
VISVESVARAYA TECHNOLOGICAL UNIVERSITY

Jnana Sangama, Belgaum-590018

A PROJECT PHASE II REPORT (15CSP85) ON

“COMPUTE SHARING PLATFORM”

Submitted in Partial fulfillment of the Requirements for the VIII Semester of the Degree

of Bachelor of Engineering in Computer Science & Engineering

By

SHAILAV SHRESTHA(1CR16CS154)

RAJENDRA GUPTA (1CR16CS127)

FIROJ SIDDIKI (1CR16CS049)

Under the Guidance of,

DANTHULURI SUDHA

Associate Professor, Dept. of CSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR INSTITUTE OF TECHNOLOGY

#132, AECS LAYOUT, IT PARK ROAD, KUNDALAHALLI, BANGALORE-560037

ii

CMR INSTITUTE OF TECHNOLOGY

#132, AECS LAYOUT, IT PARK ROAD, KUNDALAHALLI,BANGALORE-560037

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

Certified that the project work entitled “Compute Sharing Platform” carried out by Mr.Shailav

Shrestha,USN:1CR16CS154, Mr.Rajendra Gupta, USN: 1CR16CS127, Mr.Firoj Siddiki, USN:

1CR16CS049 , bonafide students of CMR Institute of Technology, in partial fulfillment for the award

of Bachelor of Engineering in Computer Science and Engineering of the Visveswaraiah

Technological University, Belgaum during the year 2019-2020. It is certified that all

corrections/suggestions indicated for Internal Assessment have been incorporated in the Report

deposited in the departmental library.

The project report has been approved as it satisfies the academic requirements in respect of Project

work prescribed for the said Degree.

.

Signature of Guide

(Danthuluri Sudha)

(Associate Professor)

Dept. of CSE, CMRIT

Signature of HOD

Dr. Prem Kumar Ramesh

Professor & HoD

Dept. of CSE, CMRIT

iii

DECLARATION

We, the students of 8th semester of Computer Science and Engineering, CMR Institute of

Technology, Bangalore declare that the work entitled "COMPUTE SHARING PLATFORM"

has been successfully completed under the guidance of Associate Professor Danthuluri

Sudha, Computer Science and Engineering Department, CMR Institute of technology,

Bangalore. This dissertation work is submitted in partial fulfillment of the requirements for

the award of Degree of Bachelor of Engineering in Computer Science and Engineering

during the academic year 2019 - 2020. Further the matter embodied in the project report has

not been submitted previously by anybody for the award of any degree or diploma to any

university.

Place:

Date:

Team members:

SHAILAV SHRESTHA (1CR16CS154)

RAJENDRA GUPTA (1CR16CS127)

FIROJ SIDDIKI (1CR16CS049)

iv

ABSTRACT

The rapid development in commodity computers and network technology introduces new

possibilities to how we solve computing problems. With the advent of high performance utility

computers and the internet, highly distributed and parallel workloads can be achieved at a very

nominal cost. The project intends to provide a platform where such workloads could be

distributed in a decentralized architecture across nodes in a network using the concepts of shared

Computing and grid computing. The project facilitates sharing of compute and network resource

over the internet, which, in a way democratizes computing resources while keeping costs at very

minimum.

v

ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude and respect to CMR Institute of

Technology, Bengaluru for providing me a platform to pursue my studies and carry out my final

year project.

I have a great pleasure in expressing my deep sense of gratitude to Dr. Sanjay Jain,

Principal, CMRIT, Bangalore, for his constant encouragement.

I would like to thank Dr. Prem Kumar Ramesh, HOD, Department of Computer

Science and Engineering, CMRIT, Bangalore, who has been a constant support and

encouragement throughout the course of this project.

I consider it a privilege and honor to express my sincere gratitude to my guide

(Danthuluri Sudha), Associate Professor, Department of Computer Science and Engineering,

for the valuable guidance throughout the tenure of this review.

I also extend my thanks to all the faculty of Computer Science and Engineering who

directly or indirectly encouraged me.

Finally, I would like to thank my parents and friends for all their moral support they have

given me during the completion of this work.

vi

TABLE OF CONTENTS

 Page No.

Certificate ii

Declaration iii

Abstract iv

Acknowledgement v

Table of contents vi

List of Figures viii

1 INTRODUCTION

1.1 Relevance of the Project

1.1.1 Scientific Computing

1.1.2 Optimal Resource Usage

1.2 Scope of the Project

1.2.1 Exploiting Underutilized Resources

1.2.2 Parallel CPU Capacity

1.2.3 Virtual Resources and Virtual Organization for

Collaboration

1.2.4 Access to Additional Resources

1.2.5 Resources Balancing

1

2 OBJECTIVES & METHODOLOGY

2.1 Objective

2.2 Methodology

2.2.1 Agile Methodology

9

3 LITERATURE SURVEY

3.1 Overview

3.2 Related Works

16

4 REQUIREMENTS SPECIFICATION

4.1 Functional Requirements

4.2 Non-Functional Requirements

20

vii

4.3 Hardware Requirements

4.4 Language Requirements

4.4.1 Python

4.4.2 C Programming

4.5 Packages Required

4.5.1 Docker

5 PROBLEM FORMULATION

5.1 Core Problem Statement

5.2 Socket Programming

5.3 Multi Client-Server Architecture

5.4 Fully Decentralized P2P Architecture

5.5 Additional Problem Statements

25

6 STATUS AND ROADMAP

6.1 Network Phase

6.2 Application Phase

6.3 Abstraction Phase

6.4 UX Phase

37

7 CONCLUSION AND FUTURE SCOPE 40

REFERENCES 41

viii

LIST OF FIGURES

 Page No.

