

CMR

INSTITUTE OF

TECHNOLOGY

Third Semester MCA Degree Examination Sec 2010/ Jan 2020

Dr. Vakula Rani

 Answer any five of the following 100 Marks

Q1(a) Explain the fundamentals of algorithmic problem Solving with a neat diagram

 Fig : Algorithm Design and Analysis Process

1. Understanding the problem:

Before designing algorithm, one should understand the problem correctly. This may require the problem to

be read multiple times, asking questions if required and working out smaller instances of problem by hand.
Any input to an algorithm specifies an instance or event of the problem. So, it is very important to set the

range of inputs so that the algorithm works for all legitimate inputs i.e work correctly under all
circumstances..
2. Ascertaining the capabilities of a computational Device:

After understanding the problem, one must think of the machines that execute instructions. The machines
that are capable of executing the instructions one after the other is known as sequential machines and

algorithms which run on these machines are known as sequential algor ithms
 Newer machines can run instructions concurrently re known as parallel machines and algorithms which
have written for such machines are called parallel algorithms.

If we are dealing with the small problems, we need not worry about the time and memory requirements.
But some complex problems which involve processing large amounts of data in real time are required to

know about the time and memory requirements where the program is to be executed on the machine.
3. Choosing between exact and approximate problem solving:

Sub: Design and Analysis of Algorithms Code: 17MCA33

Date: 06-02-2020 Duration: 3hrs Max Marks: 100 Sem: III Sem Branch: MCA

The algorithms which solves the problem and gives the exact solution is known as Exact Algorithm

and one which gives approximate results is known as Approximation Algorithms.
 There are two situations in which we may have to go for approximate solution:

i) If the quantity to be computed cannot be calculated exactly. For example finding square roots,
solving non linear equations etc.

ii) Complex algorithms may have solutions which take an unreasonably long amount of time if

solved exactly. In such a case we may opt for going for a fast but approximate solution.
4. Deciding on data structures:

Algorithms use different data structures for their implementation. Some use simple ones but some other
may require complex ones. But, Data structures play a vital role in designing and analyzing the
algorithms.

5. Algorithm Design Techniques:

 An algorithm design technique is a general approach to solving problems

algorithmically that is applicable to a variety of problems from different areas of
computing. These techniques will provide guidance in designing algorithms for
new problems. Various design methods for algorithms exist, some of which are –

divide and conquer, dynamic programming, greedy algorithms etc.
6. Methods of specifying an Algorithm:

Algorithm can be specified using natural language and psuedocode. Due to the inherent ambiguity of
the natural language, the most prevelant method of specifying an algorithm is using psuedocode.

7. Proving an Algorithm’s correctness:

Correctness has to be proved for every algorithm. To prove that the algorithm gives the required result for
every legitimate input in a finite amount of time. For some algorithms, a proof of correctness is quite easy;

for others it can be quite complex. Mathematical Induction is normally used for proving algorithm
correctness.
8. Analyzing an algorithm:

Any Algorithm must be analysed for its efficiency time and space . Time efficiency indicates how fast the
algorithm runs; space efficiency indicates how much extra memory the algorithm needs. Another desirable

characteristic is simplicity. A code which is simple reduces the effort in understanding and writing it and
thus leads to less chances of error. Another desirable characteristic is generality. An algorithm can be
general if it addresses a more general form of the problem for which the algorithm is to be designed and is

able to handle all legitimate inputs.
9. Coding an algorithm:

Programming the algorithm by using some programming language. Formal verification by proof is done
for small programs. Validity of large and complex programs is done through testing and debugging.

Q 1 (b) Define the Asymptotic Notations

Asymptotic notations are the mathematical notations to express time and space complexity. It

represents the runnning time of an algorithm.

Different Notations

1. Big oh Notation

2. Omega Notation

3. Theta Notation

1. Big oh (O) Notation : A function t(n) is said to be in O[g(n)], t(n) ∈ O[g(n)] , if t(n) is bounded above

by some constant multiple of g(n) for all large n ie.., there exist some positive constant c and some non

negative integer no such that t(n) ≤ cg(n) for all n≥no.

 Eg. t(n)=100n+5 express in O notation

 100n+5 < = 100n + n for all n>=5

 < = 101 (n2)

 Let g(n)= n2 ; n0=5 ; c = 101

 i.e 100n+5 <=101 n2

 t(n) <= c* g(n) for all n>=5

There fore , t(n) ∈ O(n2)

2. Omega(Ω) -Notation:

Definition: A function t(n) is said to be in Ω[g(n)], denoted t(n) ∈ Ω[g(n)] , if t(n) is bounded below by some

positive constant multiple of g(n) for all large n, ie., there exist some positive constant c and some non negative

integer n0 such that

 t(n) ≥ cg(n) for all n ≥ n0.

For example:

 t(n) = n3 ∈ Ω(n2),

 n3 ≥ n2 for all n ≥ n0.

 we can select, g(n)= n3 , c=1 and n0=0

 t(n) ∈ Ω(n2),

3. Theta (θ) - Notation:

Definition: A function t(n) is said to be in θ [g(n)], denoted t(n) ∈ θ (g(n)), if t(n) is bounded both above and

below by some positive constant multiples of g(n) for all large n , ie., if there exist some positive constant c1

and c2 and some nonnegative integer n0 such that c2g(n) ≤ t(n) ≤ c1g(n) for all n ≥ n0.

For example 1:

 t(n)=100n+5 express in θ notation

 100n <= 100n+5 <= 105n for all n>=1

 c1=100; c2=105; g(n) = n;

 Therefore , t(n) ∈ θ (n)

Q1(c) Compare the order of growth of (1/2)
n(n-1)

 and n
2
 using limits.

Sol: The time complexity of a large number of algorithms fall into only a few classes. These classes are
listed in Table in increasing order of their orders of growth. Although normally we would expect an
algorithm belonging to a lower efficiency class to perform better than an algorithm belonging to
higher efficiency classes, theoretically it is possible for this to be reversed. For example if we consider
two algorithms with orders (1.001)n and n1000. Then for lot of values of n (1.001)n would perform
better but it is rare for an algorithm to have such time complexities.

Class Name Comments
 n Linear Algorithms that scan a list of size n, eg., sequential search, finding

the max/min element in an array etc.

n 1/2 Square root
 logn Logarithmic Algorithms in this category are very ef

ficient e.g. binary search.

 2n Exponential Algorithms that generate all subsets of an n-element set .

 n! factorial Algorithms that generate all permutations of an n-element set e.g.
Travelling Salesman problems

 n logn n 1/2 n! 2n

 2 1 1.414 2 4

 4 2 2 24 16

 8 3 2.824 5760 256

Compare the order of growth of (1/2) n(n-1) and n2 using limits.
Sol: Using limits for comparing growth of functions we recall that:

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
=

0, 𝑖𝑓 𝑓 𝑛 𝑎𝑠 𝑎 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑔𝑟𝑜𝑤𝑡 𝑙𝑒𝑠𝑠 𝑡𝑎𝑛 𝑔(𝑛)

𝑐, 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑓 