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ABSTRACT 

 

The idea of the project is to segregate and classify a given land cover into its respective classes. 

We have taken a hyperspectral image consisting of 145*145 pixels and 224 spectral bands which is required 

for maximum information to be extracted. 

Previous work in this field have been done using various algorithms like SVM, end member extraction  etc. 

which is slower and is a tedious process. 

Environmental Monitoring- Hyperspectral imaging is used to track forest health, water quality, and surface 

contamination. Hyperspectral Image classification is the process of labelling the different landscape features. In 

our approach, we are using Deep Learning and Neural Networks to train a model and classify an input 

hyperspectral image. Such classification can help to understand the landscape features of a particular area and 

this data can be used to predict land usage and suggest optimal use of land. Here, we are using the Indian Pines 

data set for training and classification. The Deep learning framework used is Tensor Flow and the resultant 

accuracy in prediction is about 93%.The idea of the project is to segregate and classify a given land cover into its 

respective classes. We have taken a hyperspectral image consisting of 145*145 pixels and 224 spectral bands 

which is required for maximum information to be extracted. 
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CHAPTER 1 

INTRODUCTION 

A hyperspectral image differs from a normal image as it contains n no. of 

layers meaning more no. of pixels and eventually providing 

deeper information. Classification is an abstract representation of 

the situation in the field using well-defined diagnostic criteria: the 

classifiers. 

The idea of the project is building these classifiers using machine and deep 

leaning models which will ultimately solve our purpose. Recent advances in 

remote sensing technology have made hyperspectral data with hundreds of 

narrow contiguous bands more widely available. The hyperspectral data can 

therefore reveal subtle differences in the spectral signatures of land cover 

classes that appear similar when viewed by multispectral sensors. If 

successfully exploited, the hyperspectral data can yield higher classification 

accuracies and more detailed class taxonomies. However, the task of 

classifying hyperspectral data also has unique challenges. 

The hyperspectral un-mixing problem is concerned with the decomposition 

of the hyperspectral image into a product form, where the spectrum in each 

pixel is represented as a collection of material spectra that are referred to as 

end members, and the mixing proportions of these materials in each pixel 

that are known as the abundances. 

Deep learning is a subfield of machine learning which uses artificial neural 

networks that is inspired by the structure and function of the human brain. 

Despite being a very new approach, it has become very popular recently. 

Deep learning has achieved much higher success in many applications 

where machine learning has been successful at certain rates. In particular, it 

is preferred in the classification of big data sets because it can provide fast 
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and efficient results. In this study, we used Tensor flow, one of the most 

popular deep learning libraries to classify dataset, which is frequently used 

in data analysis studies. Using Tensor flow, which is an open source 

artificial intelligence library developed by Google, we have studied and 

compared the effects of multiple activation functions on classification 

results. In this Study, Convolutional Neural Network (CNN) is used as deep 

learning artificial neural network. The applications of hyperspectral image 

classification are given below:  

1) It will help us to identify different areas. 

2) Fixing of tax policies by the government by knowing the rate of growth. 

1.1 Relevance of the project 

The conventional method of machine learning, such as k-nearest-neighbours 

(KNN), support vector machines (SVMs), random forests (RFs) and so on.  

However, these methods often require strong background knowledge of 

HSI, and the process of extracting features is more troublesome and easy to 

lose important features. 

The greatest advantage of it is that features can be extracted from the hidden 

layer in the network without too much pre-processing of the data.  

Applications of Hyperspectral imaging are like in Pharmaceutical industries 

Hyperspectral infrared imagers can identify counterfeits, find defects, and 

eliminate prescription errors. 

Hyperspectral imaging enables identification of weeds, monitoring of plant 

health, and evaluation of ripeness. Early detection of crop stress is a 

common application. 

 

1.2 Problem Statement 

Problem statement therefore is Classification of Land cover using Data 

Analytics for Hyperspectral Imaging with better accuracy. The idea of the 

project is to replace existing methodology like SVM which is a traditional 
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machine learning algorithm with low accuracy as it’s comparatively slower 

as compared to Neural Networks (specifically CNN’S) which is a newer 

approach. Also, being a deep learning framework provides more information 

and training the model becomes easier. Our idea in this project is to 

implement 2 layered Convolutional Neural Network. 

 

1.3 Objective 

The objectives of the work are as follows: 

• Collect Hyperspectral Image data and analyse the data 

for further processing. 

• Perform Pre-processing and data cleaning that will remove 

the unwanted spectral bands whose processing is not 

required. 

• Design and develop a method for segmentation of land 

cover from hyperspectral image data.  

• Test the effectiveness of the proposed method on 

various hyperspectral images to classify different land 

covers. 

• Ensure that the new methods meet the particularities of the 

given data 

• Finally we compare our output accuracy percentage with 

other works to obtain a higher accuracy . 

  

1.4 Scope of the project 

The most important part of this project is its usage of classifying land cover. 

Depending upon the requirements we can further narrow down or reduce the 

dimensionality for better efficiency. For instance, eliminating water bodies 

spectral region was our way to reduce dimensionality as we were concerned 

with the distinguishing of the different agricultural areas. Henceforth, we 
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can see that a single hyperspectral image with its given ground truth can be 

put to use in different ways, gathering more information contributing to 

higher accuracy.. 

• The future scope of the project might be putting the classification 

into real time usage 

• Yield estimation in wheat - Hyperspectral remote sensing was used 

to help predict yield in wheat as a function of fertilizer concentration. 

• Food Analysis- Resonon's hyperspectral imaging systems are used in 

food research and industry to identify defects, characterize product 

quality, and locate contaminants. 

• Cooked Food- Subtle color changes associated with food quality can 

readily be identified using hyperspectral imaging. 

• Environmental Monitoring- Hyperspectral imaging is used to track 

forest health, water quality, and surface contamination. 

• Further improvement in this project could lead to more accurate 

results. 

 

1.5 Methodology 

We use agile methodology to implement our system. It is a type of project 

management process, mainly used for software development, where 

demands and solutions evolve through the collaborative effort of self-

organizing and cross functional terms. Thus, we perform the process in steps 

as described below. 

First collect the Indian Pines data in the required format. We need to 

determine the relevant attributes needed for the prediction of Land cover 

prediction, this is done by cleaning the dataset by removing the noisy data. 

After analyzing the problem statement we design the model and identify the 

best algorithm with the data available. Using the algorithm determined we 

train the datasets to predict the landcover type. After the implementation of 

the algorithms we test the results by accuracy calculations.  
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    Fig 1: Agile Methodology 

. 

 

                                    Fig 1: Agile Methodology 
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CHAPTER 2 

                                LITERATURE SURVEY 

2.1 Object Detection with Deep Learning: A Review (Paper 1) 

July 2019 

DEEP NEURAL NETWORK: (Overview) 

DNN is a type of artificial intelligence that imitates some functions of the person mind. 

DNN has a 

normal tendency for storing experiential knowledge. An DNN consists of a sequence of 

layers, each 

layer consists of a set of neurones. All neurones of every layer are linked by weighted 

connections to 

all neurones on the preceding and succeeding layers 

CHARACTERISTICS: 

It uses Nonparametric approach. Performance and accuracy depends upon the network 

structure 

and number of inputs. 

 

ADVANTAGES: 

It is a non-parametric classifier. 

• It is an universal functional approximator with arbitrary accuracy. 

• capable to present functions such as OR, AND, NOT 

• It is a data driven selfadaptive technique 

• efficiently handles noisy inputs 
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• Computation rate is high 

Disadvantages: 

• It is semantically poor. 

• The training of DNN is time taking. 

• Problem of over fitting. 

• Difficult in choosing the type network architecture. 

