keys:

 output_dict[key] = tf.squeeze(batched_output_dict[key], 0)

 return output_dict

def result_dict_for_batched_example(images,

 keys,

 detections,

 groundtruth=None,

 class_agnostic=False,

 scale_to_absolute=False,

 original_image_spatial_shapes=None,

 true_image_shapes=None,

 max_gt_boxes=None):

 """Merges all detection and groundtruth information for a single example.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 51

 Note that evaluation tools require classes that are 1-indexed, and so this

 function performs the offset. If `class_agnostic` is True, all output classes

 have label 1.

 Args:

 images: A single 4D uint8 image tensor of shape [batch_size, H, W, C].

 keys: A [batch_size] string tensor with image identifier.

 detections: A dictionary of detections, returned from

 DetectionModel.postprocess().

 groundtruth: (Optional) Dictionary of groundtruth items, with fields:

 'groundtruth_boxes': [batch_size, max_number_of_boxes, 4] float32 tensor

 of boxes, in normalized coordinates.

 'groundtruth_classes': [batch_size, max_number_of_boxes] int64 tensor of

 1-indexed classes.

 'groundtruth_area': [batch_size, max_number_of_boxes] float32 tensor of

 bbox area. (Optional)

 'groundtruth_is_crowd':[batch_size, max_number_of_boxes] int64

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 52

 tensor. (Optional)

 'groundtruth_difficult': [batch_size, max_number_of_boxes] int64

 tensor. (Optional)

 'groundtruth_group_of': [batch_size, max_number_of_boxes] int64

 tensor. (Optional)

 'groundtruth_instance_masks': 4D int64 tensor of instance

 masks (Optional).

 class_agnostic: Boolean indicating whether the detections are class-agnostic

 (i.e. binary). Default False.

 scale_to_absolute: Boolean indicating whether boxes and keypoints should be

 scaled to absolute coordinates. Note that for IoU based evaluations, it

 does not matter whether boxes are expressed in absolute or relative

 coordinates. Default False.

 original_image_spatial_shapes: A 2D int32 tensor of shape [batch_size, 2]

 used to resize the image. When set to None, the image size is retained.

 true_image_shapes: A 2D int32 tensor of shape [batch_size, 3]

 containing the size of the unpadded original_image.

 max_gt_boxes: [batch_size] tensor representing the maximum number of

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 53

 groundtruth boxes to pad.

 Returns:

 A dictionary with:

 'original_image': A [batch_size, H, W, C] uint8 image tensor.

 'original_image_spatial_shape': A [batch_size, 2] tensor containing the

 original image sizes.

 'true_image_shape': A [batch_size, 3] tensor containing the size of

 the unpadded original_image.

 'key': A [batch_size] string tensor with image identifier.

 'detection_boxes': [batch_size, max_detections, 4] float32 tensor of boxes,

 in normalized or absolute coordinates, depending on the value of

 `scale_to_absolute`.

 'detection_scores': [batch_size, max_detections] float32 tensor of scores.

 'detection_classes': [batch_size, max_detections] int64 tensor of 1-indexed

 classes.

 'detection_masks': [batch_size, max_detections, H, W] float32 tensor of

 binarized masks, reframed to full image masks.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 54

 'num_detections': [batch_size] int64 tensor containing number of valid

 detections.

 'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in

 normalized or absolute coordinates, depending on the value of

 `scale_to_absolute`. (Optional)

 'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed

 classes. (Optional)

 'groundtruth_area': [batch_size, num_boxes] float32 tensor of bbox

 area. (Optional)

 'groundtruth_is_crowd': [batch_size, num_boxes] int64 tensor. (Optional)

 'groundtruth_difficult': [batch_size, num_boxes] int64 tensor. (Optional)

 'groundtruth_group_of': [batch_size, num_boxes] int64 tensor. (Optional)

 'groundtruth_instance_masks': 4D int64 tensor of instance masks

 (Optional).

 'num_groundtruth_boxes': [batch_size] tensor containing the maximum number

 of groundtruth boxes per image.

 Raises:

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 55

 ValueError: if original_image_spatial_shape is not 2D int32 tensor of shape

 [2].

 ValueError: if true_image_shapes is not 2D int32 tensor of shape

 [3].