Fig 1.1 Convex optimization in numerical linear algebra 2

Fig 1.2 Quantification of Uncertainty 3

Fig 1.3 Exploiting Underutilized Resources 4

Fig 1.4 Access to Additional Resources 7

Fig 2.1 Computing Management and Sharing 9

Fig 2.2 Different Layers of Protocols 10

Fig 2.3 Agile Methodology 12

Fig: 2.4 General Architecture 13

Fig 2.5 Agent Architecture 14

Fig 2.6 Task server Architecture 15

Fig 5.1 Structure of Servers and Kernels 25

Fig 5.2 Steps in Socket Connection 26

Fig 5.3 Client Server Connection 30

Fig 5.4 Fully Decentralized P2P Architecture 35

Fig 6.1 Different Network Phases 37

Fig 6.2 Management of Various Protocols 38

Fig 6.3 Example Of Interface 38

Fig 6.4 Front-end layer illustrating UI 39

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 1

CHAPTER 1

INTRODUCTION

Computer development has had an exponential growth in the last decade.

While modern commodity computer systems can solve a vast majority of the tasks,

there are limitations to the systems. The fundamental problem emerges from the fact

that a single high performance computer or a computer cluster cannot solve large

quantities of data and problems independently. Hence, in the domain of high

performance and data intensive computing, modern computers cannot cope up

independently.

To solve highly compute intensive problems, using computers independently

is not appropriate. However, this limitations can be overcome by changing the

approach to these kind of problems. And the answer is to employ a multitude of

machines in a highly parallel architecture to overcome the limitations of a single

machine. The idea is to integrate a large number of independent computing systems in

a highly distributed environment using high speed interconnection network to connect

distributed, heterogeneous and high performance computers or computer cluster.

Our goal is to provide a decentralized platform which facilitates such an

architecture. The core intent of the platform is to share computer resources with other

people or machine using a high level interface without having to deal with

implementation of the underlying infrastructure.

1.1 Relevance of the Project

This project has the potential to change the way developers interact with other

systems in a distributed cloud environment. Today, the domain of cloud is dominated

by few big players. They have large pools of compute, network and storage resources

which they provide as service to the users through the internet. The users have to pay

some amount for using the service. What our platform does is provide an alternative

for a similar use case. We provide a platform where instead of using pools of

resources of some cloud providers, we give them the ability to use the resources of

machines which are already available to them and which they can access without

much charges unlike cloud. While the platform does not obviate the need for these

cloud providers, for certain uses, the platform becomes very attractive such as :

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 2

1. 1.1 Scientific Computing

The domain of Science such as Chemistry, Physics and Biology deals with

massive amount of data. This is because they deals with billions of data points with

very large dimensions. Due to these large volumes of data, the amount of calculations

is huge. However a lot of similar combinations are involved. These conditions make

it ideal for highly parallel computing.

While online cloud providers do provide the necessary infrastructure to

leverage these highly parallel requirements, they are also quite costly. But what if we

had access to a pool of machines that were available for no cost? Our platform gives

the ability to leverage all of those machines and scale the computations horizontally

with the number of machines. This is especially ideal if the machines were already

available and under utilized.

Fig: 1.1 Convex optimization in numerical linear algebra

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 3

Fig: 1.2 Quantification of Uncertainty

The above Figures(Fig 1.1 and Fig 1.2) shows some NP hard polynomial time

computations which can be computed in parallel for faster simulations

1.1.2 Optimal Resource Usage

Many business already have a lot of systems locally available to them or

available to them in some other branch. It does not make sense for a business to pay

costly fees to the cloud service providers and have the already available systems

under utilized, especially for compute intensive tasks. With our platform such

resources could be utilized as long as they are connected to the internet. This not only

saves the business money, but also provides security to them.

1.2 Scope of the Project

1.2.1 Exploiting Underutilized Resources

Most applicable use of our platform is to run an existing application on a

different machine. The machine on which the application is normally run might be

unusually busy due to an unusual peak in activity. The job in question could be run on

an idle machine elsewhere on the grid. There are at least two prerequisites for this

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 4

scenario. First, the application must be executable remotely and without undue

overhead. Second, the remote machine must meet any special hardware, software, or

resource requirements imposed by the application. In most organizations, there are

large amounts of underutilized computing resources. Most desktop machines are busy

less than 5 percent of the time. In some organizations, even the server machines can

often be relatively idle. We provide a framework for exploiting these underutilized

resources and thus has the possibility of substantially increasing the efficiency of

resource usage. Another function is to better balance resource utilization. An

organization may have occasional unexpected peaks of activity that demand more

resources. If the applications are grid-enabled, they can be moved to underutilized

machines during such peaks. In fact, some grid implementations can migrate partially

completed jobs. In general, a grid can provide a consistent way to balance the loads

on a wider federation of resources. This applies to CPU, storage, and many other

kinds of resources that may be available on a grid. Management can use a grid to

better view the usage patterns in the larger organization, permitting better planning

when upgrading systems, increasing capacity, or retiring computing resources no

longer needed.

Fig: 1.3 Exploiting Underutilized Resources

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 5

1.2.2 Parallel CPU Capacity

The potential for massive parallel CPU capacity is one of the most attractive features

of grid computing. In addition to pure scientific needs, such computing power is

driving a new evolution in industries such as the bio-medical field, financial

modelling, oil exploration, motion picture animation, and many others. The common

attribute among such uses is that the applications have been written to use algorithms

that can be partitioned into independently running parts. A CPU intensive grid

application can be thought of as many smaller “sub-jobs,” each executing on a

different machine in the grid. To the extent that these sub-jobs do not need to

communicate with each other, the more “scalable” the application becomes. A

perfectly scalable application will, for example, finish 10 times faster if it uses 10

times the number of processors. Barriers often exist to perfect scalability. The first

barrier depends on the algorithms used for splitting the application among many

CPUs. If the algorithm can only be split into a limited number of independently

running parts, then that forms a scalability barrier. The second barrier appears if the

parts are not completely independent; this can cause contention, which can limit

scalability. For example, if all of the sub-jobs need to read and write from one

common file or database, the access limits of that file or database will become the

limiting factor in the application’s scalability. Other sources of inter-job contention in

a parallel grid application include message communications latencies among the jobs,

network communication capacities, synchronization protocols, input-output

bandwidth to devices and storage devices, and latencies interfering with real-time

requirements.

