

VISVESVARAYA TECHNOLOGICAL UNIVERSITY

Jnana Sangama, Belgaum-590018

A PROJECT REPORT (15CSP85) ON

“Classification of Landcover Using Data Analytics for Hyperspectral

Imaging”

Submitted in Partial fulfillment of the Requirements for the Degree of

Bachelor of Engineering in Computer Science & Engineering

By

ANIMESH (1CR16CS018)

PRIYANSHU RAJ (1CR15CS120)

BARSABARAN SAHA (1CR15CS040)

ANIRUDHYA DEB (1CR15CS024)

Under the Guidance of,

PREETHI SHEEBA H.

ASSISTANT PROFESSOR,

Dept. of CSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR INSTITUTE OF TECHNOLOGY

#132, AECS LAYOUT, IT PARK ROAD, KUNDALAHALLI, BANGALORE-560037

CMR INSTITUTE OF TECHNOLOGY

#132, AECS LAYOUT, IT PARK ROAD, KUNDALAHALLI,BANGALORE-560037

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

Certified that the project work entitled “Classification of Landcover Using Data Analytics for

Hyperspectral Imaging” carried out by Mr ANIMESH, USN 1CR16CS018, Ms. PRIYANSHU RAJ,

USN 1CR15CS120,Mr BARSABARAN SAHA, USN 1CR15CS040, Mr ANIRUDHYA DEB, USN

1CR15CS024, bonafide students of CMR Institute of Technology, in partial fulfillment for the award of

Bachelor of Engineering in Computer Science and Engineering of the Visvesvaraya Technological

University, Belgaum during the year 2019-2020. It is certified that all corrections/suggestions indicated for

Internal Assessment have been incorporated in the Report deposited in the departmental library.

The project report has been approved as it satisfies the academic requirements in respect of Project work

prescribed for the said Degree.

(Preethi Sheeba H.)

(Assistant Professor)

Dept. of CSE, CMRIT

Dr. Prem Kumar Ramesh

Professor & Head

Dept. of CSE, CMRIT

Dr. Sanjay Jain

Principal

CMRIT

DECLARATION

We, the students of Computer Science and Engineering, CMR Institute of Technology, Bangalore

declare that the work entitled "ClassificationofLandcoverUsingDataAnalyticsforHyperspectralImaging”

has been successfully completed under the guidance of Assistant Prof.Preethi Sheeba H., Computer

Science and Engineering Department, CMR Institute of technology, Bangalore. This dissertation work

is submitted in partial fulfillment of the requirements for the award of Degree of Bachelor of

Engineering in Computer Science and Engineering during the academic year 2019 - 2020. Further the

matter embodied in the project report has not been submitted previously by anybody for the award of

any degree or diploma to any university.

Place:

Date:

Team members:

ANIMESH (1CR16CS018) __________________

PRIYANSHU RAJ (1CR15CS120) __________________

BARSABARAN SAHA (1CR15CS040) __________________

ANIRUDHYA DEB (1CR15CS024) __________________

ABSTRACT

The idea of the project is to segregate and classify a given land cover into its respective classes.

We have taken a hyperspectral image consisting of 145*145 pixels and 224 spectral bands which is required

for maximum information to be extracted.

Previous work in this field have been done using various algorithms like SVM, end member extraction etc.

which is slower and is a tedious process.

Environmental Monitoring- Hyperspectral imaging is used to track forest health, water quality, and surface

contamination. Hyperspectral Image classification is the process of labelling the different landscape features. In

our approach, we are using Deep Learning and Neural Networks to train a model and classify an input

hyperspectral image. Such classification can help to understand the landscape features of a particular area and

this data can be used to predict land usage and suggest optimal use of land. Here, we are using the Indian Pines

data set for training and classification. The Deep learning framework used is Tensor Flow and the resultant

accuracy in prediction is about 93%.The idea of the project is to segregate and classify a given land cover into its

respective classes. We have taken a hyperspectral image consisting of 145*145 pixels and 224 spectral bands

which is required for maximum information to be extracted.

 ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany a successful completion of any task would be incomplete

without the mention of the people who made it possible. So with gratitude we acknowledge all those whose

guidance and encouragement served as beacon of light and crowned our effort with success. We would like to

thank Dr. Sanjay Jain, Principal, CMRIT who provided us such an opportunity.

Conclusively, we could like to thank all the faculty members who have always been very cooperative and

generous and The Head Of Department Dr. Prem Kumar Ramesh, Department of Computer Science &

Engineering, CMRIT, Bangalore for giving us the opportunity to delve into the field of Machine Learning.

We consider it a privilege to express our sincere gratitude to our internal guide Mrs. Shashikala K.S, Asst.

Professor, Dept. of Computer Science & Engineering, CMRIT, Bangalore for her valuable guidance, suggestions

and inputs throughout the tenure of this project.(guide name), designation, Department of Computer

Science and Engineering, for the valuable guidance throughout the tenure of this review.

I also extend my thanks to all the faculty of Computer Science and Engineering who directly or

indirectly encouraged me.

Finally, I would like to thank my parents and friends for all their moral support they have given

me during the completion of this work.

 TABLE OF CONTENTS

Chapter Contents Page No.

Certificate ii

Declaration iii

Abstract iv

Acknowledgement v

Table of contents vi

List of Figures viii

List of Tables ix

List of Abbreviations X

1 INTRODUCTION

1.1 Relevance of the Project

1.2 Problem Statement

1.3 Objective

1.4 Scope of the Project

1.5 Methodology

1

2 LITERATURE SURVEY

2.1 Object Detection with deep learning

2.2 Semi Supervised Deep Learning Classification

2.3 Classification of HSI by SVM

2.4 HSI Image Analysis by End Member Extraction

2.5 Hierarchal Multi Scale CNN for HSI Classification

8

3 REQUIREMENT SPECIFICATION

3.1 Functional Requirements

3.2 Hardware Requirements

3.3 Software Requirements

16

4.SYSTEM ANALYSIS AND DESIGN 19

4.1 System Architecture

4.2 Process Overview

4.3 Model Architecture

5. IMPLEMENTATION

 5.1 Creating The Dataset

 5.2 Training The Model

 5.3 Validation and Classification

6. RESULTS AND DISCUSSIONS

7. CONCLUSION AND FUTURE SCOPE

28

8. REFERENCES 29

ii

LIST OF FIGURES

 Page No.

Fig 1. Agile Methodology 5

Fig 2. Ordinary Neural Network

Fig 3. Convolutional Neural Network

Fig 4. System Architecture and Design

Fig 5. Further Breakdown

Fig 6. Layers of CNN

Fig 7. Breakdown of All the Layers of Neural Network

Fig 8. Ground Truth Image

Fig 9. The different Labels with respect to the colour assigned

Fig 10. Final Classified Image

Fig 11. Comparing Previous Works

11

12

15

16

17

18

53

53

55

56

iii

 LIST OF TABLES

Page No.

Table 1. Ground Truth Classes for the INDIAN Pines Scene

 And Their Respective Numbers

54

iv

 LIST OF ABBREVIATIONS

CNN - Convolutional Neural Network page

AVIRIS - Airborne visible/infrared imaging spectrometer

VHR - Very High Resolution

DTM - Digital Terrain Model

IKONOS - Abbreviation not available

LIDAR - Light Detection and ranging

GIS - Geographic Information Systems

ALTM - Airborne Laser Terrain Mapper

BSP - Binary Space Partitioning

WSL - Weakly Supervised learning

PCA - Principal Component Analysis

HIS - Hyper Spectral Image

CPU - Central Processing Unit

RAM - Random Access Memory

GPU - Graphics Processing Unit

GTX - No Abbreviation available

CUDA - Compute Unified Device Architecture

TF - Tensor Flow

IDE - Integrated Development Environment

QGIS - Quantum Geographic Information Systems

AI - Artificial Intelligence

STC - Standard Test Condition

v

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 1

CHAPTER 1

INTRODUCTION

A hyperspectral image differs from a normal image as it contains n no. of

layers meaning more no. of pixels and eventually providing

deeper information. Classification is an abstract representation of

the situation in the field using well-defined diagnostic criteria: the

classifiers.