 """

 label_id_offset = 1 # Applying label id offset (b/63711816)

 input_data_fields = fields.InputDataFields

 if original_image_spatial_shapes is None:

 original_image_spatial_shapes = tf.tile(

 tf.expand_dims(tf.shape(images)[1:3], axis=0),

 multiples=[tf.shape(images)[0], 1])

 else:

 if (len(original_image_spatial_shapes.shape) != 2 and

 original_image_spatial_shapes.shape[1] != 2):

 raise ValueError(

 '`original_image_spatial_shape` should be a 2D tensor of shape '

 '[batch_size, 2].')

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 56

 if true_image_shapes is None:

 true_image_shapes = tf.tile(

 tf.expand_dims(tf.shape(images)[1:4], axis=0),

 multiples=[tf.shape(images)[0], 1])

 else:

 if (len(true_image_shapes.shape) != 2

 and true_image_shapes.shape[1] != 3):

 raise ValueError('`true_image_shapes` should be a 2D tensor of '

 'shape [batch_size, 3].')

 output_dict = {

 input_data_fields.original_image:

 images,

 input_data_fields.key:

 keys,

 input_data_fields.original_image_spatial_shape: (

 original_image_spatial_shapes),

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 57

 input_data_fields.true_image_shape:

 true_image_shapes

 }

 detection_fields = fields.DetectionResultFields

 detection_boxes = detections[detection_fields.detection_boxes]

 detection_scores = detections[detection_fields.detection_scores]

 num_detections = tf.to_int32(detections[detection_fields.num_detections])

 if class_agnostic:

 detection_classes = tf.ones_like(detection_scores, dtype=tf.int64)

 else:

 detection_classes = (

 tf.to_int64(detections[detection_fields.detection_classes]) +

 label_id_offset)

 if scale_to_absolute:

 output_dict[detection_fields.detection_boxes] = (

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 58

 shape_utils.static_or_dynamic_map_fn(

 _scale_box_to_absolute,

 elems=[detection_boxes, original_image_spatial_shapes],

 dtype=tf.float32))

 else:

 output_dict[detection_fields.detection_boxes] = detection_boxes

 output_dict[detection_fields.detection_classes] = detection_classes

 output_dict[detection_fields.detection_scores] = detection_scores

 output_dict[detection_fields.num_detections] = num_detections

 if detection_fields.detection_masks in detections:

 detection_masks = detections[detection_fields.detection_masks]

 # TODO(rathodv): This should be done in model's postprocess

 # function ideally.

 output_dict[detection_fields.detection_masks] = (

 shape_utils.static_or_dynamic_map_fn(

 _resize_detection_masks,

 elems=[detection_boxes, detection_masks,

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 59

 original_image_spatial_shapes],

 dtype=tf.uint8))

 if detection_fields.detection_keypoints in detections:

 detection_keypoints = detections[detection_fields.detection_keypoints]

 output_dict[detection_fields.detection_keypoints] = detection_keypoints

 if scale_to_absolute:

 output_dict[detection_fields.detection_keypoints] = (

 shape_utils.static_or_dynamic_map_fn(

 _scale_keypoint_to_absolute,

 elems=[detection_keypoints, original_image_spatial_shapes],

 dtype=tf.float32))

 if groundtruth:

 if max_gt_boxes is None:

 if input_data_fields.num_groundtruth_boxes in groundtruth:

 max_gt_boxes = groundtruth[input_data_fields.num_groundtruth_boxes]

 else:

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 60

 raise ValueError(

 'max_gt_boxes must be provided when processing batched examples.')

 if input_data_fields.groundtruth_instance_masks in groundtruth:

 masks = groundtruth[input_data_fields.groundtruth_instance_masks]

 groundtruth[input_data_fields.groundtruth_instance_masks] = (

 shape_utils.static_or_dynamic_map_fn(

 _resize_groundtruth_masks,

 elems=[masks, original_image_spatial_shapes],

 dtype=tf.uint8))

 output_dict.update(groundtruth)

 if scale_to_absolute:

 groundtruth_boxes = groundtruth[input_data_fields.groundtruth_boxes]

 output_dict[input_data_fields.groundtruth_boxes] = (

 shape_utils.static_or_dynamic_map_fn(

 _scale_box_to_absolute,

 elems=[groundtruth_boxes, original_image_spatial_shapes],

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 61

 dtype=tf.float32))

 # For class-agnostic models, groundtruth classes all become 1.

 if class_agnostic:

 groundtruth_classes = groundtruth[input_data_fields.groundtruth_classes]

 groundtruth_classes = tf.ones_like(groundtruth_classes, dtype=tf.int64)

 output_dict[input_data_fields.groundtruth_classes] = groundtruth_classes

 output_dict[input_data_fields.num_groundtruth_boxes] = max_gt_boxes

 return output_dict

def get_evaluators(eval_config, categories, evaluator_options=None):

 """Returns the evaluator class according to eval_config, valid for categories.