1.2.3 Virtual Resource and Virtual Organization for Collaboration

Another aim for the platform is to enable and simplify collaboration among a wider

audience. In the past, distributed computing promised this collaboration and achieved

it to some extent. Grid computing, what our framework is based on, takes these

capabilities to an even wider audience, while offering important standards that enable

very heterogeneous systems to work together to form the image of a large virtual

computing system offering a variety of virtual resources. The users of the grid can be

organized dynamically into a number of virtual organizations, each with different

policy requirements. These virtual organizations can share their resources collectively

as a larger grid. Sharing starts with data in the form of files or databases. A “data

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 6

grid” can expand data capabilities in several ways. First, files or databases can

seamlessly span many systems and thus have larger capacities than on any single

system. Such spanning can improve data transfer rates through the use of striping

techniques. Data can be duplicated throughout the grid to serve as a backup and can

be hosted on or near the machines most likely to need the data, in conjunction with

advanced scheduling techniques. Sharing is not limited to files, but also includes

many other resources, such as equipment, software, services, licenses, and others.

These resources are “virtualized” to give them a more uniform interoperability among

heterogeneous grid participants.

1.2.4 Access to Additional Resources

An addition to CPU and storage resources, a grid can provide access to

increased quantities of other resources and to special equipment, software, licenses,

and other services. The additional resources can be provided in additional numbers

and/or capacity. For example, if a user needs to increase his total bandwidth to the

Internet to implement a data mining search engine, the work can be split among grid

machines that have independent connections to the Internet. In this way, the total

searching capability is multiplied, since each machine has a separate connection to

the Internet. If the machines had shared the connection to the Internet, there would

not have been an effective increase in bandwidth. Some machines may have

expensive licensed software installed that the user requires. His jobs can be sent to

such machines more fully exploiting the software licenses. Some machines on the

grid may have special devices. Most of us have used remote printers, perhaps with

advanced colour capabilities or faster speeds.In this way, the total searching

capability is multiplied, since each machine has a separate connection to the Internet.

If the machines had shared the connection to the Internet, there would not have been

an effective increase in bandwidth. Some machines may have expensive licensed

software installed that the user requires. His jobs can be sent to such machines more

fully exploiting the software licenses.. For example, if a user needs to increase his

total bandwidth to the Internet to implement a data mining search engine, the work

can be split among grid machines that have independent connections to the Internet.

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 7

Fig: 1.4 Access to Additional Resources

1.2.5 Resource Balancing

A grid federates a large number of resources contributed by individual machines into

a greater total virtual resource. For applications that are grid-enabled, the grid can

offer a resource balancing effect by scheduling grid jobs on machines with low

utilization. This feature can prove invaluable for handling occasional peak loads of

activity in parts of a larger organization. This can happen in two ways:

An unexpected peak can be routed to relatively idle machines in the grid.

If the grid is already fully utilized, the lowest priority work being performed on the

grid can be temporarily suspended or even canceled and performed again later to

make room for the higher priority work.

Without a grid infrastructure, such balancing decisions are difficult to prioritize and

execute. Occasionally, a project may suddenly rise in importance with a specific

deadline. A grid cannot perform a miracle and achieve a deadline when it is already

too close. However, if the size of the job is known, if it is a kind of job that can be

sufficiently split into sub-jobs, and if enough resources are available after pre-

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 8

empting lower priority work, a grid can bring a very large amount of processing

power to solve the problem. In such situations, a grid can, with some planning,

succeed in meeting a surprise deadline.

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 9

CHAPTER 2

OBJECTIVES AND METHODOLOGY

2.1 Objectives

The objective of the project is to create a functional application interface that

can be use to leverage other system’s computer resources or share their own. This

paradigm aims to shift focus from centralized resource distributors to open peer to

peer resource sharing, making better use of the world’s resources to solve important

problems in the real world.

2.2 Methodology

Fig: 2.1 Computing Management and Sharing

Grids came in the mid-90s to perform large-scale computation problems using a chain

of resource-sharing commodity mechanism that distribute the computation power

reasonably using the help of supercomputers and huge firm clusters at that time.The

superior motive was that these high act computing resources were posh and hard to

get access to, so during the ii initial phase it was to use organize resources that could

comprise compute, storage and network related resources from several distributed

organizations, and such resources are generally effective. Grids concentrated on

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 10

uniting left-over resources with their hardware, local resource management, operating

systems and security infrastructure. In order to sustain the formation of so called

“Virtual Organization”- a logical set-up within which disperse resources can be spot

and distribute as if they were from the same organization. The primary concerns of

the Grid infrastructure are the security and interoperability as materials may come

across different administrative domains, which carries both global and local resource

usage policies, having different platforms and hardware and software configurations,

and vary in capacity and availability.. Grids come-up with the protocols and services

at five different layers as recalled in the resource (whether physical or logical) as a

outcome of distributive operations at admiring levels.

Fig: 2.2 Different Layers of Protocols

⚫ Fabric layer (Interfaces to local control): The Grid Fabric Layer delivers the

facility to which shared access is arbitrate by Grid protocols. Such as

computational resources, storage systems, catalogues, network resources, and

sensors.

⚫ Connectivity Layer(Easy and Secured Communications):The Connectivity layer

is responsible for core communication and authentication protocols as per the

secure and easy network transactions which is Grid-specific network. Through

this communication protocols the exchange of Data between Fabric Layers

resource is enabled. Protocols like Authentication is Build on the communication

services which provides cryptographically secure mechanisms by which it

verifies the identity of different resources and users. Implementation of Grid

Security Infrastructure into the network make it effectively secure and easy as it

includes the technique like authorization, uniform authentication and message

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 11

protection mechanism in multi-institutional setting. It allows single sign-on

delegation, mechanism such as identity mapping.