The idea of the project is building these classifiers using machine and deep

leaning models which will ultimately solve our purpose. Recent advances in

remote sensing technology have made hyperspectral data with hundreds of

narrow contiguous bands more widely available. The hyperspectral data can

therefore reveal subtle differences in the spectral signatures of land cover

classes that appear similar when viewed by multispectral sensors. If

successfully exploited, the hyperspectral data can yield higher classification

accuracies and more detailed class taxonomies. However, the task of

classifying hyperspectral data also has unique challenges.

The hyperspectral un-mixing problem is concerned with the decomposition

of the hyperspectral image into a product form, where the spectrum in each

pixel is represented as a collection of material spectra that are referred to as

end members, and the mixing proportions of these materials in each pixel

that are known as the abundances.

Deep learning is a subfield of machine learning which uses artificial neural

networks that is inspired by the structure and function of the human brain.

Despite being a very new approach, it has become very popular recently.

Deep learning has achieved much higher success in many applications

where machine learning has been successful at certain rates. In particular, it

is preferred in the classification of big data sets because it can provide fast

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 2

and efficient results. In this study, we used Tensor flow, one of the most

popular deep learning libraries to classify dataset, which is frequently used

in data analysis studies. Using Tensor flow, which is an open source

artificial intelligence library developed by Google, we have studied and

compared the effects of multiple activation functions on classification

results. In this Study, Convolutional Neural Network (CNN) is used as deep

learning artificial neural network. The applications of hyperspectral image

classification are given below:

1) It will help us to identify different areas.

2) Fixing of tax policies by the government by knowing the rate of growth.

1.1 Relevance of the project

The conventional method of machine learning, such as k-nearest-neighbours

(KNN), support vector machines (SVMs), random forests (RFs) and so on.

However, these methods often require strong background knowledge of

HSI, and the process of extracting features is more troublesome and easy to

lose important features.

The greatest advantage of it is that features can be extracted from the hidden

layer in the network without too much pre-processing of the data.

Applications of Hyperspectral imaging are like in Pharmaceutical industries

Hyperspectral infrared imagers can identify counterfeits, find defects, and

eliminate prescription errors.

Hyperspectral imaging enables identification of weeds, monitoring of plant

health, and evaluation of ripeness. Early detection of crop stress is a

common application.

1.2 Problem Statement

Problem statement therefore is Classification of Land cover using Data

Analytics for Hyperspectral Imaging with better accuracy. The idea of the

project is to replace existing methodology like SVM which is a traditional

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 3

machine learning algorithm with low accuracy as it’s comparatively slower

as compared to Neural Networks (specifically CNN’S) which is a newer

approach. Also, being a deep learning framework provides more information

and training the model becomes easier. Our idea in this project is to

implement 2 layered Convolutional Neural Network.

1.3 Objective

The objectives of the work are as follows:

• Collect Hyperspectral Image data and analyse the data

for further processing.

• Perform Pre-processing and data cleaning that will remove

the unwanted spectral bands whose processing is not

required.

• Design and develop a method for segmentation of land

cover from hyperspectral image data.

• Test the effectiveness of the proposed method on

various hyperspectral images to classify different land

covers.

• Ensure that the new methods meet the particularities of the

given data

• Finally we compare our output accuracy percentage with

other works to obtain a higher accuracy .

1.4 Scope of the project

The most important part of this project is its usage of classifying land cover.

Depending upon the requirements we can further narrow down or reduce the

dimensionality for better efficiency. For instance, eliminating water bodies

spectral region was our way to reduce dimensionality as we were concerned

with the distinguishing of the different agricultural areas. Henceforth, we

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 4

can see that a single hyperspectral image with its given ground truth can be

put to use in different ways, gathering more information contributing to

higher accuracy..

• The future scope of the project might be putting the classification

into real time usage

• Yield estimation in wheat - Hyperspectral remote sensing was used

to help predict yield in wheat as a function of fertilizer concentration.

• Food Analysis- Resonon's hyperspectral imaging systems are used in

food research and industry to identify defects, characterize product

quality, and locate contaminants.

• Cooked Food- Subtle color changes associated with food quality can

readily be identified using hyperspectral imaging.

• Environmental Monitoring- Hyperspectral imaging is used to track

forest health, water quality, and surface contamination.

• Further improvement in this project could lead to more accurate

results.

1.5 Methodology

We use agile methodology to implement our system. It is a type of project

management process, mainly used for software development, where

demands and solutions evolve through the collaborative effort of self-

organizing and cross functional terms. Thus, we perform the process in steps

as described below.

First collect the Indian Pines data in the required format. We need to

determine the relevant attributes needed for the prediction of Land cover

prediction, this is done by cleaning the dataset by removing the noisy data.

After analyzing the problem statement we design the model and identify the

best algorithm with the data available. Using the algorithm determined we

train the datasets to predict the landcover type. After the implementation of

the algorithms we test the results by accuracy calculations.

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 5

 Fig 1: Agile Methodology

.

 Fig 1: Agile Methodology

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 6

CHAPTER 2

 LITERATURE SURVEY

2.1 Object Detection with Deep Learning: A Review (Paper 1)

July 2019

DEEP NEURAL NETWORK: (Overview)

DNN is a type of artificial intelligence that imitates some functions of the person mind.

DNN has a

normal tendency for storing experiential knowledge. An DNN consists of a sequence of

layers, each

layer consists of a set of neurones. All neurones of every layer are linked by weighted

connections to

all neurones on the preceding and succeeding layers

CHARACTERISTICS:

It uses Nonparametric approach. Performance and accuracy depends upon the network

structure

and number of inputs.

ADVANTAGES:

It is a non-parametric classifier.

• It is an universal functional approximator with arbitrary accuracy.

• capable to present functions such as OR, AND, NOT

• It is a data driven selfadaptive technique

• efficiently handles noisy inputs

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 7

• Computation rate is high

Disadvantages:

• It is semantically poor.

• The training of DNN is time taking.

• Problem of over fitting.

• Difficult in choosing the type network architecture.

2.2 Semi-Supervised Deep Learning Classification for

Hyperspectral Image Based on Dual-Strategy Sample

Selection(2018)(paper2)

Overview:

Semi-supervised learning is a class of machine learning tasks and techniques that also

make

use of unlabelled data for training – typically a small amount of labelled data with a large

amount

of unlabelled data. Semi-supervised learning falls between unsupervised learning and

supervised

learning

Advantage:

• Capable of reducing the dependence of deep learning method on large-scale

manually labelled HSI data. The key to the framework are two parts:

(1) The spectral- and spatial-Network for extracting the spectral features and spatial

features and

(2) the dual-strategy sample selection co-training algorithm for effective semi-supervised

learning.

Disadvantage:

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 8

• It is robust because there are mislabelled samples.

 2.3 Classification of Hyperspectral Images by SVM Using a

Composite

Kernel by Employing Spectral, Spatial and Hierarchical Structure

Information (PAPER 3)(MARCH 2018)

SVM (SUPPORT VECTOR MECHANISM): WHAT IS IT AND WHAT ARE THE

CHARACTERISTICS?

A support vector machine builds a hyper plane or set of hyper planes in a high- or

Infinite dimensional space, used for classification. Good separation is achieved by the

hyper plane

that has the largest distance to the nearest training data point of any class (functional

margin),

generally larger the margin lower the generalization error of the classifier.

CHARACTERISTICS:

SVM uses Nonparametric with binary classifier approach and can handle more input data

very

efficiently. Performance and accuracy depends upon the hyperplane selection and kernel

parameter

Advantages:

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 9

• It gains flexibility in the choice of the form of the threshold.

• Contains a nonlinear transformation.

• It provides a good generalization capability.

• The problem of over fitting is eliminated.

• Reduction in computational complexity.

• Simple to manage decision rule complexity and Error frequency

Disadvantages:

• Result transparency is low.

• Training is time consuming.

• Structure of algorithm is difficult to understand

• Determination of optimal parameters is not easy when there is nonlinearly

separable training data.

 2.4 HYPERSPECTRAL IMAGE ANALYSIS USING END

MEMBER

EXTRACTION ALGORITHM (March 12, 2015)

(PAPER 4)

• Mixed pixels are frequent in remotely sensed hyperspectral images due to insufficient

spatial

resolution of the imaging spectrometer, or due to intimate mixing effects.

• The rich spectral resolution available can be used to Unix hyperspectral pixels. Mixed

pixels can

also be obtained with high spatial resolution data due to intimate mixtures, this means

that

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 10

increasing the spatial resolution does not solve the problem.

• The mixture problem can be approaches in macroscopic fashion, this means that a few

macroscopic components and their associated abundances should be derived.