2.2 Semi-Supervised Deep Learning Classification for 

Hyperspectral Image Based on Dual-Strategy Sample 

Selection(2018)(paper2) 

Overview: 

Semi-supervised learning is a class of machine learning tasks and techniques that also 

make 

use of unlabelled data for training – typically a small amount of labelled data with a large 

amount 

of unlabelled data. Semi-supervised learning falls between unsupervised learning and 

supervised 

learning 

Advantage: 

• Capable of reducing the dependence of deep learning method on large-scale 

manually labelled HSI data. The key to the framework are two parts:  

(1) The spectral- and spatial-Network for extracting the spectral features and spatial 

features and  

(2) the dual-strategy sample selection co-training algorithm for effective semi-supervised 

learning. 

Disadvantage: 
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• It is robust because there are mislabelled samples. 

 

 

 

 

 

           2.3 Classification of Hyperspectral Images by SVM Using a 

Composite 

Kernel by Employing Spectral, Spatial and Hierarchical Structure 

Information (PAPER 3)(MARCH 2018) 

SVM (SUPPORT VECTOR MECHANISM): WHAT IS IT AND WHAT ARE THE 

CHARACTERISTICS? 

A support vector machine builds a hyper plane or set of hyper planes in a high- or 

Infinite dimensional space, used for classification. Good separation is achieved by the 

hyper plane 

that  has the largest distance to the nearest training data point of any class (functional 

margin), 

generally larger the margin lower the generalization error of the classifier. 

CHARACTERISTICS: 

SVM uses Nonparametric with binary classifier approach and can handle more input data 

very 

efficiently. Performance and accuracy depends upon the hyperplane selection and kernel 

parameter 

Advantages: 
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• It gains flexibility in the choice of the form of the threshold. 

• Contains a nonlinear transformation. 

• It provides a good generalization capability. 

• The problem of over fitting is eliminated. 

• Reduction in computational complexity. 

• Simple to manage decision rule complexity and Error frequency 

Disadvantages: 

• Result transparency is low. 

• Training is time consuming. 

• Structure of algorithm is difficult to understand 

• Determination of optimal parameters is not easy when there is nonlinearly 

separable training data. 

              

             2.4 HYPERSPECTRAL IMAGE ANALYSIS USING END 

MEMBER 

EXTRACTION ALGORITHM (March 12, 2015)  

(PAPER 4) 

• Mixed pixels are frequent in remotely sensed hyperspectral images due to insufficient 

spatial 

resolution of the imaging spectrometer, or due to intimate mixing effects. 

• The rich spectral resolution available can be used to Unix hyperspectral pixels. Mixed 

pixels can 

also be obtained with high spatial resolution data due to intimate mixtures, this means 

that 
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increasing the spatial resolution does not solve the problem. 

• The mixture problem can be approaches in macroscopic fashion, this means that a few 

macroscopic components and their associated abundances should be derived. 

• However, intimate mixtures happen at microscopic scales, thus complicating the 

analysis with 

nonlinear mixing effects. 

Disadvantages: 

• Hyperspectral sensor collects hundreds of bands at different wavelengths. The resulting 

data 

volume often comprises several Gigabytes per flight. 

• However the bandwidth of the downlink connection between the sensor and the Earth 

station is 

reduced, which limits the amount of data that can be sent to Earth. 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480716/ (BASE PAPER) 

2.5 Hierarchical Multi-Scale Convolutional Neural Networks for 

Hyperspectral Image Classification. (Paper 1)- 2019 April (Final 

paper)(paper 5) 

KEYWORDS: hyperspectral image (HSI) classification, convolutional neural networks 

(CNNs), 

Bidirectional LSTM, multi-scale features 

Deep neural network is a artificial neural network composed of many layers. 

Convolutional Neural Networks (CNN) are very similar to ordinary Neural Networks. 

But instead of connecting all neuron from one layer to a single neuron in the next layer, 
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only a patch of neuron from one layer is connected to a single neuron in the next layer. Its 

neurons is inspired by the organization of the animal visual cortex. 

 

 

                   Fig 2: ORDINARY NEURAL NETWORK 
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     Fig 3: CONVOLUTIONAL NEURAL NETWORK 

 

We can construct a deep neural network with stacked Convolution layers which is called 

as Deep Convolutional Neural Network. Its been proof that deeper neural network give 

much more accurate results compared to shallower networks. A convolutional neural 

network (CNN) is a specific type of artificial neural network that uses perceptrons, a 

machine learning unit algorithm, for supervised learning, to analyze data. CNNs apply to 

image processing, natural language processing and other kinds of cognitive tasks. CNNs 

are regularized versions of multilayer perceptrons. The receptive fields of different 

neurons partially overlap such that they cover the entire visual field. Convolutional 

Neural Network is a vast topic that contains many algorithms by which CNN can be 

applied. It may be just using simple CNN .There are more complex 2D CNN and 3D 

CNN which gets more complicated as data increases Advantages: Gives amazing results 

and accuracy. Disadvantages: -High computational cost. - If you don't have a good GPU 

they are quite slow to train (for complex tasks). -They use to need a lot of training data. 
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CHAPTER3 

                  REQUIREMENTS SPECIFICATION 

The requirements can be broken down into 3 major categories namely 

functional, hardware and software requirements. 

Functional Requirements: 

• Functional Requirement defines a function of a software system and how the 

system must behave when presented with specific inputs or conditions. 

These may include calculations, data manipulation and processing and other 

specific functionality. In this system following are the functional 

requirements:- 

• To classify the given landcover of a given HSI image   

• To output all the different classes of agricultural crops available. 

• To give information about various crops based on wave length based on 

spectral signature of respective spectral bands. 

Hardware Requirements: 

The hardware requirement is minimal and the software can run with 

minimal requirements. The basic requirements are as enlisted below: 

1. Processor:  Intel Core2Duo processor or a processor with higher 

specifications 

2. Processor speed: 1.5GHz or above. 

3. RAM : 1GB or above 

4. Storage space : 1GB or above 

5. Monitor resolution: A colour monitor with a minimum resolution of 

640*480 

Software Requirements: 
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1. An MS-DOS based operating system like Windows 

98/2000/XP/Vista/7/8/10/, Linux, MacOS.Anaconda Navigator 

2. Python3.6 

3. Keras 

4. NumPy 

5. Pandas 

6. MatplotLib 

7. SkLearn 

8. Spectral  

9. Indian Pines dataset, Groundtruth of dataset 
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CHAPTER 4 

 

                       SYSTEM ANALYSIS AND DESIGN 

 

4.1 System Architecture 

 

 

 

 

                                 Figure 4: System Architecture and Design 
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                                        Fig 5: Further Breakdown 

 

4.2 Process Overview 

CNNs represent feed-forward neural networks which consist of various 

combinations of the convolutional layers, max pooling layers, and fully 

connected layers and exploit spatially local correlation by enforcing a local 

connectivity pattern between neurons of adjacent layers. 

 Convolutional layers alternate with max pooling layers mimicking the 

nature of complex and simple cells in mammalian visual cortex. 

 A CNN consists of one or more pairs of convolution and max pooling 

layers and finally ends with a fully connected neural networks. A typical 

convolutional network architecture is shown on the next slide 
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                                                              Fig 6: Layers of CNN 

 

Principle Component Analysis: 

• Reducing the dimensions of raw input data 

• Through a statistical analysis of spectral responses of pixels that 

belong to the same class, we can observe that the variance of 

responses is very small. This suggests that pixels that belong to the 

same class have almost the same values at every channel. At the 

same time, pixels that belong to different classes present different 

spectral properties. Based on these characteristics a dimensionality 

reduction technique can be employed to reduce the dimensionality of 

the input data in order to speed up the training and prediction 

processes. 

 

CNN used in our project: 

• the classification of each pixel to a predefined number of classes 

based on their spectral and spatial properties.  

• The spectral characteristics are associated with the reflectance 

properties at every pixel for every spectral band, while spatial 

information is derived by taking into consideration its neighbours. 

• high-level features that encode pixels’ spectral and spatial 

information, are hierarchically constructed using a CNN 
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• CNNs consist a type of deep models, which apply trainable filters 

and pooling operations on the raw input, resulting in a hierarchy of 

increasingly complex features.  

• we have to decompose the captured hyperspectral image into 

patches, each one of which contains spectral and spatial information 

for a specific pixel. 