⚫ Resources layer (Sharing Single Resources):The protocols for secure and easy

initiation, monitoring, accounting, negotiation, control and payment of sharing

operations on individual resources is build by Resource layer. Fabric layer

function called as the resource layer implementation of these protocols to access

and control local resources. The GRAM (Grid Resource Access and

Management) protocol is used for allocation of computational resources and for

monitoring and control of computation on those resources, and GridFTP for data

access and high-speed data transfer.

⚫ Collective layer (Coordinating Multiple Resources):Collective layer contains

protocols and services (and APIs and SDKs) that are not committed with any one

specific resource but rather are global in nature and capture interactions across

collections of resources.

⚫ Application layer: The final most layer in our Grid Architecture comprises with

the user applications built on top of the above protocols and APIs and operate in

VO environments.

At every layer, well-enterpret protocols are there that lend access to the usefull

services alike resource management, data access, resource discovery, etc.

2.2.1 Agile Methodology

We use agile methodology to implement our system. It is a type of project

management process, mainly used for software development, where demands and

solutions evolve through the collaborative effort of self-organizing and cross

functional terms. Thus, we perform the process in steps as described below.

⚫ P2P Client tracker deployment for various Networking and communication

protocols. So that the users will be able to access different resources.

⚫ Protocol for Compute Exchange, the users need to agree the proposed protocol

that is required for deciding how the selected resources will be communicating

and networking .

⚫ Interface for Compute Exchange with the help of providing abstraction that will

be further used as the abstraction for information exchange.

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 12

⚫ Insulation of the compute resources so that the client connected to another

compute resource cannot access other resources or any extra resouces then that of

what is permitted, this will be done following some security protocols.

Fig: 2.3 Agile Methodology

2.3 Architectures

 2.3.1 General Architectures

 Components of General Architecture

WeCompute Agent : The most important component of the Framework It iis

installed on the client system and deals with communication with other clients as

well as the docker daemon on the client system.

Tracker/ TaskServer : The Tracker keeps track of the clients who are available for

sharing compute resources as well as provides clients to send/ receive task requests.

This is particularly useful when the clients are behind a NAT and cannot be reached

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 13

directly by other client without Hole Punching.

Docker Client : The client system is expected to have docker client installed

which deals with the containerization of the tasks process. This Container

technology is critical because out platform must be independent of technology

stack used which is only achievable with virtualized environments

Registry : We need an efficient mechanism for exchanging build information

across clients and processes. Thus we use a container registry for this application

whichmaybeprivateorpublic.

Fig 2.4 General Architectures

2.3.2 Agent Architecture

● The Agent is The central part of the entire compute sharing framework.

● Generally, any stakeholder interested in sharing their compute will simply

install the Agent in their system.

● After that the entire task of synchronizing compute requests, processing

Compute Requests, Responding with appropriate response to clients who

requested for compute is handled by the agent.

● After installing the agent, the agent simply needs to be initiated by the

interested stakeholder so that others can request compute.

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 14

Fig 2.5 Agent Architecture

2.3.3 TaskServer Architecture

● Rest Server : The Tracker is a completely rest endpoint with a redis server

withholding state information. Hence it can be independently scaled.

● Redis Server : All of the state information is held in a redis in-memory store. The

reason for this is highly efficient access and query mechanisms. Further, it allows

the state storage capability to be independently scaled as compared to scaling the

entire server

● Service Brokers : While the WeCompute Framework allows compute to be shared

effectively, the client still needs to host their application files so that the agents can

access it independently. Service Brokers are independent services which provide us

with these facilities.

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 15

Fig 2.6 TaskServer Architecture

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 16

CHAPTER 3

3.1 Overview

LITERATURE SURVEY

Both grid and cloud are used to organize large scale calculations and data

processing on remote computers. Grid which became a basic computing infrastructure

for the Large Hadron Collider experiments provides unified technical solutions for

sharing and merging distributed heterogeneous computing resources within big

collaboration groups. Cloud became popular among data centers and computing

service providers because of flexibility, manageability and efficient hardware

utilization. Both approaches share common ideology “computing as a service”, so one

can expect additional benefits from their integration. The paper describes our

approach to the integration. We propose to use cloud within grid sites for acceleration

of application deployment and easy support of multiple virtual organizations by grid

sites. The cloud in grid approach has been implemented and tested in Ukrainian

National Grid, a part of European Grid Infrastructure.

3.2 Related Works

Many list scheduling heuristics have been developed for scheduling

workflows in Grids. However, these list heuristics are proposed for centralized Grid

environment, whereas the proposed distributed list heuristic is applicable to

decentralized Grids. K. Liu et al.proposed a Min-Min average algorithm for

scheduling workflows in decentralized Gridenvironment, SwinDeW-G. However, the

peer-to-peer(P2P) communication in SwinDeW-G is implemented by JXTA protocol,

which uses a broadcast technique.In this work, we use a DHT based P2P system for

handling resource discovery and scheduling coordination.

[i]. TECHNOLOGIES FOR DEVICE SHARING

This section presents prior efforts related to device sharing in a society in which

devices are shared actively. In most of these device-sharing services, the authorized

level of resource usage can be controlled. However, it is difficult to determine the

appropriate authorized level of resource usage for each user according to device

owners’ demand. FON is one of the most widely used communities of global WiFi

sharing [4], [24]. FON provides a platform for members of the community to share

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 17

their spare bandwidth with other members. Those who join the FON membership are

known as Foneros. A Fonero buys a local FON wireless router and shares their spare

bandwidth with other Foneros. In return, a Fonero has free access to the FON’s WiFi

network, which consists of over 20 million hotspots worldwide, and enjoys wireless

Internet connection. A cloudlet is a small-scale cloud datacenter that is located on the

edge of the Internet and offers resources for mobile cloud computing [5]. Mobile

devices have only limited computational resources, such as power, memory, storage,

and energy, compared to static devices. To help these resourcepoor mobile devices

save computational resources, a cloudlet server is connected to the mobile devices

through various short-range radio communication technologies. A cloudlet offers

mobile cloud computing, which offloads computational tasks of mobile devices with

low latency. They proposed a service-oriented mobile cloud for sharing

heterogeneous resources such as CPUs, bandwidth, and content.