• However, intimate mixtures happen at microscopic scales, thus complicating the

analysis with

nonlinear mixing effects.

Disadvantages:

• Hyperspectral sensor collects hundreds of bands at different wavelengths. The resulting

data

volume often comprises several Gigabytes per flight.

• However the bandwidth of the downlink connection between the sensor and the Earth

station is

reduced, which limits the amount of data that can be sent to Earth.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480716/ (BASE PAPER)

2.5 Hierarchical Multi-Scale Convolutional Neural Networks for

Hyperspectral Image Classification. (Paper 1)- 2019 April (Final

paper)(paper 5)

KEYWORDS: hyperspectral image (HSI) classification, convolutional neural networks

(CNNs),

Bidirectional LSTM, multi-scale features

Deep neural network is a artificial neural network composed of many layers.

Convolutional Neural Networks (CNN) are very similar to ordinary Neural Networks.

But instead of connecting all neuron from one layer to a single neuron in the next layer,

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 11

only a patch of neuron from one layer is connected to a single neuron in the next layer. Its

neurons is inspired by the organization of the animal visual cortex.

 Fig 2: ORDINARY NEURAL NETWORK

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 12

 Fig 3: CONVOLUTIONAL NEURAL NETWORK

We can construct a deep neural network with stacked Convolution layers which is called

as Deep Convolutional Neural Network. Its been proof that deeper neural network give

much more accurate results compared to shallower networks. A convolutional neural

network (CNN) is a specific type of artificial neural network that uses perceptrons, a

machine learning unit algorithm, for supervised learning, to analyze data. CNNs apply to

image processing, natural language processing and other kinds of cognitive tasks. CNNs

are regularized versions of multilayer perceptrons. The receptive fields of different

neurons partially overlap such that they cover the entire visual field. Convolutional

Neural Network is a vast topic that contains many algorithms by which CNN can be

applied. It may be just using simple CNN .There are more complex 2D CNN and 3D

CNN which gets more complicated as data increases Advantages: Gives amazing results

and accuracy. Disadvantages: -High computational cost. - If you don't have a good GPU

they are quite slow to train (for complex tasks). -They use to need a lot of training data.

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 13

CHAPTER3

 REQUIREMENTS SPECIFICATION

The requirements can be broken down into 3 major categories namely

functional, hardware and software requirements.

Functional Requirements:

• Functional Requirement defines a function of a software system and how the

system must behave when presented with specific inputs or conditions.

These may include calculations, data manipulation and processing and other

specific functionality. In this system following are the functional

requirements:-

• To classify the given landcover of a given HSI image

• To output all the different classes of agricultural crops available.

• To give information about various crops based on wave length based on

spectral signature of respective spectral bands.

Hardware Requirements:

The hardware requirement is minimal and the software can run with

minimal requirements. The basic requirements are as enlisted below:

1. Processor: Intel Core2Duo processor or a processor with higher

specifications

2. Processor speed: 1.5GHz or above.

3. RAM : 1GB or above

4. Storage space : 1GB or above

5. Monitor resolution: A colour monitor with a minimum resolution of

640*480

Software Requirements:

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 14

1. An MS-DOS based operating system like Windows

98/2000/XP/Vista/7/8/10/, Linux, MacOS.Anaconda Navigator

2. Python3.6

3. Keras

4. NumPy

5. Pandas

6. MatplotLib

7. SkLearn

8. Spectral

9. Indian Pines dataset, Groundtruth of dataset

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 15

CHAPTER 4

 SYSTEM ANALYSIS AND DESIGN

4.1 System Architecture

 Figure 4: System Architecture and Design

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 16

 Fig 5: Further Breakdown

4.2 Process Overview

CNNs represent feed-forward neural networks which consist of various

combinations of the convolutional layers, max pooling layers, and fully

connected layers and exploit spatially local correlation by enforcing a local

connectivity pattern between neurons of adjacent layers.

 Convolutional layers alternate with max pooling layers mimicking the

nature of complex and simple cells in mammalian visual cortex.

 A CNN consists of one or more pairs of convolution and max pooling

layers and finally ends with a fully connected neural networks. A typical

convolutional network architecture is shown on the next slide

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 17

 Fig 6: Layers of CNN

Principle Component Analysis:

• Reducing the dimensions of raw input data

• Through a statistical analysis of spectral responses of pixels that

belong to the same class, we can observe that the variance of

responses is very small. This suggests that pixels that belong to the

same class have almost the same values at every channel. At the

same time, pixels that belong to different classes present different

spectral properties. Based on these characteristics a dimensionality

reduction technique can be employed to reduce the dimensionality of

the input data in order to speed up the training and prediction

processes.

CNN used in our project:

• the classification of each pixel to a predefined number of classes

based on their spectral and spatial properties.

• The spectral characteristics are associated with the reflectance

properties at every pixel for every spectral band, while spatial

information is derived by taking into consideration its neighbours.

• high-level features that encode pixels’ spectral and spatial

information, are hierarchically constructed using a CNN

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 18

• CNNs consist a type of deep models, which apply trainable filters

and pooling operations on the raw input, resulting in a hierarchy of

increasingly complex features.

• we have to decompose the captured hyperspectral image into

patches, each one of which contains spectral and spatial information

for a specific pixel.

• The first layer of the proposed CNN is a convolutional layer with C1

= 3 × cr trainable filters of dimension 3 × 3.

• This layer delivers C1 matrices of dimensions 3 × 3 (during

convolution we don’t take into consideration the border of the

patch).

• the first convolutional layer is followed by a second convolutional

layer with C2 = 3×C1 trainable filters. Again, the filters are 3×3

matrices.

• The second convolutional layer delivers a vector with C2 elements,

which is fed as input to the MLP classifier. The number of MLP

hidden units is smaller than the dimensionality of its input.

 MODEL ARCHITECTURE:

 Fig 7: Breakdown of all The Layers of Neural Network

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 19

Other Layers:

Dropout Layer : It is a Simple Way to Prevent Neural Networks

from Overfitting.

Since the outputs of a layer under dropout are randomly

subsampled, it has the effect of reducing the capacity or thinning

the network during training.

Flatten Layer : In between the convolutional layer and the fully

connected layer, there is a 'Flatten' layer.

Flattening transforms a two-dimensional matrix of features into a

vector that can be fed into a fully connected neural network

classifier.

Fully connected Layer : The fully connected (FC) layer in

the CNN represents the feature vector for the input.

This feature vector/tensor/layer holds information that is vital to

the input.

The convolution layers before the FC layer(s) hold information

regarding local features in the input image such as edges, blobs,

shapes, etc.

Variables Used:

Variables / Parameters initialised :

windowSize = 5. We are taking 5*5 matrix at a given point of time and then

collaborating the output to the desired shape.

Principal component analysis (PCA) is a technique to bring out strong

patterns in a dataset by supressing variations. It is used to clean data sets to

make it easy to explore and analyse.

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 20

The algorithm of Principal Component Analysis is based on a few

mathematical ideas namely: Variance and Convariance.

numPCA components = 30 features we want to keep.PCA is used here for

dimensionality reduction.

testRatio = 0.25. The dataset has been split into 75:25 ratio(Training:

Testing)

Dataset : Indian Pines Dataset with Indian pines ground truth image.