• The first layer of the proposed CNN is a convolutional layer with C1 

= 3 × cr trainable filters of dimension 3 × 3.  

• This layer delivers C1 matrices of dimensions 3 × 3 (during 

convolution we don’t take into consideration the border of the 

patch). 

• the first convolutional layer is followed by a second convolutional 

layer with C2 = 3×C1 trainable filters. Again, the filters are 3×3 

matrices.  

• The second convolutional layer delivers a vector with C2 elements, 

which is fed as input to the MLP classifier. The number of MLP 

hidden units is smaller than the dimensionality of its input. 

  

     MODEL ARCHITECTURE: 

 

 

                                     

                             Fig 7: Breakdown of all The Layers of Neural Network                                  
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Other Layers: 

 

Dropout Layer : It is a Simple Way to Prevent Neural Networks 

from Overfitting. 

Since the outputs of a layer under dropout are randomly 

subsampled, it has the effect of reducing the capacity or thinning 

the network during training. 

Flatten Layer : In between the convolutional layer and the fully 

connected layer, there is a 'Flatten' layer.  

Flattening transforms a two-dimensional matrix of features into a 

vector that can be fed into a fully connected neural network 

classifier. 

Fully connected Layer : The fully connected (FC) layer in 

the CNN represents the feature vector for the input.  

This feature vector/tensor/layer holds information that is vital to 

the input. 

The convolution layers before the FC layer(s) hold information 

regarding local features in the input image such as edges, blobs, 

shapes, etc. 

 

 

 

Variables Used: 

Variables / Parameters initialised : 

windowSize = 5. We are taking 5*5 matrix at a given point of time and then 

collaborating the output to the desired shape. 

Principal component analysis (PCA) is a technique to bring out strong 

patterns in a dataset by supressing variations. It is used to clean data sets to 

make it easy to explore and analyse.  
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The algorithm of Principal Component Analysis is based on a few 

mathematical ideas namely: Variance and Convariance. 

numPCA components = 30 features we want to keep.PCA is used here for 

dimensionality reduction. 

testRatio = 0.25. The dataset has been split into 75:25 ratio( Training: 

Testing) 

Dataset : Indian Pines Dataset with Indian pines ground truth image. 
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CHAPTER 5 

 

IMPLEMENTATION 

 

5.1 Creating the Datasets in a jupyter notebook 
 

 

In [1]: 

importnumpyasnp 

fromsklearn.decompositionimport PCA 

importscipy.ioassio 

fromsklearn.model_selectionimport train_test_split 

fromsklearnimport preprocessing 

importos 

importrandom 

fromrandomimport shuffle 

fromskimage.transformimport rotate 

importscipy.ndimage 

In [13]: 

def loadIndianPinesData(): 

    data_path = os.path.join(os.getcwd(),'Data') 

    data = sio.loadmat(os.path.join(data_path, 

'Indian_pines_corrected.mat'))['indian_pines_corrected'] 

    labels = sio.loadmat(os.path.join(data_path, 'Indian_pines_gt.mat'))['indian_pines_gt'] 

 

return data, labels 

 

def splitTrainTestSet(X, y, testRatio=0.10): 

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio, 

random_state=345, 

                                                        stratify=y) 

return X_train, X_test, y_train, y_test 

 

def oversampleWeakClasses(X, y): 

    uniqueLabels, labelCounts = np.unique(y, return_counts=True) 

    maxCount = np.max(labelCounts) 

    labelInverseRatios = maxCount / labelCounts   

# repeat for every label and concat 
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    newX = X[y == uniqueLabels[0], :, :, :].repeat(round(labelInverseRatios[0]), axis=0) 

    newY = y[y == uniqueLabels[0]].repeat(round(labelInverseRatios[0]), axis=0) 

for label, labelInverseRatio in zip(uniqueLabels[1:], labelInverseRatios[1:]): 

        cX = X[y== label,:,:,:].repeat(round(labelInverseRatio), axis=0) 

        cY = y[y == label].repeat(round(labelInverseRatio), axis=0) 

        newX = np.concatenate((newX, cX)) 

        newY = np.concatenate((newY, cY)) 

    np.random.seed(seed=42) 

    rand_perm = np.random.permutation(newY.shape[0]) 

    newX = newX[rand_perm, :, :, :] 

    newY = newY[rand_perm] 

return newX, newY 

 

def standartizeData(X): 

    newX = np.reshape(X, (-1, X.shape[2])) 

    scaler = preprocessing.StandardScaler().fit(newX)   

    newX = scaler.transform(newX) 

    newX = np.reshape(newX, (X.shape[0],X.shape[1],X.shape[2])) 

return newX, scaler 

 

def applyPCA(X, numComponents=75): 

    newX = np.reshape(X, (-1, X.shape[2])) 

    pca = PCA(n_components=numComponents, whiten=True) 

    newX = pca.fit_transform(newX) 

    newX = np.reshape(newX, (X.shape[0],X.shape[1], numComponents)) 

return newX, pca 

 

def padWithZeros(X, margin=2): 

    newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2])) 

    x_offset = margin 

    y_offset = margin 

    newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X 

return newX 

 

def createPatches(X, y, windowSize=5, removeZeroLabels = True): 

    margin = int((windowSize - 1) / 2) 

    zeroPaddedX = padWithZeros(X, margin=margin) 

# split patches 

    patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, 

X.shape[2])) 

    patchesLabels = np.zeros((X.shape[0] * X.shape[1])) 

    patchIndex = 0 
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for r in range(margin, zeroPaddedX.shape[0] - margin): 

for c in range(margin, zeroPaddedX.shape[1] - margin): 

            patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]    

            patchesData[patchIndex, :, :, :] = patch 

            patchesLabels[patchIndex] = y[r-margin, c-margin] 

            patchIndex = patchIndex + 1 

if removeZeroLabels: 

        patchesData = patchesData[patchesLabels>0,:,:,:] 

        patchesLabels = patchesLabels[patchesLabels>0] 

        patchesLabels -= 1 

return patchesData, patchesLabels 

 

 

def AugmentData(X_train): 

for i in range(int(X_train.shape[0]/2)): 

        patch = X_train[i,:,:,:] 

        num = random.randint(0,2) 

if (num == 0): 

 

            flipped_patch = np.flipud(patch) 

if (num == 1): 

 

            flipped_patch = np.fliplr(patch) 

if (num == 2): 

 

            no = random.randrange(-180,180,30) 

            flipped_patch = scipy.ndimage.interpolation.rotate(patch, no,axes=(1, 0), 

                                                               reshape=False, output=None, order=3, 

mode='constant', cval=0.0, prefilter=False) 

 

 

    patch2 = flipped_patch 

    X_train[i,:,:,:] = patch2 

 

return X_train 

 

 

def savePreprocessedData(X_trainPatches, X_testPatches, y_trainPatches, y_testPatches, 

windowSize, wasPCAapplied = False, numPCAComponents = 0, testRatio = 0.25): 

if wasPCAapplied: 

with open("X_trainPatches_" + str(windowSize) + "PCA" + str(numPCAComponents) + 

"testRatio" + str(testRatio) + ".npy", 'bw') as outfile: 
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            np.save(outfile, X_trainPatches) 

with open("X_testPatches_" + str(windowSize) + "PCA" + str(numPCAComponents) + 

"testRatio" + str(testRatio) + ".npy", 'bw') as outfile: 

            np.save(outfile, X_testPatches) 

with open("y_trainPatches_" + str(windowSize) + "PCA" + str(numPCAComponents) + 

"testRatio" + str(testRatio) + ".npy", 'bw') as outfile: 

            np.save(outfile, y_trainPatches) 

with open("y_testPatches_" + str(windowSize) + "PCA" + str(numPCAComponents) + 

"testRatio" + str(testRatio) + ".npy", 'bw') as outfile: 

            np.save(outfile, y_testPatches) 

else: 

with open("../preprocessedData/XtrainWindowSize" + str(windowSize) + ".npy", 'bw') as 

outfile: 

            np.save(outfile, X_trainPatches) 

with open("../preprocessedData/XtestWindowSize" + str(windowSize) + ".npy", 'bw') as 

outfile: 

            np.save(outfile, X_testPatches) 

with open("../preprocessedData/ytrainWindowSize" + str(windowSize) + ".npy", 'bw') as 

outfile: 

            np.save(outfile, y_trainPatches) 

with open("../preprocessedData/ytestWindowSize" + str(windowSize) + ".npy", 'bw') as 

outfile: 

            np.save(outfile, y_testPatches) 