They suggested that service-oriented heterogeneous resource sharing achieves low

latency and high energy efficiency in a mobile cloud environment. Sensor sharing in

WSNs is also a common example of device sharing. Microsoft developed an

infrastructure for shared sensing called SenseWeb. By sharing sensors that were

originally used for a specific application and placing those sensors into a single

development system, SenseWeb enables production of new types of media and

sensing applications over existing data networks. Airborne sensors are also shared.

Since airborne sensors are typically idle for much of their flight time, efficient

sensing can be achieved by sharing airborne sensors and allowing other information

consumers to opportunistically use them during their otherwise idle time. Sensors are

also shared to exchange energy. A system called eShare enables networked sensor

systems to robustly extend their lifetime by exchanging energy with shared sensors.

Some systems that share peripheral input/output (IO) devices through a network have

been proposed. A peripheral bus extension called universal serial bus/internet

protocol uses a virtual peripheral bus driver that enables users to share various

devices over an IP network. A USB cross-platform extension has also been developed

to share peripherals in a heterogeneous environment via a transmission control

protocol/internet protocol network. A system called CameraCast provides a logical

device application programming interface (API) that enables an application to gain

system-level access to a remote video-sensor device. Composable IO is a resource-

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 18

sharing technology that enables IO peripherals to be shared among cloud computing

members.

[ii].APPLICATIONS USING ONLINE SOCIAL RELATIONSHIPS

This section discusses prior work related to applications that use online social

relationships. Various metrics can be has been extensive research on exploiting online

social relationships to control networks. However, to the best of our knowledge, our

work is the first on resource management for device sharing that enables device

owners to control the authorized level of shared-resource usage according to their

online social-relationships with device users.An example of routing in a delay-

tolerant mobile adhoc network (MANET) involves performing community detection

based on a dynamic online social relationship with frequent changes introduced by

users joining or withdrawing from one or more groups or communities by friends

connecting with each other or by new people making friends with each other.

Wangetal. proposed a framework of traffic offloading assisted by social networking

services (SNSs) via opportunistic sharing in mobile social networks. Their framework

pushes the content object to a properly selected group of seed users, who will

opportunistically meet and share the content with others, depending on their

spreading impact on the SNS and their mobility impact. Through extensive trace-

driven simulations, they demonstrated that their framework can drastically reduce

mobile traffic load in cellular networks, while all users’ access delay requirements

can be satisfied. Kyleetal. suggested that online relationships in social networks are

often based on real-world relationships and can therefore be used to infer a level of

trust between users. On this hypothesis, they proposed to leverage those online

relationships to form a dynamic ‘‘Social Cloud’’; thereby, enabling users to share

heterogeneous resources. They actually implemented a social storage cloud

application using the Facebook API, in which online storage is shared by people

having online relationships on Facebook.Not only relationships between people but

also relationships between content and people can be taken into consideration when

distributing content in a network. Based on metrics produced from relationships

between people and content, routers and content on the network can be managed

physically to achieve load balancing, low-retrieval latency, and privacy while

distributing content. Community detection from online social relationships can be

used for creating a community-associated virtual network. Physical network resources

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 19

are assigned to each community associated network using a network virtualization

technique. In a community-associated network, people can exchange privacy-

sensitive data with only a small risk of data being disclosed to people who they are

not socially connected to.

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 20

CHAPTER 4

REQUIREMENTS SPECIFICATION

4.1 Functional Requirements

I. The application should be able to share it’s processor and memory with other

systems across the network

II. The application should facilitate secure communication between nodes of

the system.

III. The application should be provide a robust API to distribute compute

among workers across the network.

IV. The application should provide the ability to control the systems that it shares it’s

resources with.

V. The application should be able to share usage statistics with other nodes on the

network.

4.2 Non Functional Requirements

Non-functional requirements are the requirements which are not directly concerned

with the specific function delivered by the system. They specify the criteria that can

be used to judge the operation of a system rather than specific behaviors. They may

relate to emergent system properties such as also reliability, response time and store

occupancy. Non-functional requirements arise through the user’s needs, because of

budget constraints, organizational policies, the need for interoperability with other

software and hardware systems or because of external factors such as:-

• Product Requirements

• Organizational Requirements

• User Requirements

• Basic Operational Requirements

i. The application should be secure.

ii. The application should not be able to access other systems personal data

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 21

iii. The application should be virtualized.

iv. The application should should be efficient.

v. The application should not put much burden on the normal usage of the

application.

4.3 Hardware Requirements

The most common set of requirements defined by any operating system or software

application is the physical computer resources, also known as hardware, A hardware

requirements list is often accompanied by a hardware compatibility list (HCL),

especially

in case of operating systems.

CPU : Pentium processor at 90 MHz or higher

Memory : 2 GB RAM

Hard drive : 50 GB available in the hard disk

Network Card : NIC card capable of high throughput

Graphics hardware : DirectX 3.0 or higher

4.4 Language requirements :

4.4.1 Python :

Python is an interpreted, high-level, general-purpose programming language. Created

by Guido van Rossum and first released in 1991, Python's design philosophy

emphasizes code readability with its notable use of significant whitespace. Its

language constructs and object-oriented approach aim to help programmers write

clear, logical code for small and large-scale projects.

Python is dynamically typed and garbage-collected. It supports multiple programming

paradigms, including procedural, object-oriented, and functional programming.

Python is often described as a "batteries included" language due to its

comprehensive standard library.

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Code_readability
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Programming_paradigms
https://en.wikipedia.org/wiki/Programming_paradigms
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Standard_library

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 22

Python was conceived in the late 1980s as a successor to the ABC language.

a garbage collection system capable of collecting reference cycles. Python

3.0, released in 2008, was a major revision of the language that is

not completely backward-compatible, and much Python 2 code does not run

unmodified on Python 3.