 Args:

 eval_config: An `eval_pb2.EvalConfig`.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 62

 categories: A list of dicts, each of which has the following keys -

 'id': (required) an integer id uniquely identifying this category.

 'name': (required) string representing category name e.g., 'cat', 'dog'.

 evaluator_options: A dictionary of metric names (see

 EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization

 keyword arguments. For example:

 evalator_options = {

 'coco_detection_metrics': {'include_metrics_per_category': True}

 }

 Returns:

 An list of instances of DetectionEvaluator.

 Raises:

 ValueError: if metric is not in the metric class dictionary.

 """

 evaluator_options = evaluator_options or {}

 eval_metric_fn_keys = eval_config.metrics_set

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 63

 if not eval_metric_fn_keys:

 eval_metric_fn_keys = [EVAL_DEFAULT_METRIC]

 evaluators_list = []

 for eval_metric_fn_key in eval_metric_fn_keys:

 if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT:

 raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))

 kwargs_dict = (evaluator_options[eval_metric_fn_key] if eval_metric_fn_key

 in evaluator_options else {})

 evaluators_list.append(EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](

 categories,

 **kwargs_dict))

 return evaluators_list

def get_eval_metric_ops_for_evaluators(eval_config,

 categories,

 eval_dict):

 """Returns eval metrics ops to use with `tf.estimator.EstimatorSpec`.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 64

 Args:

 eval_config: An `eval_pb2.EvalConfig`.

 categories: A list of dicts, each of which has the following keys -

 'id': (required) an integer id uniquely identifying this category.

 'name': (required) string representing category name e.g., 'cat', 'dog'.

 eval_dict: An evaluation dictionary, returned from

 result_dict_for_single_example().

 Returns:

 A dictionary of metric names to tuple of value_op and update_op that can be

 used as eval metric ops in tf.EstimatorSpec.

 """

 eval_metric_ops = {}

 evaluator_options = evaluator_options_from_eval_config(eval_config)

 evaluators_list = get_evaluators(eval_config, categories, evaluator_options)

 for evaluator in evaluators_list:

 eval_metric_ops.update(evaluator.get_estimator_eval_metric_ops(

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 65

 eval_dict))

 return eval_metric_ops

def evaluator_options_from_eval_config(eval_config):

 """Produces a dictionary of evaluation options for each eval metric.

 Args:

 eval_config: An `eval_pb2.EvalConfig`.

 Returns:

 evaluator_options: A dictionary of metric names (see

 EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization

 keyword arguments. For example:

 evalator_options = {

 'coco_detection_metrics': {'include_metrics_per_category': True}

 }

 """

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 66

 eval_metric_fn_keys = eval_config.metrics_set

 evaluator_options = {}

 for eval_metric_fn_key in eval_metric_fn_keys:

 if eval_metric_fn_key in ('coco_detection_metrics', 'coco_mask_metrics'):

 evaluator_options[eval_metric_fn_key] = {

 'include_metrics_per_category': (

 eval_config.include_metrics_per_category)

 }

 return evaluator_options

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 67

CHAPTER 7

RESULTS AND DISCUSSIONS

Here is what we have done, we have integrated our project into a folder inside which it

contains a flask designed folder which indeed contains the desired files to run the

project. The flask contains both the front-end and the back-end codes. We now go to

command prompt and run the flask folder which generates a localhost to access the

front-end visual first look of our project. Once we enter our localhost, we need to upload

image into the choose file option and the machine learning will learn from the image

and then generate the final desired output.

Thus, in our project succeeds only when the accuracy is maintained between 80-100%

.

NO. OF FINGERS ACTION - PERFORMED

1 Standing

2 Sitting

Bending

3

Bending Backward

4

Sleeping

In real time by using a web camera the input video is taken and converted into frames

then some of the steps are carried out as shown in the figures to count the number of

fingers. The experimental results are shown below:

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 68

1. The Procured image is RGB and must be processed before i.e. pre-

processed before the components are separated and acknowledgement is made

and is shown in figure 7.1.