In [14]: 

# Load the Global values (windowSize, numPCAcomponents, testRatio) from the text file 

global_variables.txt 

myFile = open('global_variables.txt', 'r')  

file = myFile.readlines()[:] 

 

 

for line in file: 

 

if line[0:3] == "win": 

 

        ds = line.find('=') 

        windowSize = int(line[ds+1:-1],10) 

 

elif line[0:3] == "num": 

 

        ds = line.find('=') 

        numPCAcomponents = int(line[ds+2:-1],10) 
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else: 

 

        ds = line.find('=') 

        testRatio = float(line[ds+1:]) 

In [15]: 

# Global Variables 

#numPCAComponents = 30 

#windowSize = 5 

#testRatio = 0.25 

In [15]: 

X, y = loadIndianPinesData() 

In [16]: 

X,pca = applyPCA(X,numPCAcomponents) 

In [17]: 

XPatches, yPatches = createPatches(X, y, windowSize=windowSize) 

In [18]: 

X_train, X_test, y_train, y_test = splitTrainTestSet(XPatches, yPatches, testRatio) 

In [19]: 

X_train, y_train = oversampleWeakClasses(X_train, y_train) 

In [20]: 

X_train = AugmentData(X_train) 

In [21]: 

savePreprocessedData(X_train, X_test, y_train, y_test, windowSize = windowSize,  

                     wasPCAapplied=True, numPCAComponents = 

numPCAcomponents,testRatio = testRatio) 

 

 

5.2 Train The dataset.ipyb: 

 

train.ipynb: Define and Train the model 

In [1]: 

# Import the necessary libraries 

importnumpyasnp 

importscipy 

importos 

fromkeras.modelsimportSequential 
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fromkeras.layersimportDense,Dropout,Flatten 

fromkeras.layersimportConv2D,MaxPooling2D 

fromkeras.optimizersimportSGD 

fromkeras.callbacksimportReduceLROnPlateau,ModelCheckpoint 

fromkerasimportbackendasK 

K.set_image_dim_ordering('th') 

fromkeras.utilsimportnp_utils 

#from sklearn.cross_validation import StratifiedKFold 

Using TensorFlow backend. 

In [2]: 

# Global Variables 

# The number of principal components to be retained in the PCA algorithm,  

# the number of retained features  n 

numPCAcomponents=30 

# Patches windows size 

windowSize=5 

# The proportion of Test sets 

testRatio=0.50 

In [3]: 

# load Preprocessed data from file 

X_train=np.load("./predata/XtrainWindowSize" 

+str(windowSize)+"PCA"+str(numPCAcomponents)+ 

"testRatio"+str(testRatio)+".npy") 

y_train=np.load("./predata/ytrainWindowSize" 

+str(windowSize)+"PCA"+str(numPCAcomponents)+ 

"testRatio"+str(testRatio)+".npy") 

X_test=np.load("./predata/XtestWindowSize" 

+str(windowSize)+"PCA"+str(numPCAcomponents)+ 
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"testRatio"+str(testRatio)+".npy") 

y_test=np.load("./predata/ytestWindowSize" 

+str(windowSize)+"PCA"+str(numPCAcomponents)+ 

"testRatio"+str(testRatio)+".npy") 

In [4]: 

# Reshape data into (numberofsumples, channels, height, width) 

X_train=np.reshape(X_train,(X_train.shape[0],X_train.shape[3], 

X_train.shape[1],X_train.shape[2])) 

X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[3], 

X_test.shape[1],X_test.shape[2])) 

 

# convert class labels to on-hot encoding 

y_train=np_utils.to_categorical(y_train) 

y_test=np_utils.to_categorical(y_test) 

 

# Define the input shape  

input_shape=X_train[0].shape 

print(input_shape) 

 

# number of filters 

C1=3*numPCAcomponents 

(30, 5, 5) 

In [5]: 

# Define the model structure 

model=Sequential() 

 

model.add(Conv2D(C1,(3,3),activation='relu',input_shape=input_shape)) 

model.add(Conv2D(3*C1,(3,3),activation='relu')) 
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model.add(Dropout(0.25)) 

 

model.add(Flatten()) 

model.add(Dense(6*numPCAcomponents,activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(16,activation='softmax')) 

In [6]: 

# Define optimization and train method 

reduce_lr=ReduceLROnPlateau(monitor='val_acc',factor=0.9,patience=25, 

min_lr=0.000001,verbose=1) 

checkpointer=ModelCheckpoint(filepath="checkpoint.hdf5",verbose=1, 

save_best_only=False) 

sgd=SGD(lr=0.001,decay=1e-6,momentum=0.9,nesterov=True) 

model.compile(loss='categorical_crossentropy',optimizer=sgd, 

metrics=['accuracy']) 

In [7]: 

# Start to train model  

history=model.fit(X_train,y_train, 

batch_size=32, 

epochs=100, 

verbose=1, 

validation_data=(X_test,y_test), 

callbacks=[reduce_lr,checkpointer], 

shuffle=True) 

WARNING:tensorflow:Variable *= will be deprecated. Use variable.assign_mul if you 

want assignment to the variable value or 'x = x * y' if you want a new python Tensor 

object. 

Train on 20110 samples, validate on 5183 samples 
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Epoch 1/100 

20110/20110 [==============================] - 5s 233us/step - loss: 1.2813 - 

acc: 0.6164 - val_loss: 0.6084 - val_acc: 0.8057 

 

Epoch 00001: saving model to checkpoint.hdf5 

Epoch 2/100 

20110/20110 [==============================] - 4s 177us/step - loss: 0.3752 - 

acc: 0.8783 - val_loss: 0.3269 - val_acc: 0.8956 

 

Epoch 00002: saving model to checkpoint.hdf5 

Epoch 3/100 

20110/20110 [==============================] - 4s 175us/step - loss: 0.2231 - 

acc: 0.9304 - val_loss: 0.2492 - val_acc: 0.9168 

 

Epoch 00003: saving model to checkpoint.hdf5 

Epoch 4/100 

20110/20110 [==============================] - 4s 175us/step - loss: 0.1534 - 

acc: 0.9529 - val_loss: 0.1856 - val_acc: 0.9429 

 

Epoch 00004: saving model to checkpoint.hdf5 

Epoch 5/100 

20110/20110 [==============================] - 4s 174us/step - loss: 0.1112 - 

acc: 0.9662 - val_loss: 0.1563 - val_acc: 0.9518 

 

Epoch 00005: saving model to checkpoint.hdf5 

Epoch 6/100 

20110/20110 [==============================] - 4s 176us/step - loss: 0.0856 - 

acc: 0.9748 - val_loss: 0.1393 - val_acc: 0.9510 

 

Epoch 00006: saving model to checkpoint.hdf5 
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Epoch 7/100 

20110/20110 [==============================] - 4s 177us/step - loss: 0.0659 - 

acc: 0.9807 - val_loss: 0.1164 - val_acc: 0.9628 

 

Epoch 00007: saving model to checkpoint.hdf5 

Epoch 8/100 

20110/20110 [==============================] - 4s 174us/step - loss: 0.0513 - 

acc: 0.9866 - val_loss: 0.1127 - val_acc: 0.9618 

 

Epoch 00008: saving model to checkpoint.hdf5 

Epoch 9/100 

20110/20110 [==============================] - 3s 171us/step - loss: 0.0418 - 

acc: 0.9889 - val_loss: 0.1063 - val_acc: 0.9637 

 