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 21

CHAPTER 5

IMPLEMENTATION

5.1 Creating the Datasets in a jupyter notebook

In [1]:

importnumpyasnp

fromsklearn.decompositionimport PCA

importscipy.ioassio

fromsklearn.model_selectionimport train_test_split

fromsklearnimport preprocessing

importos

importrandom

fromrandomimport shuffle

fromskimage.transformimport rotate

importscipy.ndimage

In [13]:

def loadIndianPinesData():

 data_path = os.path.join(os.getcwd(),'Data')

 data = sio.loadmat(os.path.join(data_path,

'Indian_pines_corrected.mat'))['indian_pines_corrected']

 labels = sio.loadmat(os.path.join(data_path, 'Indian_pines_gt.mat'))['indian_pines_gt']

return data, labels

def splitTrainTestSet(X, y, testRatio=0.10):

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio,

random_state=345,

 stratify=y)

return X_train, X_test, y_train, y_test

def oversampleWeakClasses(X, y):

 uniqueLabels, labelCounts = np.unique(y, return_counts=True)

 maxCount = np.max(labelCounts)

 labelInverseRatios = maxCount / labelCounts

repeat for every label and concat

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 22

 newX = X[y == uniqueLabels[0], :, :, :].repeat(round(labelInverseRatios[0]), axis=0)

 newY = y[y == uniqueLabels[0]].repeat(round(labelInverseRatios[0]), axis=0)

for label, labelInverseRatio in zip(uniqueLabels[1:], labelInverseRatios[1:]):

 cX = X[y== label,:,:,:].repeat(round(labelInverseRatio), axis=0)

 cY = y[y == label].repeat(round(labelInverseRatio), axis=0)

 newX = np.concatenate((newX, cX))

 newY = np.concatenate((newY, cY))

 np.random.seed(seed=42)

 rand_perm = np.random.permutation(newY.shape[0])

 newX = newX[rand_perm, :, :, :]

 newY = newY[rand_perm]

return newX, newY

def standartizeData(X):

 newX = np.reshape(X, (-1, X.shape[2]))

 scaler = preprocessing.StandardScaler().fit(newX)

 newX = scaler.transform(newX)

 newX = np.reshape(newX, (X.shape[0],X.shape[1],X.shape[2]))

return newX, scaler

def applyPCA(X, numComponents=75):

 newX = np.reshape(X, (-1, X.shape[2]))

 pca = PCA(n_components=numComponents, whiten=True)

 newX = pca.fit_transform(newX)

 newX = np.reshape(newX, (X.shape[0],X.shape[1], numComponents))

return newX, pca

def padWithZeros(X, margin=2):

 newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2]))

 x_offset = margin

 y_offset = margin

 newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X

return newX

def createPatches(X, y, windowSize=5, removeZeroLabels = True):

 margin = int((windowSize - 1) / 2)

 zeroPaddedX = padWithZeros(X, margin=margin)

split patches

 patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize,

X.shape[2]))

 patchesLabels = np.zeros((X.shape[0] * X.shape[1]))

 patchIndex = 0

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 23

for r in range(margin, zeroPaddedX.shape[0] - margin):

for c in range(margin, zeroPaddedX.shape[1] - margin):

 patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]

 patchesData[patchIndex, :, :, :] = patch

 patchesLabels[patchIndex] = y[r-margin, c-margin]

 patchIndex = patchIndex + 1

if removeZeroLabels:

 patchesData = patchesData[patchesLabels>0,:,:,:]

 patchesLabels = patchesLabels[patchesLabels>0]

 patchesLabels -= 1

return patchesData, patchesLabels

def AugmentData(X_train):

for i in range(int(X_train.shape[0]/2)):

 patch = X_train[i,:,:,:]

 num = random.randint(0,2)

if (num == 0):

 flipped_patch = np.flipud(patch)

if (num == 1):

 flipped_patch = np.fliplr(patch)

if (num == 2):

 no = random.randrange(-180,180,30)

 flipped_patch = scipy.ndimage.interpolation.rotate(patch, no,axes=(1, 0),

 reshape=False, output=None, order=3,

mode='constant', cval=0.0, prefilter=False)

 patch2 = flipped_patch

 X_train[i,:,:,:] = patch2

return X_train

def savePreprocessedData(X_trainPatches, X_testPatches, y_trainPatches, y_testPatches,

windowSize, wasPCAapplied = False, numPCAComponents = 0, testRatio = 0.25):

if wasPCAapplied:

with open("X_trainPatches_" + str(windowSize) + "PCA" + str(numPCAComponents) +

"testRatio" + str(testRatio) + ".npy", 'bw') as outfile:

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 24

 np.save(outfile, X_trainPatches)

with open("X_testPatches_" + str(windowSize) + "PCA" + str(numPCAComponents) +

"testRatio" + str(testRatio) + ".npy", 'bw') as outfile:

 np.save(outfile, X_testPatches)

with open("y_trainPatches_" + str(windowSize) + "PCA" + str(numPCAComponents) +

"testRatio" + str(testRatio) + ".npy", 'bw') as outfile:

 np.save(outfile, y_trainPatches)

with open("y_testPatches_" + str(windowSize) + "PCA" + str(numPCAComponents) +

"testRatio" + str(testRatio) + ".npy", 'bw') as outfile:

 np.save(outfile, y_testPatches)

else:

with open("../preprocessedData/XtrainWindowSize" + str(windowSize) + ".npy", 'bw') as

outfile:

 np.save(outfile, X_trainPatches)

with open("../preprocessedData/XtestWindowSize" + str(windowSize) + ".npy", 'bw') as

outfile:

 np.save(outfile, X_testPatches)

with open("../preprocessedData/ytrainWindowSize" + str(windowSize) + ".npy", 'bw') as

outfile:

 np.save(outfile, y_trainPatches)

with open("../preprocessedData/ytestWindowSize" + str(windowSize) + ".npy", 'bw') as

outfile:

 np.save(outfile, y_testPatches)

In [14]:

Load the Global values (windowSize, numPCAcomponents, testRatio) from the text file

global_variables.txt

myFile = open('global_variables.txt', 'r')

file = myFile.readlines()[:]

for line in file:

if line[0:3] == "win":

 ds = line.find('=')

 windowSize = int(line[ds+1:-1],10)

elif line[0:3] == "num":

 ds = line.find('=')

 numPCAcomponents = int(line[ds+2:-1],10)

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 25

else:

 ds = line.find('=')

 testRatio = float(line[ds+1:])

In [15]:

Global Variables

#numPCAComponents = 30

#windowSize = 5

#testRatio = 0.25

In [15]:

X, y = loadIndianPinesData()

In [16]:

X,pca = applyPCA(X,numPCAcomponents)

In [17]:

XPatches, yPatches = createPatches(X, y, windowSize=windowSize)

In [18]:

X_train, X_test, y_train, y_test = splitTrainTestSet(XPatches, yPatches, testRatio)

In [19]:

X_train, y_train = oversampleWeakClasses(X_train, y_train)

In [20]:

X_train = AugmentData(X_train)

In [21]:

savePreprocessedData(X_train, X_test, y_train, y_test, windowSize = windowSize,

 wasPCAapplied=True, numPCAComponents =

numPCAcomponents,testRatio = testRatio)

5.2 Train The dataset.ipyb:

train.ipynb: Define and Train the model

In [1]:

Import the necessary libraries

importnumpyasnp

importscipy

importos

fromkeras.modelsimportSequential

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 26

fromkeras.layersimportDense,Dropout,Flatten

fromkeras.layersimportConv2D,MaxPooling2D

fromkeras.optimizersimportSGD

fromkeras.callbacksimportReduceLROnPlateau,ModelCheckpoint

fromkerasimportbackendasK

K.set_image_dim_ordering('th')

fromkeras.utilsimportnp_utils

#from sklearn.cross_validation import StratifiedKFold

Using TensorFlow backend.

In [2]:

Global Variables

The number of principal components to be retained in the PCA algorithm,

the number of retained features n

numPCAcomponents=30

Patches windows size

windowSize=5

The proportion of Test sets

testRatio=0.50

In [3]:

load Preprocessed data from file

X_train=np.load("./predata/XtrainWindowSize"

+str(windowSize)+"PCA"+str(numPCAcomponents)+

"testRatio"+str(testRatio)+".npy")

y_train=np.load("./predata/ytrainWindowSize"

+str(windowSize)+"PCA"+str(numPCAcomponents)+

"testRatio"+str(testRatio)+".npy")

X_test=np.load("./predata/XtestWindowSize"

+str(windowSize)+"PCA"+str(numPCAcomponents)+

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 27

"testRatio"+str(testRatio)+".npy")

y_test=np.load("./predata/ytestWindowSize"

+str(windowSize)+"PCA"+str(numPCAcomponents)+

"testRatio"+str(testRatio)+".npy")

In [4]:

Reshape data into (numberofsumples, channels, height, width)

X_train=np.reshape(X_train,(X_train.shape[0],X_train.shape[3],

X_train.shape[1],X_train.shape[2]))

X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[3],

X_test.shape[1],X_test.shape[2]))

convert class labels to on-hot encoding

y_train=np_utils.to_categorical(y_train)

y_test=np_utils.to_categorical(y_test)

Define the input shape

input_shape=X_train[0].shape

print(input_shape)

number of filters

C1=3*numPCAcomponents

(30, 5, 5)

In [5]:

Define the model structure

model=Sequential()

model.add(Conv2D(C1,(3,3),activation='relu',input_shape=input_shape))

model.add(Conv2D(3*C1,(3,3),activation='relu'))

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 28

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(6*numPCAcomponents,activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(16,activation='softmax'))

In [6]:

Define optimization and train method

reduce_lr=ReduceLROnPlateau(monitor='val_acc',factor=0.9,patience=25,

min_lr=0.000001,verbose=1)

checkpointer=ModelCheckpoint(filepath="checkpoint.hdf5",verbose=1,

save_best_only=False)

sgd=SGD(lr=0.001,decay=1e-6,momentum=0.9,nesterov=True)

model.compile(loss='categorical_crossentropy',optimizer=sgd,

metrics=['accuracy'])

In [7]:

Start to train model

history=model.fit(X_train,y_train,

batch_size=32,

epochs=100,

verbose=1,

validation_data=(X_test,y_test),

callbacks=[reduce_lr,checkpointer],

shuffle=True)

WARNING:tensorflow:Variable *= will be deprecated. Use variable.assign_mul if you

want assignment to the variable value or 'x = x * y' if you want a new python Tensor

object.