Screenshots Section

Fig 7.1 Base Front-End

Fig 7.2 Activity Test Standing

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 69

Fig 7.3 Activity Test sitting

Fig 7.4 Activity Test Bending

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 70

 CHAPTER 8

TESTING

Human Activity Recognition System testing is actually a image detection technique to

fully exercise the computer-based system. Although each test has a different purpose,

all work to verify that all the system elements have been properly integrated and perform

allocated functions. The testing process is actually carried out to make sure that the

algorithms and implementations exactly does the same thing it is supposed to do. In the

testing stage following goals are tried to achieve: -

8.1 Quality Assurance

Quality assurance consists of the auditing and reporting functions of management. The

goal of quality assurance is to provide management with the data necessary to be

informed about product quality, thereby gaining insight and confidence that the

product quality is meeting its goals. This is an “umbrella activity” that is applied

throughout the engineering process. Software quality assurance encompasses: -

-tiered testing strategy

 8.2 Quality Factors

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 71

An important objective of quality assurance is to track the software quality and assess

the

impact of methodological and procedural changes on improved software

quality. The factors that affect the quality can be categorized into two broad

groups:

8.3 Functional Test

Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system

documentation, and user manuals. Functional testing is cantered on the following

items:

Valid Input identified classes of valid input must be

accepted.

Invalid Input: identified classes of invalid input must

be rejected.

Functions: identified functions must be exercised.

.

n

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 72

Output: identified classes of application outputs must be

exercised. Systems/Procedures: Interfacing systems or

procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to identify

Business process flows; data fields, predefined processes, and successive processes

must be considered for testing. Before functional testing is complete, additional tests

are identified and the effective value of current tests is determined.

CHAPTER 9

CONCLUSION AND FUTURE

9.1 Conclusion

The proposed system is a real time image processing of a person that is based on a real

time application system. This can allow the system to keep track of a person and its

movements using a webcam of the laptop and the image that it uploads

In this project we have planned, designed and implemented the system for Human

activity recognition system for controlling UI which is a standalone application for

controlling the various user interface controls and/or programs like Flak. In the analysis

phase we gathered four major actions done by a human on his daily basis whether it be

standing, sitting, sleeping and bending and the techniques and algorithms they employ

and the success/failure rate of these systems. Accordingly, we made a detailed

comparison of these systems and analysed their efficiency. In the design phase we

designed the system architecture diagrams and also the data flow diagram of the system.

We studied and analysed the different phases involved and accordingly designed and

studied the algorithms to be used for the same.

With the help of observations that we have, we can conclude that the results should be

depend upon:

⮚ The accuracy of the machine to detect the current action of the human at that

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 73

particular moment of time. This accuracy is the success of the machine that it

learns from the detection techniques the accuracy can thus vary based on the loss

and success ratios. Finally, we were able to achieve a maximum accuracy of

98% which proved our deployment to be precise and accurate

⮚ Background of the pictures should be plain to get accurate analysis of

recognition of gestures and poses .

⮚ The image should be a jpg extension to keep things straight forward and code

to be clean and easily usable because jpg/png images are easily available.

9.2 Future Scope

The future scope of Human activity recognition is a vast demonstration of categories on

which its application can be achieved:-

● CCTV cameras fixed on the pillars of a bank can be a human tracking device which

tracks the movements of each person in the bank and captures their actions and if

something goes way past the limits it can send data to the manager.

● Traffic lights can be encapsulated with cameras to track car movements and speed limit

accuracies.

● Working on true surveillance video tracks, sport videos, movies, and online video data,

will help to discover the real requirements for action recognition, and it will help

researchers to shift focus to other important issues involved in action recognition.

 HUMAN ACTIVITY RECOGNITION

Dept of CSE, CMRIT 2019-2020 Page 74

REFERENCES

[1] H. Renuka and B.Goutam ―Hand Gestures Recognition system to control soft

front panels, International Journal of Engineering Research and Technology,

December 2014.

[2] :Henrik Birk and Thomas Baltzer Moeslund, ―Recognizing Gestures From the

Hand Alphabet Using Principal Component Analysis‖, Master‘s Thesis, Laboratory

of Image Analysis, Aalborg University, Denmark, 1996.

[3] :Punam Thakare / International Journal on Computer Science and Engineering (IJCSE)

Assistant Professor: MCA Dept , ICEM, Parandwadi Pune, India.

[4] : Prof. Praveen D. Hasalkar1, Rohit S. Chougule2, Vrushabh B. Madake3,

Vishal S. Magdum/ International Journal of Advanced Research in Computer and

Communication Engineering, Department of Computer Science and Engineering,

W.I.T, Solapur, Maharashtra, India