Epoch 00009: saving model to checkpoint.hdf5 

Epoch 10/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0372 - 

acc: 0.9902 - val_loss: 0.0968 - val_acc: 0.9689 

 

Epoch 00010: saving model to checkpoint.hdf5 

Epoch 11/100 

20110/20110 [==============================] - 3s 172us/step - loss: 0.0324 - 

acc: 0.9912 - val_loss: 0.0882 - val_acc: 0.9714 

 

Epoch 00011: saving model to checkpoint.hdf5 

Epoch 12/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0278 - 

acc: 0.9933 - val_loss: 0.0910 - val_acc: 0.9703 

 

Epoch 00012: saving model to checkpoint.hdf5 
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Epoch 13/100 

20110/20110 [==============================] - 4s 179us/step - loss: 0.0232 - 

acc: 0.9946 - val_loss: 0.0852 - val_acc: 0.9730 

 

Epoch 00013: saving model to checkpoint.hdf5 

Epoch 14/100 

20110/20110 [==============================] - 4s 177us/step - loss: 0.0216 - 

acc: 0.9950 - val_loss: 0.0834 - val_acc: 0.9728 

 

Epoch 00014: saving model to checkpoint.hdf5 

Epoch 15/100 

20110/20110 [==============================] - 3s 173us/step - loss: 0.0183 - 

acc: 0.9956 - val_loss: 0.0842 - val_acc: 0.9726 

 

Epoch 00015: saving model to checkpoint.hdf5 

Epoch 16/100 

20110/20110 [==============================] - 3s 173us/step - loss: 0.0164 - 

acc: 0.9966 - val_loss: 0.0833 - val_acc: 0.9751 

 

Epoch 00016: saving model to checkpoint.hdf5 

Epoch 17/100 

20110/20110 [==============================] - 3s 171us/step - loss: 0.0140 - 

acc: 0.9973 - val_loss: 0.0827 - val_acc: 0.9732 

 

Epoch 00017: saving model to checkpoint.hdf5 

Epoch 18/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0125 - 

acc: 0.9975 - val_loss: 0.0805 - val_acc: 0.9753 

 

Epoch 00018: saving model to checkpoint.hdf5 
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Epoch 19/100 

20110/20110 [==============================] - 3s 173us/step - loss: 0.0122 - 

acc: 0.9975 - val_loss: 0.0789 - val_acc: 0.9745 

 

Epoch 00019: saving model to checkpoint.hdf5 

Epoch 20/100 

20110/20110 [==============================] - 3s 173us/step - loss: 0.0121 - 

acc: 0.9976 - val_loss: 0.0768 - val_acc: 0.9753 

 

Epoch 00020: saving model to checkpoint.hdf5 

Epoch 21/100 

20110/20110 [==============================] - 4s 182us/step - loss: 0.0111 - 

acc: 0.9976 - val_loss: 0.0776 - val_acc: 0.9757 

 

Epoch 00021: saving model to checkpoint.hdf5 

Epoch 22/100 

20110/20110 [==============================] - 4s 176us/step - loss: 0.0104 - 

acc: 0.9975 - val_loss: 0.0781 - val_acc: 0.9749 

 

Epoch 00022: saving model to checkpoint.hdf5 

Epoch 23/100 

20110/20110 [==============================] - 3s 174us/step - loss: 0.0086 - 

acc: 0.9985 - val_loss: 0.0771 - val_acc: 0.9759 

 

Epoch 00023: saving model to checkpoint.hdf5 

Epoch 24/100 

20110/20110 [==============================] - 3s 171us/step - loss: 0.0082 - 

acc: 0.9986 - val_loss: 0.0761 - val_acc: 0.9755 

 

Epoch 00024: saving model to checkpoint.hdf5 
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Epoch 25/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0080 - 

acc: 0.9986 - val_loss: 0.0785 - val_acc: 0.9761 

 

Epoch 00025: saving model to checkpoint.hdf5 

Epoch 26/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0082 - 

acc: 0.9983 - val_loss: 0.0771 - val_acc: 0.9776 

 

Epoch 00026: saving model to checkpoint.hdf5 

Epoch 27/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0071 - 

acc: 0.9988 - val_loss: 0.0770 - val_acc: 0.9778 

 

Epoch 00027: saving model to checkpoint.hdf5 

Epoch 28/100 

20110/20110 [==============================] - 3s 172us/step - loss: 0.0069 - 

acc: 0.9987 - val_loss: 0.0773 - val_acc: 0.9782 

 

Epoch 00028: saving model to checkpoint.hdf5 

Epoch 29/100 

20110/20110 [==============================] - 3s 171us/step - loss: 0.0059 - 

acc: 0.9993 - val_loss: 0.0783 - val_acc: 0.9770 

 

Epoch 00029: saving model to checkpoint.hdf5 

Epoch 30/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0057 - 

acc: 0.9991 - val_loss: 0.0783 - val_acc: 0.9757 

 

Epoch 00030: saving model to checkpoint.hdf5 
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Epoch 31/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0052 - 

acc: 0.9993 - val_loss: 0.0789 - val_acc: 0.9765 

 

Epoch 00031: saving model to checkpoint.hdf5 

Epoch 32/100 

20110/20110 [==============================] - 3s 171us/step - loss: 0.0051 - 

acc: 0.9994 - val_loss: 0.0775 - val_acc: 0.9774 

 

Epoch 00032: saving model to checkpoint.hdf5 

Epoch 33/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0054 - 

acc: 0.9989 - val_loss: 0.0767 - val_acc: 0.9778 

 

Epoch 00033: saving model to checkpoint.hdf5 

Epoch 34/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0049 - 

acc: 0.9993 - val_loss: 0.0773 - val_acc: 0.9776 

 

Epoch 00034: saving model to checkpoint.hdf5 

Epoch 35/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0052 - 

acc: 0.9991 - val_loss: 0.0771 - val_acc: 0.9786 

 

Epoch 00035: saving model to checkpoint.hdf5 

Epoch 36/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0045 - 

acc: 0.9992 - val_loss: 0.0751 - val_acc: 0.9782 

 

Epoch 00036: saving model to checkpoint.hdf5 
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Epoch 37/100 

20110/20110 [==============================] - 3s 167us/step - loss: 0.0046 - 

acc: 0.9993 - val_loss: 0.0752 - val_acc: 0.9776 

 

Epoch 00037: saving model to checkpoint.hdf5 

Epoch 38/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0038 - 

acc: 0.9993 - val_loss: 0.0763 - val_acc: 0.9782 

 

Epoch 00038: saving model to checkpoint.hdf5 

Epoch 39/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0041 - 

acc: 0.9993 - val_loss: 0.0766 - val_acc: 0.9780 

 

Epoch 00039: saving model to checkpoint.hdf5 

Epoch 40/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0044 - 

acc: 0.9989 - val_loss: 0.0763 - val_acc: 0.9794 

 

Epoch 00040: saving model to checkpoint.hdf5 

Epoch 41/100 

20110/20110 [==============================] - 3s 164us/step - loss: 0.0040 - 

acc: 0.9995 - val_loss: 0.0755 - val_acc: 0.9774 

 

Epoch 00041: saving model to checkpoint.hdf5 

Epoch 42/100 

20110/20110 [==============================] - 3s 164us/step - loss: 0.0038 - 

acc: 0.9992 - val_loss: 0.0741 - val_acc: 0.9782 

 

Epoch 00042: saving model to checkpoint.hdf5 
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Epoch 43/100 

20110/20110 [==============================] - 3s 172us/step - loss: 0.0032 - 

acc: 0.9997 - val_loss: 0.0762 - val_acc: 0.9772 

 

Epoch 00043: saving model to checkpoint.hdf5 

Epoch 44/100 

20110/20110 [==============================] - 4s 189us/step - loss: 0.0034 - 

acc: 0.9995 - val_loss: 0.0752 - val_acc: 0.9784 

 