 The Python 2 language was officially discontinued in 2020 (first planned for

2015), and "Python 2.7.18 is the last Python 2.7 release and therefore the last

Python 2 release." No more security patches or other improvements will be released

for it. With Python 2's end-of-life, only Python 3.5.x and later are supported.

 Python was conceived in the late 1980s by Guido van Rossum at Centrum

Wiskunde & Informatica (CWI) in the Netherlands as a successor to the ABC

language (itself inspired by SETL), capable of exception handling and interfacing with

the Amoeba operating system. Its implementation began in December 1989. Van

Rossum shouldered sole responsibility for the project, as the lead developer, until 12

July 2018, when he announced his "permanent vacation" from his responsibilities as

Python's Benevolent Dictator For Life, a title the Python community bestowed upon

him to reflect his long-term commitment as the project's chief decision-maker. He now

shares his leadership as a member of a five-person steering council.In January 2019,

active Python core developers elected Brett Cannon, Nick Coghlan, Barry Warsaw,

Carol Willing and Van Rossum to a five-member "Steering Council" to lead the

project.

 A common neologism in the Python community is pythonic, which can have a

wide range of meanings related to program style. To say that code is pythonic is to say

that it uses Python idioms well, that it is natural or shows fluency in the language, that

it conforms with Python's minimalist philosophy and emphasis on readability. In

contrast, code that is difficult to understand or reads like a rough transcription from

another programming language is called unpythonic.

 Python is commonly used in artificial intelligence projects and machine

learning projects with the help of libraries like TensorFlow, Keras, Pytorch and Scikit-

learn. As a scripting language with modular architecture, simple syntax and rich text

processing tools, Python is often used for natural language processing.

https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Reference_cycle
https://en.wikipedia.org/wiki/Backward_compatibility

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 23

4.4.2 C Programming:

C (/siː/, as in the letter c) is a general-purpose, procedural computer programming

language supporting structured programming, lexical variable scope, and recursion,

while a static type system prevents unintended operations. By design, C provides

constructs that map efficiently to typical machine instructions and has found lasting

use in applications previously coded in assembly language. Such applications

include operating systems and various application software for computers,

from supercomputers to embedded systems.

C was originally developed at Bell Labs by Dennis Ritchie between 1972 and 1973 to

make utilities running on Unix. Later, it was applied to re-implementing the kernel of

the Unix operating system. During the 1980s, C gradually gained popularity. It has

become one of the most widely used programming languages, with C compilers from

various vendors available for the majority of existing computer architectures and

operating systems. C has been standardized by the ANSI since 1989 (see ANSI C)

and by the International Organization for Standardization.

C is an imperative procedural language. It was designed to be compiled using a

relatively straightforward compiler to provide low-level access to memory and

language constructs that map efficiently to machine instructions, all with

minimal runtime support. Despite its low-level capabilities, the language was

designed to encourage cross-platform programming. A standards-compliant C

program written with portability in mind can be compiled for a wide variety of

computer platforms and operating systems with few changes to its source code. The

language is available on various platforms, from

embedded microcontrollers to supercomputers.

https://en.wikipedia.org/wiki/C
https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Lexical_variable_scope
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Static_type_system
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/ANSI_C
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Runtime_system
https://en.wikipedia.org/wiki/Cross-platform_software
https://en.wikipedia.org/wiki/Specification_(technical_standard)
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Supercomputer

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 24

4.5 Packages Required :

4.5.1 Docker :

Docker can package an application and its dependencies in a virtual container that can

run on any Linux server. This helps provide flexibility and portability enabling

theapplication to be run in various locations, whether on-premises, in a public cloud,

or in a private cloud. Docker uses the resource isolation features of the Linux

kernel (such as cgroups and kernel namespaces) and a union-capable file

system (such as OverlayFS) to allow containers to run within a single Linux instance,

avoiding the overhead of starting and maintaining virtual machines. Because Docker

containers are lightweight, a single server or virtual machine can run several

containers simultaneously. A 2018 analysis found that a typical Docker use case

involves running eight containers per host, but that a quarter of analyzed

organizations run 18 or more per host.

https://en.wikipedia.org/wiki/On-premises_software
https://en.wikipedia.org/wiki/Public_cloud
https://en.wikipedia.org/wiki/Private_cloud
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Linux_namespaces
https://en.wikipedia.org/wiki/Union_mount
https://en.wikipedia.org/wiki/Union_mount
https://en.wikipedia.org/wiki/OverlayFS
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Virtual_machine

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 25

CHAPTER 5

PROBLEM FORMULATION

5.1 Core Problem Statements

I. Share computational Resource across the network nodes though well defined

protocols to avoid any kind of ambiguity in process sharing

II. A highly compatible system application that can be run across heterogeneous

systems and devices. The application should be platform independent without

interfering with the resource sharing module.

III. A secure channel for communication among the nodes with industry standard

cryptographic protocols.

IV. Provide an API that abstracts the internal details of the application

implementation.

Fig: 5.1 Structure of Servers and Kernels

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 26

5.2 Socket Programming

Socket programming is a way of connecting two nodes on a network to

communicate with each other. One socket(node) listens on a particular port at an IP,

while other socket reaches out to the other to form a connection. Server forms the

listener socket while client reaches out to the server.