Train on 20110 samples, validate on 5183 samples

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 29

Epoch 1/100

20110/20110 [==============================] - 5s 233us/step - loss: 1.2813 -

acc: 0.6164 - val_loss: 0.6084 - val_acc: 0.8057

Epoch 00001: saving model to checkpoint.hdf5

Epoch 2/100

20110/20110 [==============================] - 4s 177us/step - loss: 0.3752 -

acc: 0.8783 - val_loss: 0.3269 - val_acc: 0.8956

Epoch 00002: saving model to checkpoint.hdf5

Epoch 3/100

20110/20110 [==============================] - 4s 175us/step - loss: 0.2231 -

acc: 0.9304 - val_loss: 0.2492 - val_acc: 0.9168

Epoch 00003: saving model to checkpoint.hdf5

Epoch 4/100

20110/20110 [==============================] - 4s 175us/step - loss: 0.1534 -

acc: 0.9529 - val_loss: 0.1856 - val_acc: 0.9429

Epoch 00004: saving model to checkpoint.hdf5

Epoch 5/100

20110/20110 [==============================] - 4s 174us/step - loss: 0.1112 -

acc: 0.9662 - val_loss: 0.1563 - val_acc: 0.9518

Epoch 00005: saving model to checkpoint.hdf5

Epoch 6/100

20110/20110 [==============================] - 4s 176us/step - loss: 0.0856 -

acc: 0.9748 - val_loss: 0.1393 - val_acc: 0.9510

Epoch 00006: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 30

Epoch 7/100

20110/20110 [==============================] - 4s 177us/step - loss: 0.0659 -

acc: 0.9807 - val_loss: 0.1164 - val_acc: 0.9628

Epoch 00007: saving model to checkpoint.hdf5

Epoch 8/100

20110/20110 [==============================] - 4s 174us/step - loss: 0.0513 -

acc: 0.9866 - val_loss: 0.1127 - val_acc: 0.9618

Epoch 00008: saving model to checkpoint.hdf5

Epoch 9/100

20110/20110 [==============================] - 3s 171us/step - loss: 0.0418 -

acc: 0.9889 - val_loss: 0.1063 - val_acc: 0.9637

Epoch 00009: saving model to checkpoint.hdf5

Epoch 10/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0372 -

acc: 0.9902 - val_loss: 0.0968 - val_acc: 0.9689

Epoch 00010: saving model to checkpoint.hdf5

Epoch 11/100

20110/20110 [==============================] - 3s 172us/step - loss: 0.0324 -

acc: 0.9912 - val_loss: 0.0882 - val_acc: 0.9714

Epoch 00011: saving model to checkpoint.hdf5

Epoch 12/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0278 -

acc: 0.9933 - val_loss: 0.0910 - val_acc: 0.9703

Epoch 00012: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 31

Epoch 13/100

20110/20110 [==============================] - 4s 179us/step - loss: 0.0232 -

acc: 0.9946 - val_loss: 0.0852 - val_acc: 0.9730

Epoch 00013: saving model to checkpoint.hdf5

Epoch 14/100

20110/20110 [==============================] - 4s 177us/step - loss: 0.0216 -

acc: 0.9950 - val_loss: 0.0834 - val_acc: 0.9728

Epoch 00014: saving model to checkpoint.hdf5

Epoch 15/100

20110/20110 [==============================] - 3s 173us/step - loss: 0.0183 -

acc: 0.9956 - val_loss: 0.0842 - val_acc: 0.9726

Epoch 00015: saving model to checkpoint.hdf5

Epoch 16/100

20110/20110 [==============================] - 3s 173us/step - loss: 0.0164 -

acc: 0.9966 - val_loss: 0.0833 - val_acc: 0.9751

Epoch 00016: saving model to checkpoint.hdf5

Epoch 17/100

20110/20110 [==============================] - 3s 171us/step - loss: 0.0140 -

acc: 0.9973 - val_loss: 0.0827 - val_acc: 0.9732

Epoch 00017: saving model to checkpoint.hdf5

Epoch 18/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0125 -

acc: 0.9975 - val_loss: 0.0805 - val_acc: 0.9753

Epoch 00018: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 32

Epoch 19/100

20110/20110 [==============================] - 3s 173us/step - loss: 0.0122 -

acc: 0.9975 - val_loss: 0.0789 - val_acc: 0.9745

Epoch 00019: saving model to checkpoint.hdf5

Epoch 20/100

20110/20110 [==============================] - 3s 173us/step - loss: 0.0121 -

acc: 0.9976 - val_loss: 0.0768 - val_acc: 0.9753

Epoch 00020: saving model to checkpoint.hdf5

Epoch 21/100

20110/20110 [==============================] - 4s 182us/step - loss: 0.0111 -

acc: 0.9976 - val_loss: 0.0776 - val_acc: 0.9757

Epoch 00021: saving model to checkpoint.hdf5

Epoch 22/100

20110/20110 [==============================] - 4s 176us/step - loss: 0.0104 -

acc: 0.9975 - val_loss: 0.0781 - val_acc: 0.9749

Epoch 00022: saving model to checkpoint.hdf5

Epoch 23/100

20110/20110 [==============================] - 3s 174us/step - loss: 0.0086 -

acc: 0.9985 - val_loss: 0.0771 - val_acc: 0.9759

Epoch 00023: saving model to checkpoint.hdf5

Epoch 24/100

20110/20110 [==============================] - 3s 171us/step - loss: 0.0082 -

acc: 0.9986 - val_loss: 0.0761 - val_acc: 0.9755

Epoch 00024: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 33

Epoch 25/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0080 -

acc: 0.9986 - val_loss: 0.0785 - val_acc: 0.9761

Epoch 00025: saving model to checkpoint.hdf5

Epoch 26/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0082 -

acc: 0.9983 - val_loss: 0.0771 - val_acc: 0.9776

Epoch 00026: saving model to checkpoint.hdf5

Epoch 27/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0071 -

acc: 0.9988 - val_loss: 0.0770 - val_acc: 0.9778

Epoch 00027: saving model to checkpoint.hdf5

Epoch 28/100

20110/20110 [==============================] - 3s 172us/step - loss: 0.0069 -

acc: 0.9987 - val_loss: 0.0773 - val_acc: 0.9782

Epoch 00028: saving model to checkpoint.hdf5

Epoch 29/100

20110/20110 [==============================] - 3s 171us/step - loss: 0.0059 -

acc: 0.9993 - val_loss: 0.0783 - val_acc: 0.9770

Epoch 00029: saving model to checkpoint.hdf5

Epoch 30/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0057 -

acc: 0.9991 - val_loss: 0.0783 - val_acc: 0.9757

Epoch 00030: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 34

Epoch 31/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0052 -

acc: 0.9993 - val_loss: 0.0789 - val_acc: 0.9765

Epoch 00031: saving model to checkpoint.hdf5

Epoch 32/100

20110/20110 [==============================] - 3s 171us/step - loss: 0.0051 -

acc: 0.9994 - val_loss: 0.0775 - val_acc: 0.9774

Epoch 00032: saving model to checkpoint.hdf5

Epoch 33/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0054 -

acc: 0.9989 - val_loss: 0.0767 - val_acc: 0.9778

Epoch 00033: saving model to checkpoint.hdf5

Epoch 34/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0049 -

acc: 0.9993 - val_loss: 0.0773 - val_acc: 0.9776

Epoch 00034: saving model to checkpoint.hdf5

Epoch 35/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0052 -

acc: 0.9991 - val_loss: 0.0771 - val_acc: 0.9786

Epoch 00035: saving model to checkpoint.hdf5

Epoch 36/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0045 -

acc: 0.9992 - val_loss: 0.0751 - val_acc: 0.9782

Epoch 00036: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 35

Epoch 37/100

20110/20110 [==============================] - 3s 167us/step - loss: 0.0046 -

acc: 0.9993 - val_loss: 0.0752 - val_acc: 0.9776

Epoch 00037: saving model to checkpoint.hdf5

Epoch 38/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0038 -

acc: 0.9993 - val_loss: 0.0763 - val_acc: 0.9782

Epoch 00038: saving model to checkpoint.hdf5

Epoch 39/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0041 -