Epoch 00044: saving model to checkpoint.hdf5 

Epoch 45/100 

20110/20110 [==============================] - 4s 190us/step - loss: 0.0032 - 

acc: 0.9995 - val_loss: 0.0770 - val_acc: 0.9788 

 

Epoch 00045: saving model to checkpoint.hdf5 

Epoch 46/100 

20110/20110 [==============================] - 4s 191us/step - loss: 0.0029 - 

acc: 0.9998 - val_loss: 0.0768 - val_acc: 0.9776 

 

Epoch 00046: saving model to checkpoint.hdf5 

Epoch 47/100 

20110/20110 [==============================] - 4s 189us/step - loss: 0.0034 - 

acc: 0.9995 - val_loss: 0.0767 - val_acc: 0.9774 

 

Epoch 00047: saving model to checkpoint.hdf5 

Epoch 48/100 

20110/20110 [==============================] - 4s 189us/step - loss: 0.0038 - 

acc: 0.9994 - val_loss: 0.0786 - val_acc: 0.9778 

 

Epoch 00048: saving model to checkpoint.hdf5 
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Epoch 49/100 

20110/20110 [==============================] - 4s 188us/step - loss: 0.0034 - 

acc: 0.9995 - val_loss: 0.0788 - val_acc: 0.9780 

 

Epoch 00049: saving model to checkpoint.hdf5 

Epoch 50/100 

20110/20110 [==============================] - 4s 188us/step - loss: 0.0028 - 

acc: 0.9995 - val_loss: 0.0785 - val_acc: 0.9784 

 

Epoch 00050: saving model to checkpoint.hdf5 

Epoch 51/100 

20110/20110 [==============================] - 4s 180us/step - loss: 0.0028 - 

acc: 0.9995 - val_loss: 0.0763 - val_acc: 0.9788 

 

Epoch 00051: saving model to checkpoint.hdf5 

Epoch 52/100 

20110/20110 [==============================] - 3s 171us/step - loss: 0.0028 - 

acc: 0.9995 - val_loss: 0.0765 - val_acc: 0.9782 

 

Epoch 00052: saving model to checkpoint.hdf5 

Epoch 53/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0022 - 

acc: 0.9998 - val_loss: 0.0781 - val_acc: 0.9788 

 

Epoch 00053: saving model to checkpoint.hdf5 

Epoch 54/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0023 - 

acc: 0.9998 - val_loss: 0.0771 - val_acc: 0.9790 

 

Epoch 00054: saving model to checkpoint.hdf5 
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Epoch 55/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0024 - 

acc: 0.9996 - val_loss: 0.0776 - val_acc: 0.9784 

 

Epoch 00055: saving model to checkpoint.hdf5 

Epoch 56/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0024 - 

acc: 0.9997 - val_loss: 0.0774 - val_acc: 0.9790 

 

Epoch 00056: saving model to checkpoint.hdf5 

Epoch 57/100 

20110/20110 [==============================] - 3s 171us/step - loss: 0.0022 - 

acc: 0.9999 - val_loss: 0.0786 - val_acc: 0.9784 

 

Epoch 00057: saving model to checkpoint.hdf5 

Epoch 58/100 

20110/20110 [==============================] - 3s 171us/step - loss: 0.0023 - 

acc: 0.9998 - val_loss: 0.0784 - val_acc: 0.9786 

 

Epoch 00058: saving model to checkpoint.hdf5 

Epoch 59/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0025 - 

acc: 0.9993 - val_loss: 0.0788 - val_acc: 0.9784 

 

Epoch 00059: saving model to checkpoint.hdf5 

Epoch 60/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0025 - 

acc: 0.9995 - val_loss: 0.0788 - val_acc: 0.9788 

 

Epoch 00060: saving model to checkpoint.hdf5 
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Epoch 61/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0020 - 

acc: 0.9997 - val_loss: 0.0788 - val_acc: 0.9792 

 

Epoch 00061: saving model to checkpoint.hdf5 

Epoch 62/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0022 - 

acc: 0.9998 - val_loss: 0.0781 - val_acc: 0.9786 

 

Epoch 00062: saving model to checkpoint.hdf5 

Epoch 63/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0021 - 

acc: 0.9997 - val_loss: 0.0767 - val_acc: 0.9788 

 

Epoch 00063: saving model to checkpoint.hdf5 

Epoch 64/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0021 - 

acc: 0.9998 - val_loss: 0.0770 - val_acc: 0.9797 

 

Epoch 00064: saving model to checkpoint.hdf5 

Epoch 65/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0019 - 

acc: 0.9997 - val_loss: 0.0769 - val_acc: 0.9792 

 

Epoch 00065: saving model to checkpoint.hdf5 

Epoch 66/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0017 - 

acc: 0.9998 - val_loss: 0.0768 - val_acc: 0.9788 

 

Epoch 00066: saving model to checkpoint.hdf5 
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Epoch 67/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0019 - 

acc: 0.9997 - val_loss: 0.0789 - val_acc: 0.9792 

 

Epoch 00067: saving model to checkpoint.hdf5 

Epoch 68/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0022 - 

acc: 0.9997 - val_loss: 0.0795 - val_acc: 0.9794 

 

Epoch 00068: saving model to checkpoint.hdf5 

Epoch 69/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0021 - 

acc: 0.9997 - val_loss: 0.0802 - val_acc: 0.9786 

 

Epoch 00069: saving model to checkpoint.hdf5 

Epoch 70/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0020 - 

acc: 0.9996 - val_loss: 0.0765 - val_acc: 0.9797 

 

Epoch 00070: saving model to checkpoint.hdf5 

Epoch 71/100 

20110/20110 [==============================] - 3s 167us/step - loss: 0.0021 - 

acc: 0.9997 - val_loss: 0.0763 - val_acc: 0.9803 

 

Epoch 00071: saving model to checkpoint.hdf5 

Epoch 72/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0015 - 

acc: 0.9999 - val_loss: 0.0755 - val_acc: 0.9795 

 

Epoch 00072: saving model to checkpoint.hdf5 
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Epoch 73/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0017 - 

acc: 0.9997 - val_loss: 0.0755 - val_acc: 0.9790 

 

Epoch 00073: saving model to checkpoint.hdf5 

Epoch 74/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0017 - 

acc: 0.9997 - val_loss: 0.0766 - val_acc: 0.9795 

 

Epoch 00074: saving model to checkpoint.hdf5 

Epoch 75/100 

20110/20110 [==============================] - 3s 166us/step - loss: 0.0019 - 

acc: 0.9998 - val_loss: 0.0762 - val_acc: 0.9794 

 

Epoch 00075: saving model to checkpoint.hdf5 

Epoch 76/100 

20110/20110 [==============================] - 3s 160us/step - loss: 0.0015 - 

acc: 0.9999 - val_loss: 0.0779 - val_acc: 0.9792 

 

Epoch 00076: saving model to checkpoint.hdf5 

Epoch 77/100 

20110/20110 [==============================] - 3s 164us/step - loss: 0.0014 - 

acc: 0.9999 - val_loss: 0.0804 - val_acc: 0.9786 

 

Epoch 00077: saving model to checkpoint.hdf5 

Epoch 78/100 

20110/20110 [==============================] - 4s 188us/step - loss: 0.0014 - 

acc: 0.9999 - val_loss: 0.0794 - val_acc: 0.9794 

 

Epoch 00078: saving model to checkpoint.hdf5 
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Epoch 79/100 

20110/20110 [==============================] - 3s 172us/step - loss: 0.0016 - 

acc: 0.9998 - val_loss: 0.0817 - val_acc: 0.9784 

 

Epoch 00079: saving model to checkpoint.hdf5 

Epoch 80/100 

20110/20110 [==============================] - 4s 207us/step - loss: 0.0016 - 

acc: 0.9998 - val_loss: 0.0794 - val_acc: 0.9782 

 

Epoch 00080: saving model to checkpoint.hdf5 

Epoch 81/100 

20110/20110 [==============================] - 3s 169us/step - loss: 0.0013 - 

acc: 1.0000 - val_loss: 0.0791 - val_acc: 0.9797 

 