Fig: 5.2 Steps in Socket Connection

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 27

import redis

import time

import json

redis_endpoint = 'localhost:6379'

host, port = redis_endpoint.split(':')

r = redis.Redis(host=host, port=port, db=0, socket_timeout=10)

class Tracker :

 """

 keeps track of the number of clients that are active

 and deletes those that are not

 """

 active_clients_set = 'active_clients' # sorted set holding the active_c

lients

 timeout = (10+5)*60*60 # in seconds (before the client i

s removed from the active clients set)

 def get_active_clients() :

 """

 get all the clients that are currently active

 we do this by selecting clients whose scores(timestamp) is not

 well pass the timestamp cutoff period

 """

 Tracker.clear_inactive_clients()

 alive_clients = r.zrange(Tracker.active_clients_set, 0, -1)

 return [client.decode('utf-8') for client in alive_clients]

 def clear_inactive_clients() :

 """

 get rid of all clients who have timed out

 scores are timestamps so we simply remove elements

 with scores well pass the timestamp cutoff

 """

 inactive_timeout = int(time.time()) - Tracker.timeout

 r.zremrangebyscore(Tracker.active_clients_set, 0, inactive_timeout)

 def add_active_clients(client_ids) :

 """

 add client_id to available active clients

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 28

 we use the timestamp as the scores so that we can easily remove them

later

 client_ids : a list of client id

 """

 current_time = int(time.time())

 mapping = {client_id.encode('utf-

8') : current_time for client_id in client_ids}

 r.zadd(Tracker.active_clients_set, mapping)

 def is_active(client_id) :

 """

 returns True if the client is active, else false

 """

 Tracker.clear_inactive_clients()

 client_id = client_id.encode('utf-8')

 return not r.zrank(Tracker.active_clients_set, client_id) is None

 def clear_all_clients() :

 """

 get rid of all the clients currently active (refresh)

 """

 current_time = int(time.time())

 r.zremrangebyscore(Tracker.active_clients_set,0, current_time)

class InstructionManager :

 pass

class TaskQueue :

 """

 Every agent has a queue attached to it

 This is class for that queue management in redis

 The master clients are responsible for populating the instructions

 When the slave completes the instruction, it puts the result of the instr

uction

 in the stream of the requesting master

 The client can choose whether to execute the instruction or not

 The server only manages the instruction queue

 """

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 29

def push(queue, instruction) :

 """

 queue -> the id of the client

 instruction : a dict of instructions

 """

 try :

 return r.rpush(queue, json.dumps(instruction).encode('utf-8'))

 except : return -1

 def pop(queue) :

 """

 queue -> the id of the client from which to pop

 """

 try :

 return json.loads(r.lpop(queue).decode('utf-8'))

 except :

 return None

if __name__ == '__main__' :

 #Tracker.add_active_clients(['23ASP', '57'])

 #Tracker.clear_inactive_clients()

 print(Tracker.get_active_clients())

 #print(Tracker.is_active('57'))

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 30

5.3 Multi Client-Server Architecture

Client/server systems provide access to a central application from one or more

remote clients. For example, a server application may perform some measurement or

automation function (such as test cell control) and client applications may provide

operators with a user interface for monitoring the state or progress of that function.

In multi-client applications, clients may connect and disconnect at random

times. For example, during HIL batch tests that run for extended periods of time

various users may connect to the system several times a day to check on the progress

and status of test that are of interest to them.

In order to support this scenario, the server software should be able to

dynamically accept and service any number of incoming connections. The server

should also keep track of client requests and be able to service each client in an

individual way. For example, if the server acquires multiple channels of data, clients

should be able to request a channel subset that is managed on a per-connection basis.

The goal of this document is to describe a client server design pattern that can

run indefinitely, continuously monitoring for new connections and servicing them

accordingly.

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 31

import docker

import sys

client = docker.from_env()

if __name__ == "__main__" :

 #self_id = 'DV_0011'

 #host = 'http://localhost:4500'

 host = 'http://15.206.168.1'

 try :

 self_id = sys.argv[1]

 except :

 print("usage : python3 run.py <client_id> <password>")

 exit()

 params = {

 'image' : 'shailav/images:cclient',

 'volumes' : {

 '/var/run/docker.sock' : {

 'bind' : '/var/run/docker.sock',

 'mode' : 'rw'

 }

 },

 'environment' : {

 'HOST' : host,

 'SELF_ID' : self_id

 },

 'extra_hosts' : {

 'localhost' : '172.17.0.1'

 },

 'detach' : True

 }

 # remove active container if any

 active_containers = client.containers.list()

 for c in active_containers :

 if 'client' in str(c.image) :

 if self_id in str(c.exec_run('printenv SELF_ID').output).strip('\n'):

 c.kill()

 print("killed : {}".format(c))

 # run container

 container = client.containers.run(**params)

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 32

Fig: 5.3 Client Server Connection

5.4 Fully Decentralized P2P Architecture

The architecture is peer-to-peer architecture (Figure 4.4). The same device

acts as a client and as a server in this arrangement, with significant elements of each

of the four functions of the app present on it. Because each device serves

simultaneously as a client and a server, the consolidated device is often referred to as

a servlet. In its pure form, there is no separate server or centralized point of control.

This means that every client also simultaneously acts as a server. Therefore

all devices connected to peer-to-peer architecture can simultaneously initiate

requestsand fulfill requests from each other.

The key advantage of this approach is immense scalability: The addition of

every new client simultaneously adds server capacity to the network. Scaling the

capacity of any other architecture usually requires additional capacity on the server

side, the need for which is eliminated by the use of peer-to-peer microarchitectures.

Skype is an example of such architecture; it allows tens of millions of users to

simultaneously use the service and can readily and automatically scale to meet rising

demand. The incremental cost of adding another use is therefore pennies, and adding

more users improves app performance unlike all other app microarchitectures where

adding more users degrades performance.