acc: 0.9993 - val_loss: 0.0766 - val_acc: 0.9780

Epoch 00039: saving model to checkpoint.hdf5

Epoch 40/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0044 -

acc: 0.9989 - val_loss: 0.0763 - val_acc: 0.9794

Epoch 00040: saving model to checkpoint.hdf5

Epoch 41/100

20110/20110 [==============================] - 3s 164us/step - loss: 0.0040 -

acc: 0.9995 - val_loss: 0.0755 - val_acc: 0.9774

Epoch 00041: saving model to checkpoint.hdf5

Epoch 42/100

20110/20110 [==============================] - 3s 164us/step - loss: 0.0038 -

acc: 0.9992 - val_loss: 0.0741 - val_acc: 0.9782

Epoch 00042: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 36

Epoch 43/100

20110/20110 [==============================] - 3s 172us/step - loss: 0.0032 -

acc: 0.9997 - val_loss: 0.0762 - val_acc: 0.9772

Epoch 00043: saving model to checkpoint.hdf5

Epoch 44/100

20110/20110 [==============================] - 4s 189us/step - loss: 0.0034 -

acc: 0.9995 - val_loss: 0.0752 - val_acc: 0.9784

Epoch 00044: saving model to checkpoint.hdf5

Epoch 45/100

20110/20110 [==============================] - 4s 190us/step - loss: 0.0032 -

acc: 0.9995 - val_loss: 0.0770 - val_acc: 0.9788

Epoch 00045: saving model to checkpoint.hdf5

Epoch 46/100

20110/20110 [==============================] - 4s 191us/step - loss: 0.0029 -

acc: 0.9998 - val_loss: 0.0768 - val_acc: 0.9776

Epoch 00046: saving model to checkpoint.hdf5

Epoch 47/100

20110/20110 [==============================] - 4s 189us/step - loss: 0.0034 -

acc: 0.9995 - val_loss: 0.0767 - val_acc: 0.9774

Epoch 00047: saving model to checkpoint.hdf5

Epoch 48/100

20110/20110 [==============================] - 4s 189us/step - loss: 0.0038 -

acc: 0.9994 - val_loss: 0.0786 - val_acc: 0.9778

Epoch 00048: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 37

Epoch 49/100

20110/20110 [==============================] - 4s 188us/step - loss: 0.0034 -

acc: 0.9995 - val_loss: 0.0788 - val_acc: 0.9780

Epoch 00049: saving model to checkpoint.hdf5

Epoch 50/100

20110/20110 [==============================] - 4s 188us/step - loss: 0.0028 -

acc: 0.9995 - val_loss: 0.0785 - val_acc: 0.9784

Epoch 00050: saving model to checkpoint.hdf5

Epoch 51/100

20110/20110 [==============================] - 4s 180us/step - loss: 0.0028 -

acc: 0.9995 - val_loss: 0.0763 - val_acc: 0.9788

Epoch 00051: saving model to checkpoint.hdf5

Epoch 52/100

20110/20110 [==============================] - 3s 171us/step - loss: 0.0028 -

acc: 0.9995 - val_loss: 0.0765 - val_acc: 0.9782

Epoch 00052: saving model to checkpoint.hdf5

Epoch 53/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0022 -

acc: 0.9998 - val_loss: 0.0781 - val_acc: 0.9788

Epoch 00053: saving model to checkpoint.hdf5

Epoch 54/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0023 -

acc: 0.9998 - val_loss: 0.0771 - val_acc: 0.9790

Epoch 00054: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 38

Epoch 55/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0024 -

acc: 0.9996 - val_loss: 0.0776 - val_acc: 0.9784

Epoch 00055: saving model to checkpoint.hdf5

Epoch 56/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0024 -

acc: 0.9997 - val_loss: 0.0774 - val_acc: 0.9790

Epoch 00056: saving model to checkpoint.hdf5

Epoch 57/100

20110/20110 [==============================] - 3s 171us/step - loss: 0.0022 -

acc: 0.9999 - val_loss: 0.0786 - val_acc: 0.9784

Epoch 00057: saving model to checkpoint.hdf5

Epoch 58/100

20110/20110 [==============================] - 3s 171us/step - loss: 0.0023 -

acc: 0.9998 - val_loss: 0.0784 - val_acc: 0.9786

Epoch 00058: saving model to checkpoint.hdf5

Epoch 59/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0025 -

acc: 0.9993 - val_loss: 0.0788 - val_acc: 0.9784

Epoch 00059: saving model to checkpoint.hdf5

Epoch 60/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0025 -

acc: 0.9995 - val_loss: 0.0788 - val_acc: 0.9788

Epoch 00060: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 39

Epoch 61/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0020 -

acc: 0.9997 - val_loss: 0.0788 - val_acc: 0.9792

Epoch 00061: saving model to checkpoint.hdf5

Epoch 62/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0022 -

acc: 0.9998 - val_loss: 0.0781 - val_acc: 0.9786

Epoch 00062: saving model to checkpoint.hdf5

Epoch 63/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0021 -

acc: 0.9997 - val_loss: 0.0767 - val_acc: 0.9788

Epoch 00063: saving model to checkpoint.hdf5

Epoch 64/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0021 -

acc: 0.9998 - val_loss: 0.0770 - val_acc: 0.9797

Epoch 00064: saving model to checkpoint.hdf5

Epoch 65/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0019 -

acc: 0.9997 - val_loss: 0.0769 - val_acc: 0.9792

Epoch 00065: saving model to checkpoint.hdf5

Epoch 66/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0017 -

acc: 0.9998 - val_loss: 0.0768 - val_acc: 0.9788

Epoch 00066: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 40

Epoch 67/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0019 -

acc: 0.9997 - val_loss: 0.0789 - val_acc: 0.9792

Epoch 00067: saving model to checkpoint.hdf5

Epoch 68/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0022 -

acc: 0.9997 - val_loss: 0.0795 - val_acc: 0.9794

Epoch 00068: saving model to checkpoint.hdf5

Epoch 69/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0021 -

acc: 0.9997 - val_loss: 0.0802 - val_acc: 0.9786

Epoch 00069: saving model to checkpoint.hdf5

Epoch 70/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0020 -

acc: 0.9996 - val_loss: 0.0765 - val_acc: 0.9797

Epoch 00070: saving model to checkpoint.hdf5

Epoch 71/100

20110/20110 [==============================] - 3s 167us/step - loss: 0.0021 -

acc: 0.9997 - val_loss: 0.0763 - val_acc: 0.9803

Epoch 00071: saving model to checkpoint.hdf5

Epoch 72/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0015 -

acc: 0.9999 - val_loss: 0.0755 - val_acc: 0.9795

Epoch 00072: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 41

Epoch 73/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0017 -

acc: 0.9997 - val_loss: 0.0755 - val_acc: 0.9790

Epoch 00073: saving model to checkpoint.hdf5

Epoch 74/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0017 -

acc: 0.9997 - val_loss: 0.0766 - val_acc: 0.9795

Epoch 00074: saving model to checkpoint.hdf5

Epoch 75/100

20110/20110 [==============================] - 3s 166us/step - loss: 0.0019 -

acc: 0.9998 - val_loss: 0.0762 - val_acc: 0.9794

Epoch 00075: saving model to checkpoint.hdf5

Epoch 76/100

20110/20110 [==============================] - 3s 160us/step - loss: 0.0015 -

acc: 0.9999 - val_loss: 0.0779 - val_acc: 0.9792

Epoch 00076: saving model to checkpoint.hdf5

Epoch 77/100

20110/20110 [==============================] - 3s 164us/step - loss: 0.0014 -

acc: 0.9999 - val_loss: 0.0804 - val_acc: 0.9786

Epoch 00077: saving model to checkpoint.hdf5

Epoch 78/100

20110/20110 [==============================] - 4s 188us/step - loss: 0.0014 -

acc: 0.9999 - val_loss: 0.0794 - val_acc: 0.9794

Epoch 00078: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 42

Epoch 79/100

20110/20110 [==============================] - 3s 172us/step - loss: 0.0016 -