Epoch 00081: saving model to checkpoint.hdf5 

Epoch 82/100 

20110/20110 [==============================] - 3s 168us/step - loss: 0.0020 - 

acc: 0.9995 - val_loss: 0.0795 - val_acc: 0.9788 

 

Epoch 00082: saving model to checkpoint.hdf5 

Epoch 83/100 

20110/20110 [==============================] - 4s 175us/step - loss: 0.0014 - 

acc: 0.9998 - val_loss: 0.0781 - val_acc: 0.9795 

 

Epoch 00083: saving model to checkpoint.hdf5 

Epoch 84/100 

20110/20110 [==============================] - 3s 166us/step - loss: 0.0017 - 

acc: 0.9996 - val_loss: 0.0773 - val_acc: 0.9797 

 

Epoch 00084: saving model to checkpoint.hdf5 
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Epoch 85/100 

20110/20110 [==============================] - 3s 173us/step - loss: 0.0012 - 

acc: 0.9999 - val_loss: 0.0777 - val_acc: 0.9795 

 

Epoch 00085: saving model to checkpoint.hdf5 

Epoch 86/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0015 - 

acc: 0.9998 - val_loss: 0.0783 - val_acc: 0.9790 

 

Epoch 00086: saving model to checkpoint.hdf5 

Epoch 87/100 

20110/20110 [==============================] - 3s 165us/step - loss: 0.0016 - 

acc: 0.9996 - val_loss: 0.0803 - val_acc: 0.9788 

 

Epoch 00087: saving model to checkpoint.hdf5 

Epoch 88/100 

20110/20110 [==============================] - 4s 174us/step - loss: 0.0015 - 

acc: 0.9998 - val_loss: 0.0802 - val_acc: 0.9790 

 

Epoch 00088: saving model to checkpoint.hdf5 

Epoch 89/100 

20110/20110 [==============================] - 4s 177us/step - loss: 0.0011 - 

acc: 0.9999 - val_loss: 0.0796 - val_acc: 0.9794 

 

Epoch 00089: saving model to checkpoint.hdf5 

Epoch 90/100 

20110/20110 [==============================] - 4s 175us/step - loss: 0.0014 - 

acc: 0.9998 - val_loss: 0.0782 - val_acc: 0.9792 

 

Epoch 00090: saving model to checkpoint.hdf5 
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Epoch 91/100 

20110/20110 [==============================] - 3s 174us/step - loss: 0.0014 - 

acc: 0.9998 - val_loss: 0.0797 - val_acc: 0.9786 

 

Epoch 00091: saving model to checkpoint.hdf5 

Epoch 92/100 

20110/20110 [==============================] - 3s 172us/step - loss: 0.0014 - 

acc: 0.9999 - val_loss: 0.0797 - val_acc: 0.9790 

 

Epoch 00092: saving model to checkpoint.hdf5 

Epoch 93/100 

20110/20110 [==============================] - 3s 172us/step - loss: 0.0013 - 

acc: 0.9998 - val_loss: 0.0813 - val_acc: 0.9792 

 

Epoch 00093: saving model to checkpoint.hdf5 

Epoch 94/100 

20110/20110 [==============================] - 3s 172us/step - loss: 0.0012 - 

acc: 0.9999 - val_loss: 0.0790 - val_acc: 0.9799 

 

Epoch 00094: saving model to checkpoint.hdf5 

Epoch 95/100 

20110/20110 [==============================] - 3s 173us/step - loss: 0.0011 - 

acc: 0.9998 - val_loss: 0.0781 - val_acc: 0.9801 

 

Epoch 00095: saving model to checkpoint.hdf5 

Epoch 96/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0012 - 

acc: 0.9998 - val_loss: 0.0787 - val_acc: 0.9801 

 

Epoch 00096: saving model to checkpoint.hdf5 
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Epoch 97/100 

20110/20110 [==============================] - 3s 170us/step - loss: 0.0014 - 

acc: 0.9998 - val_loss: 0.0787 - val_acc: 0.9792 

 

Epoch 00097: ReduceLROnPlateau reducing learning rate to 0.0009000000427477062. 

 

Epoch 00097: saving model to checkpoint.hdf5 

Epoch 98/100 

20110/20110 [==============================] - 3s 172us/step - loss: 0.0012 - 

acc: 0.9998 - val_loss: 0.0801 - val_acc: 0.9795 

 

Epoch 00098: saving model to checkpoint.hdf5 

Epoch 99/100 

20110/20110 [==============================] - 3s 172us/step - loss: 0.0010 - 

acc: 1.0000 - val_loss: 0.0798 - val_acc: 0.9794 

 

Epoch 00099: saving model to checkpoint.hdf5 

Epoch 100/100 

20110/20110 [==============================] - 3s 171us/step - loss: 0.0010 - 

acc: 0.9999 - val_loss: 0.0811 - val_acc: 0.9799 

 

Epoch 00100: saving model to checkpoint.hdf5 

In [8]: 

# save the model with h5py 

importh5py 

fromkeras.modelsimportload_model 

model.save('./model/HSI_model_epochs100.h5') 

In [9]: 

# using plot_model module to save the model figure 
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fromkeras.utilsimportplot_model 

plot_model(model,to_file='./model/model.png',show_shapes=True) 

print(history.history.keys()) 

 

# show the model figure 

importmatplotlib.pyplotasplt 

%matplotlibinline 

model_img=plt.imread('./model/model.png') 

plt.imshow(model_img,shape=(10,10)) 

plt.show() 

dict_keys(['val_loss', 'val_acc', 'loss', 'acc', 'lr']) 

 

In [10]: 

# summarize history for accuracy 

plt.plot(history.history['acc']) 

plt.plot(history.history['val_acc']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.grid(True) 

plt.legend(['train','test'],loc='upper left') 

plt.savefig("./result/model_accuracy_100.svg") 

plt.show() 

 

# summarize history for loss  

plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 

plt.title('model loss') 
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plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.grid(True) 

plt.legend(['train','test'],loc='upper left') 

plt.savefig("./result/model_loss_100.svg") 

plt.show() 

 

 

 

 

5.3 Validation and Classification: 
 

"""Python 

script to 

classify 

the 

image."""  
   
# Import the necessary libraries  
from sklearn.decomposition import PCA  
import os  
import scipy.io as sio  
import numpy as np  
from keras.models import load_model  
from keras.utils import np_utils  
from sklearn.metrics import classification_report, confusion_matrix  
import spectral  
import cv2  
   
# Global Variables  
windowSize = 5  
numPCAcomponents = 30  
testRatio = 0.25  
   
PATH = os.getcwd()  
print(PATH) 
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def loadIndianPinesData():  
    """Method to load IndianPines."""  
    data_path = os.path.join(os.getcwd(), 'data')  
    data = sio.loadmat(os.path.join(data_path,  
                       'Indian_pines_corrected.mat'))['indian_pines_corrected']  
    labels = sio.loadmat(os.path.join(data_path,  
                         'Indian_pines_gt.mat'))['indian_pines_gt']  
   
    return data, labels  
   
   
def reports(X_test, y_test):  
    Y_pred = model.predict(X_test)  
    y_pred = np.argmax(Y_pred, axis=1)  
    target_names = ['Alfalfa', 'Corn-notill', 'Corn-mintill', 'Corn',  
                    'Grass-pasture', 'Grass-trees', 'Grass-pasture-mowed',  
                    'Hay-windrowed', 'Oats', 'Soybean-notill',  
                    'Soybean-mintill', 'Soybean-clean', 'Wheat',  
                    'Woods', 'Buildings-Grass-Trees-Drives',  
                    'Stone-Steel-Towers']  
   
    classification = classification_report(np.argmax(y_test, axis=1),  
                                           y_pred, target_names=target_names)  
    confusion = confusion_matrix(np.argmax(y_test, axis=1), y_pred)  
    score = model.evaluate(X_test, y_test, batch_size=32)  
    Test_Loss = score[0]*100  
    Test_accuracy = score[1]*100  
   