However, this microarchitecture has two caveats. First, there is little or no

control that the app developer has over the users of such apps. This limits the utility of

this arrangement to only a few types of applications where central coordination and

control are not needed and need for scalability is extremely high. Second, this

architecture rarely exists in its purely decentralized form.

https://www.sciencedirect.com/topics/computer-science/microarchitecture

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 33

import os

import sys

import re

from pprint import pprint

import json

from flask import Flask, url_for, jsonify, request, redirect, abort, send_file

import copy

from utils import Tracker, TaskQueue

app = Flask(__name__)

configuration parameters

ENV_DIRECTORY = '{app_path}/environments/'.format(app_path=os.getcwd())

if not os.path.exists(ENV_DIRECTORY) :

 os.makedirs(ENV_DIRECTORY)

INSTR_DIRECTORY = '{app_path}/instructions/'.format(app_path=os.getcwd())

if not os.path.exists(INSTR_DIRECTORY) :

 os.makedirs(INSTR_DIRECTORY)

@app.route('/')

def index() :

 return 'WeCompute Interface'

"""

for dev purposes, clear the peer list

"""

@app.route('/clear', methods=['POST'])

def clear() :

 # empty the active peer list

 Tracker.clear_all_clients()

 msg = {'status' : 'success'}

 return jsonify(msg)

"""

endpoint for checking active peers

"""

@app.route('/peers', methods=['GET', 'POST'])

def peers() :

 # check the available peers visible

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 34

improvement : create mechanism so that only peers who approve can be seen

 if request.method == 'GET' :

 try :

 # get requests parameters

 req = {k:v for k,v in dict(request.args).items()}

 if all([isinstance(v, list) for k, v in req.items()]) :

 req = {k:v[0] for k,v in dict(request.args).items()}

 # validate request parameters(skipped)

 # authentication/ authorization

 # return active peers visible to requesting client

 active_peers = Tracker.get_active_clients()

 try : active_peers.remove(req['id']) # removing requesting clien

t from the list

 except : pass

 msg = {

 'status' : 'success',

 'count' : len(active_peers),

 'peers' : active_peers

 }

 except Exception as e :

 msg = {

 'status' : 'failure',

 'error' : '{}:{}'.format(e.__class__.__name__, str(e))

 }

 return jsonify(msg)

 if request.method == 'POST' :

 try :

 # get json parameters

 req = request.get_json()

 if req is None :

 raise Exception('No json found')

 # validate request parameters(skilled)

 # authentication/ authorization

 # add client to active peers

 # later, you should allow clients to choose who they are visible to

 Tracker.add_active_clients([req['id']])

 msg = { 'status' : 'success'}

 except Exception as e :

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 35

The addition of every new client simultaneously adds server capacity to the

network. Scaling the capacity of any other architecture usually requires

additional capacity on the server side, the need for which is eliminated by the use of

peer-to-peer microarchitectures. Skype is an example of such architecture; it allows

tens of millions of users to simultaneously use the service and can readily and

automatically scale to meet rising demand. The incremental cost of adding another

use is therefore pennies, and adding more users improves app performance unlike all

other app microarchitectures where adding more users degrades performance.

However, this microarchitecture has two caveats. First, there is little or no control that

the app developer has over the users of such apps. This limits the utility of this

arrangement to only a few types of applications where central coordination and

control are not needed and need for scalability is extremely high. Second,

this architecture rarely exists in its purely decentralized form.

Fig: 5.4 Fully Decentralized P2P Architecture

https://www.sciencedirect.com/topics/computer-science/scalability
https://www.sciencedirect.com/topics/computer-science/microarchitectures

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 36

5.5 Additional Problem Statements

i. A social network layer where user can configure who they share their resources

with.

ii. Allow different level of controls as per the use specification.

iii. Report usage metrics and balance work loads across the nodes of the network

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 37

CHAPTER 6

STATUS AND ROADMAP

The summary of the work carried, the current status with the challenges and

constraints and roadmap for Phase II.

The work can be divided into three phases :

6.1 Network Phase :

The challenge here is to create a robust way of exchanging compute data provided by

the application layer without compromising the data to third party.

The IP/layer and Transport layer modules have to be augmented to be compatible

with application layer.

Fig: 6.1 Different Network Phases

6.2 Application Phase :

The challenge here is to determine and implement the protocols to exchange the

compute information and how the distribution of workload should be done.

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 38

Fig: 6.2 Management of Various Protocols

6.3 Abstraction Phase :

The challenge here is to provide an interface that developers can use without

compromising of the control provided by the application layer.

Fig: 6.3 Example Of Interface

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 39

6.4 UX Phase :

The challenge here is to provide a front-end layer of control for the application layer

services to the developers with suitable UI and other controls.

Fig: 6.4 Front-end layer illustrating UI

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 40

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

In this project report, we have presented a distributed list heuristic, DHEFT for

decentralized scheduling of work-flow applications in global Grids. Using simulation,

we have measured the performance of proposed DHEFTbased scheduling technique.

Results show that it is scalable with respect to increased workload on the system. In

future, we intend to investigate performance of this proposed technique against other

list heuristics in decentralized workflow scheduling environment.This report first

demonstrates the general structure of the smart grid integrating to cloud computing,

and illustrates the security issues for the smart grid communication network, and for

the cloud computing paradigm respectively. And then we can protect the smart grid

users’ privacy information from adversaries using data chunk technology. At the

same time, we propose a chunk information list system via which the data inserting

and data querying can be implemented.

Compute Sharing Platform

Dept of CSE, CMRIT 2019-2020 Page 41

REFERENCES

[1] Thies, H.-H., Schneider, M., Zdrallek, M., and Schmiesing, J. “Future structure of
rural medium-voltage grids for sustainable energy supply.” In: Integration of
Renewables into the Distribution Grid, CIRED 2012 Workshop, pp.1–4, 29–30
May 2016.

[2] Lehnhoff, S., Blank, M., Gerwinn, S., and Krause, O. “Support Vector Machines

for an efficient Representation of Voltage Band Constraints.” Proceedings of the

IEEE International Conference on Innovative Smart Grid Technologies Europe

2011, IEEE Press: Manchester, UK, 2017.

[3] K. Maheshwari, M. Lim, L. Wang, K. Birman, R. Van Renesse, "Toward a

reliable, secure and fault tolerant smart grid state estimation in the cloud ",

Proceedings of 2013 IEEE PES Innovative Smart Grid Technologies, 2017, pp.

1-6.

[4] J. Yu, R. Buyya, and K. Ramamohanarao. Work- flow Scheduling Algorithms for

Grid Computing, Metaheuristics for Scheduling in Distributed Computing

Environments. F. Xhafa and A. Abraham (eds), Springer,Germany, 2008.