acc: 0.9998 - val_loss: 0.0817 - val_acc: 0.9784

Epoch 00079: saving model to checkpoint.hdf5

Epoch 80/100

20110/20110 [==============================] - 4s 207us/step - loss: 0.0016 -

acc: 0.9998 - val_loss: 0.0794 - val_acc: 0.9782

Epoch 00080: saving model to checkpoint.hdf5

Epoch 81/100

20110/20110 [==============================] - 3s 169us/step - loss: 0.0013 -

acc: 1.0000 - val_loss: 0.0791 - val_acc: 0.9797

Epoch 00081: saving model to checkpoint.hdf5

Epoch 82/100

20110/20110 [==============================] - 3s 168us/step - loss: 0.0020 -

acc: 0.9995 - val_loss: 0.0795 - val_acc: 0.9788

Epoch 00082: saving model to checkpoint.hdf5

Epoch 83/100

20110/20110 [==============================] - 4s 175us/step - loss: 0.0014 -

acc: 0.9998 - val_loss: 0.0781 - val_acc: 0.9795

Epoch 00083: saving model to checkpoint.hdf5

Epoch 84/100

20110/20110 [==============================] - 3s 166us/step - loss: 0.0017 -

acc: 0.9996 - val_loss: 0.0773 - val_acc: 0.9797

Epoch 00084: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 43

Epoch 85/100

20110/20110 [==============================] - 3s 173us/step - loss: 0.0012 -

acc: 0.9999 - val_loss: 0.0777 - val_acc: 0.9795

Epoch 00085: saving model to checkpoint.hdf5

Epoch 86/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0015 -

acc: 0.9998 - val_loss: 0.0783 - val_acc: 0.9790

Epoch 00086: saving model to checkpoint.hdf5

Epoch 87/100

20110/20110 [==============================] - 3s 165us/step - loss: 0.0016 -

acc: 0.9996 - val_loss: 0.0803 - val_acc: 0.9788

Epoch 00087: saving model to checkpoint.hdf5

Epoch 88/100

20110/20110 [==============================] - 4s 174us/step - loss: 0.0015 -

acc: 0.9998 - val_loss: 0.0802 - val_acc: 0.9790

Epoch 00088: saving model to checkpoint.hdf5

Epoch 89/100

20110/20110 [==============================] - 4s 177us/step - loss: 0.0011 -

acc: 0.9999 - val_loss: 0.0796 - val_acc: 0.9794

Epoch 00089: saving model to checkpoint.hdf5

Epoch 90/100

20110/20110 [==============================] - 4s 175us/step - loss: 0.0014 -

acc: 0.9998 - val_loss: 0.0782 - val_acc: 0.9792

Epoch 00090: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 44

Epoch 91/100

20110/20110 [==============================] - 3s 174us/step - loss: 0.0014 -

acc: 0.9998 - val_loss: 0.0797 - val_acc: 0.9786

Epoch 00091: saving model to checkpoint.hdf5

Epoch 92/100

20110/20110 [==============================] - 3s 172us/step - loss: 0.0014 -

acc: 0.9999 - val_loss: 0.0797 - val_acc: 0.9790

Epoch 00092: saving model to checkpoint.hdf5

Epoch 93/100

20110/20110 [==============================] - 3s 172us/step - loss: 0.0013 -

acc: 0.9998 - val_loss: 0.0813 - val_acc: 0.9792

Epoch 00093: saving model to checkpoint.hdf5

Epoch 94/100

20110/20110 [==============================] - 3s 172us/step - loss: 0.0012 -

acc: 0.9999 - val_loss: 0.0790 - val_acc: 0.9799

Epoch 00094: saving model to checkpoint.hdf5

Epoch 95/100

20110/20110 [==============================] - 3s 173us/step - loss: 0.0011 -

acc: 0.9998 - val_loss: 0.0781 - val_acc: 0.9801

Epoch 00095: saving model to checkpoint.hdf5

Epoch 96/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0012 -

acc: 0.9998 - val_loss: 0.0787 - val_acc: 0.9801

Epoch 00096: saving model to checkpoint.hdf5

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 45

Epoch 97/100

20110/20110 [==============================] - 3s 170us/step - loss: 0.0014 -

acc: 0.9998 - val_loss: 0.0787 - val_acc: 0.9792

Epoch 00097: ReduceLROnPlateau reducing learning rate to 0.0009000000427477062.

Epoch 00097: saving model to checkpoint.hdf5

Epoch 98/100

20110/20110 [==============================] - 3s 172us/step - loss: 0.0012 -

acc: 0.9998 - val_loss: 0.0801 - val_acc: 0.9795

Epoch 00098: saving model to checkpoint.hdf5

Epoch 99/100

20110/20110 [==============================] - 3s 172us/step - loss: 0.0010 -

acc: 1.0000 - val_loss: 0.0798 - val_acc: 0.9794

Epoch 00099: saving model to checkpoint.hdf5

Epoch 100/100

20110/20110 [==============================] - 3s 171us/step - loss: 0.0010 -

acc: 0.9999 - val_loss: 0.0811 - val_acc: 0.9799

Epoch 00100: saving model to checkpoint.hdf5

In [8]:

save the model with h5py

importh5py

fromkeras.modelsimportload_model

model.save('./model/HSI_model_epochs100.h5')

In [9]:

using plot_model module to save the model figure

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 46

fromkeras.utilsimportplot_model

plot_model(model,to_file='./model/model.png',show_shapes=True)

print(history.history.keys())

show the model figure

importmatplotlib.pyplotasplt

%matplotlibinline

model_img=plt.imread('./model/model.png')

plt.imshow(model_img,shape=(10,10))

plt.show()

dict_keys(['val_loss', 'val_acc', 'loss', 'acc', 'lr'])

In [10]:

summarize history for accuracy

plt.plot(history.history['acc'])

plt.plot(history.history['val_acc'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.grid(True)

plt.legend(['train','test'],loc='upper left')

plt.savefig("./result/model_accuracy_100.svg")

plt.show()

summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('model loss')

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 47

plt.ylabel('loss')

plt.xlabel('epoch')

plt.grid(True)

plt.legend(['train','test'],loc='upper left')

plt.savefig("./result/model_loss_100.svg")

plt.show()

5.3 Validation and Classification:

"""Python

script to

classify

the

image."""

Import the necessary libraries
from sklearn.decomposition import PCA
import os
import scipy.io as sio
import numpy as np
from keras.models import load_model
from keras.utils import np_utils
from sklearn.metrics import classification_report, confusion_matrix
import spectral
import cv2

Global Variables
windowSize = 5
numPCAcomponents = 30
testRatio = 0.25

PATH = os.getcwd()
print(PATH)

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 48

def loadIndianPinesData():
 """Method to load IndianPines."""
 data_path = os.path.join(os.getcwd(), 'data')
 data = sio.loadmat(os.path.join(data_path,
 'Indian_pines_corrected.mat'))['indian_pines_corrected']
 labels = sio.loadmat(os.path.join(data_path,
 'Indian_pines_gt.mat'))['indian_pines_gt']

 return data, labels

def reports(X_test, y_test):
 Y_pred = model.predict(X_test)
 y_pred = np.argmax(Y_pred, axis=1)
 target_names = ['Alfalfa', 'Corn-notill', 'Corn-mintill', 'Corn',
 'Grass-pasture', 'Grass-trees', 'Grass-pasture-mowed',
 'Hay-windrowed', 'Oats', 'Soybean-notill',
 'Soybean-mintill', 'Soybean-clean', 'Wheat',
 'Woods', 'Buildings-Grass-Trees-Drives',
 'Stone-Steel-Towers']

 classification = classification_report(np.argmax(y_test, axis=1),
 y_pred, target_names=target_names)
 confusion = confusion_matrix(np.argmax(y_test, axis=1), y_pred)
 score = model.evaluate(X_test, y_test, batch_size=32)
 Test_Loss = score[0]*100
 Test_accuracy = score[1]*100

 return classification, confusion, Test_Loss, Test_accuracy

def applyPCA(X, numComponents=75):
 newX = np.reshape(X, (-1, X.shape[2]))
 pca = PCA(n_components=numComponents, whiten=True)
 newX = pca.fit_transform(newX)
 newX = np.reshape(newX, (X.shape[0], X.shape[1], numComponents))
 return newX, pca