    return classification, confusion, Test_Loss, Test_accuracy  
   
   
def applyPCA(X, numComponents=75):  
    newX = np.reshape(X, (-1, X.shape[2]))  
    pca = PCA(n_components=numComponents, whiten=True)  
    newX = pca.fit_transform(newX)  
    newX = np.reshape(newX, (X.shape[0], X.shape[1], numComponents))  
    return newX, pca  
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def Patch(data, height_index, width_index):  
    # transpose_array = data.transpose((2,0,1))  
    # print transpose_array.shape  
    height_slice = slice(height_index, height_index+PATCH_SIZE)  
    width_slice = slice(width_index, width_index+PATCH_SIZE)  
    patch = data[height_slice, width_slice, :]  
   
    return patch  
   
   
X_test = np.load(PATH + "/trainingData/" + "XtrainWindowSize" +  
                        str(windowSize) +  
                        "PCA" + str(numPCAcomponents) +  
                        "testRatio" + str(testRatio) +  
                        ".npy")  
   
y_test = np.load(PATH + "/trainingData/" + "ytrainWindowSize" +  
                        str(windowSize) +  
                        "PCA" + str(numPCAcomponents) +  
                        "testRatio" + str(testRatio) +  
                        ".npy")  
   
X_test = np.reshape(X_test, (X_test.shape[0],  
                             X_test.shape[3],  
                             X_test.shape[1],  
                             X_test.shape[2]))  
   
y_test = np_utils.to_categorical(y_test)  
   
# load the model architecture and weights  
model = load_model('hyperspectralModel.h5')  
   
classification, confusion, Test_loss, Test_accuracy = reports(X_test, y_test)  
classification = str(classification)  
confusion = str(confusion)  
filename = "reportWindowSize"  
filename += str(windowSize)  
filename += "PCA"  
filename += str(numPCAcomponents)  
filename += "testRatio"  
filename += str(testRatio) 
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filename += ".txt"  
   
   
with open(filename, 'w') as x_file:  
    x_file.write('{} Test loss (%)'.format(Test_loss))  
    x_file.write('\n')  
    x_file.write('{} Test accuracy (%)'.format(Test_accuracy))  
    x_file.write('\n')  
    x_file.write('\n')  
    x_file.write('{}'.format(classification))  
    x_file.write('\n')  
    x_file.write('{}'.format(confusion))  
   
# load the original image  
X, y = loadIndianPinesData()  
   
X, pca = applyPCA(X, numComponents=numPCAcomponents)  
   
height = y.shape[0]  
width = y.shape[1]  
PATCH_SIZE = 5  
numComponents = 30  
   
# calculate the predicted image  
outputs = np.zeros((height, width))  
for i in range(height-PATCH_SIZE+1):  
    for j in range(width-PATCH_SIZE+1):  
        target = int(y[i+PATCH_SIZE//2, j+PATCH_SIZE//2])  
        if target == 0:  
            continue  
        else:  
            image_patch = Patch(X, i, j)  
            # print (image_patch.shape)  
            X_test_image = image_patch.reshape(1, image_patch.shape[2],  
                                               image_patch.shape[0],  
                                               image_patch.shape[1]).astype('float32')  
            prediction = (model.predict_classes(X_test_image))  
            outputs[i+PATCH_SIZE//2][j+PATCH_SIZE//2] = prediction+1  
   
ground_truth = spectral.imshow(classes=y, figsize=(5, 5))  
spectral.save_rgb("ground_truth.png", y, colors=spectral.spy_colors) 



Classification of Landcover Using Data Analytics for Hyperspectral Imaging                           

 

 

Dept of CSE, CMRIT                                                                2019-20 Page 51 

 

 
predict_image = spectral.imshow(classes=outputs.astype(int),  
                                figsize=(5, 5))  
spectral.save_rgb("predict_image.png", outputs.astype(int),  
                  colors=spectral.spy_colors)  
ground = cv2.imread("ground_truth.png")  
cv2.resize(ground, (100, 100))  
cv2.imshow("Ground Truth Image", ground)  
predict = cv2.imread("predict_image.png")  
cv2.resize(ground, (100, 100))  
cv2.imshow("Classified Image", predict)  
   
cv2.waitKey(0)  
cv2.destroyAllWindows() 
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CHAPTER 6 

 

                       RESULTS AND DISCUSSION 

 

 

                                           Fig 8: Ground Truth Image 
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This is the ground truth image which has been used for training layer by 

layer and also gives information for different layers. The testing is done by 

comparing our output with this ground truth image. 

 

 

                        Fig 9: The different Labels with respect to the colour assigned 

 

Ground truth classes for the Indian Pines scene and their respective samples 

number 

# Class Samples 

1 Alfalfa 46 

2 Corn-notill 1428 

3 Corn-mintill 830 

4 Corn 237 

5 Grass-pasture 483 

6 Grass-trees 730 

7 Grass-pasture-mowed 28 

8 Hay-windrowed 478 

9 Oats 20 

10 Soybean-notill 972 

11 Soybean-mintill 2455 
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12 Soybean-clean 593 

13 Wheat 205 

14 Woods 1265 

15 Buildings-Grass-Trees-Drives 386 

16 Stone-Steel-Towers 93 

 

 

Table 1: Ground truth classes for the Indian Pines scene and their respective 

samples number 

 

       

                       Fig 10: Final Classified Image 
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CHAPTER8 

 

                    CONCLUSION AND FUTURE SCOPE 

 

8.1 Conclusion 
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                                        Fig 11: Comparing Previous Works 

 

 

Comparing the previous work 

We proposed a new methodology for efficiently classifying 

a hyperspectral image which uses deep learning with the implementation of 

tensor flow. 

The proposed method is empirically shown to be faster since it is pre-trained 

already and cheaper because there is no need of a GPU farm. 

It also avoid over fitting. 

Other methods were mostly manual and consumed lot of time. 

We also came across convolutional neural network which makes the task 

of image classification feasible with automatic feature extraction. 

Hence, after comparison of our work with other related works we came to a 

conclusion that our model is performing better with a higher accuracy and 

meets our problem statement goals. 
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8.2 Future Scope 

The future scope of the project might be putting the classification into real 

time usage 

• Yield estimation in wheat - Hyperspectral remote sensing was used 

to help predict yield in wheat as a function of fertilizer concentration. 

• Food Analysis- Resonon's hyperspectral imaging systems are used in 

food research and industry to identify defects, characterize product 

quality, and locate contaminants. 

• Cooked Food- Subtle color changes associated with food quality can 

readily be identified using hyperspectral imaging. 

• Environmental Monitoring- Hyperspectral imaging is used to track 

forest health, water quality, and surface contamination. 

• Further improvement in this project could lead to more accurate 

results. 

 

Machine Learning and different techniques created new systems to spot 

patterns which the human brain is not capable of, and since finance is 

quantitative, to start with, it’s laborious not to notice traction. Financial 

corporations have conjointly endowed heavily in AI in the past, and many 

others are starting to investigate and implement the financial applications of 

machine learning (ML) and deep learning to their operations. The high 

emotionalism of the crypto market ecosystem has already become a topic of 

study by developers who are attempting to come up with an Al-based 

solution to increase profit returns. One of the first steps taken in this area was 

the creation of models that use a neural network to make cryptocurrency 

valuation predictions. Another way crypto trading is being influenced by AI 

and ML is through the analysis of sentiments. Sentiment analysis is the 
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processing of enormous volumes of information from various sources like 

articles, blogs, comments, social media posts, even video transcription to 

work out the market’s “feelings” regarding a topic — to determine if it is 

positive, neutral or negative. Neural networks endlessly supply increased 

accuracy. Neural networks make predictions associated with crypto markets 

remarkably faster. Their nature is to crunch information of cryptocurrency 

exchange rates constantly. Which are then used to forecast market 

movements by minutes, hours and days. Fundamental analysis is employed 

by both cryptocurrency and stock traders.With Artificial Intelligence, all 

industries, whether informational, technical or operational will become 

interdependent and interconnected. 
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