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 49

def Patch(data, height_index, width_index):
 # transpose_array = data.transpose((2,0,1))
 # print transpose_array.shape
 height_slice = slice(height_index, height_index+PATCH_SIZE)
 width_slice = slice(width_index, width_index+PATCH_SIZE)
 patch = data[height_slice, width_slice, :]

 return patch

X_test = np.load(PATH + "/trainingData/" + "XtrainWindowSize" +
 str(windowSize) +
 "PCA" + str(numPCAcomponents) +
 "testRatio" + str(testRatio) +
 ".npy")

y_test = np.load(PATH + "/trainingData/" + "ytrainWindowSize" +
 str(windowSize) +
 "PCA" + str(numPCAcomponents) +
 "testRatio" + str(testRatio) +
 ".npy")

X_test = np.reshape(X_test, (X_test.shape[0],
 X_test.shape[3],
 X_test.shape[1],
 X_test.shape[2]))

y_test = np_utils.to_categorical(y_test)

load the model architecture and weights
model = load_model('hyperspectralModel.h5')

classification, confusion, Test_loss, Test_accuracy = reports(X_test, y_test)
classification = str(classification)
confusion = str(confusion)
filename = "reportWindowSize"
filename += str(windowSize)
filename += "PCA"
filename += str(numPCAcomponents)
filename += "testRatio"
filename += str(testRatio)

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 50

filename += ".txt"

with open(filename, 'w') as x_file:
 x_file.write('{} Test loss (%)'.format(Test_loss))
 x_file.write('\n')
 x_file.write('{} Test accuracy (%)'.format(Test_accuracy))
 x_file.write('\n')
 x_file.write('\n')
 x_file.write('{}'.format(classification))
 x_file.write('\n')
 x_file.write('{}'.format(confusion))

load the original image
X, y = loadIndianPinesData()

X, pca = applyPCA(X, numComponents=numPCAcomponents)

height = y.shape[0]
width = y.shape[1]
PATCH_SIZE = 5
numComponents = 30

calculate the predicted image
outputs = np.zeros((height, width))
for i in range(height-PATCH_SIZE+1):
 for j in range(width-PATCH_SIZE+1):
 target = int(y[i+PATCH_SIZE//2, j+PATCH_SIZE//2])
 if target == 0:
 continue
 else:
 image_patch = Patch(X, i, j)
 # print (image_patch.shape)
 X_test_image = image_patch.reshape(1, image_patch.shape[2],
 image_patch.shape[0],
 image_patch.shape[1]).astype('float32')
 prediction = (model.predict_classes(X_test_image))
 outputs[i+PATCH_SIZE//2][j+PATCH_SIZE//2] = prediction+1

ground_truth = spectral.imshow(classes=y, figsize=(5, 5))
spectral.save_rgb("ground_truth.png", y, colors=spectral.spy_colors)

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 51

predict_image = spectral.imshow(classes=outputs.astype(int),
 figsize=(5, 5))
spectral.save_rgb("predict_image.png", outputs.astype(int),
 colors=spectral.spy_colors)
ground = cv2.imread("ground_truth.png")
cv2.resize(ground, (100, 100))
cv2.imshow("Ground Truth Image", ground)
predict = cv2.imread("predict_image.png")
cv2.resize(ground, (100, 100))
cv2.imshow("Classified Image", predict)

cv2.waitKey(0)
cv2.destroyAllWindows()

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 52

CHAPTER 6

 RESULTS AND DISCUSSION

 Fig 8: Ground Truth Image

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 53

This is the ground truth image which has been used for training layer by

layer and also gives information for different layers. The testing is done by

comparing our output with this ground truth image.

 Fig 9: The different Labels with respect to the colour assigned

Ground truth classes for the Indian Pines scene and their respective samples

number

Class Samples

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-mintill 830

4 Corn 237

5 Grass-pasture 483

6 Grass-trees 730

7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oats 20

10 Soybean-notill 972

11 Soybean-mintill 2455

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 54

12 Soybean-clean 593

13 Wheat 205

14 Woods 1265

15 Buildings-Grass-Trees-Drives 386

16 Stone-Steel-Towers 93

Table 1: Ground truth classes for the Indian Pines scene and their respective

samples number

 Fig 10: Final Classified Image

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 55

CHAPTER8

 CONCLUSION AND FUTURE SCOPE

8.1 Conclusion

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 56

 Fig 11: Comparing Previous Works

Comparing the previous work

We proposed a new methodology for efficiently classifying

a hyperspectral image which uses deep learning with the implementation of

tensor flow.

The proposed method is empirically shown to be faster since it is pre-trained

already and cheaper because there is no need of a GPU farm.

It also avoid over fitting.

Other methods were mostly manual and consumed lot of time.

We also came across convolutional neural network which makes the task

of image classification feasible with automatic feature extraction.

Hence, after comparison of our work with other related works we came to a

conclusion that our model is performing better with a higher accuracy and

meets our problem statement goals.

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 57

8.2 Future Scope

The future scope of the project might be putting the classification into real

time usage

• Yield estimation in wheat - Hyperspectral remote sensing was used

to help predict yield in wheat as a function of fertilizer concentration.

• Food Analysis- Resonon's hyperspectral imaging systems are used in

food research and industry to identify defects, characterize product

quality, and locate contaminants.

• Cooked Food- Subtle color changes associated with food quality can

readily be identified using hyperspectral imaging.

• Environmental Monitoring- Hyperspectral imaging is used to track

forest health, water quality, and surface contamination.

• Further improvement in this project could lead to more accurate

results.

Machine Learning and different techniques created new systems to spot

patterns which the human brain is not capable of, and since finance is

quantitative, to start with, it’s laborious not to notice traction. Financial

corporations have conjointly endowed heavily in AI in the past, and many

others are starting to investigate and implement the financial applications of

machine learning (ML) and deep learning to their operations. The high

emotionalism of the crypto market ecosystem has already become a topic of

study by developers who are attempting to come up with an Al-based

solution to increase profit returns. One of the first steps taken in this area was

the creation of models that use a neural network to make cryptocurrency

valuation predictions. Another way crypto trading is being influenced by AI

and ML is through the analysis of sentiments. Sentiment analysis is the

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 58

processing of enormous volumes of information from various sources like

articles, blogs, comments, social media posts, even video transcription to

work out the market’s “feelings” regarding a topic — to determine if it is

positive, neutral or negative. Neural networks endlessly supply increased

accuracy. Neural networks make predictions associated with crypto markets

remarkably faster. Their nature is to crunch information of cryptocurrency

exchange rates constantly. Which are then used to forecast market

movements by minutes, hours and days. Fundamental analysis is employed

by both cryptocurrency and stock traders.With Artificial Intelligence, all

industries, whether informational, technical or operational will become

interdependent and interconnected.

REFERENCES

 Hierarchical Multi-Scale Convolutional Neural
Networks for Hyperspectral Image Classification,
Simin Li, Xueyu Zhu, Jie Bao

 International Journal of Pure and Applied
Mathematics Volume 101 No. 5 2015, 809-829

 Wang, Yi & Duan, Hexiang. (2018). Classification of
Hyperspectral Images by SVM Using a Composite
Kernel by Employing Spectral, Spatial and

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480716/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480716/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480716/

Classification of Landcover Using Data Analytics for Hyperspectral Imaging

Dept of CSE, CMRIT 2019-20 Page 59

Hierarchical Structure Information. Remote Sensing.
10. 26. 10.3390/rs10030441.

 Fang, B.; Li, Y.; Zhang, H.; Chan, J.C.-W. Semi-
Supervised Deep Learning Classification for
Hyperspectral Image Based on Dual-Strategy
Sample Selection. Remote Sens. 2018, 10, 574.

 Z. Zhao, P. Zheng, S. Xu and X. Wu, "Object
Detection With Deep Learning: A Review," in IEEE
Transactions on Neural Networks and Learning
Systems, vol. 30, no. 11, pp. 3212-3232, Nov. 2019,

doi: 10.1109/TNNLS.2018.2876865.

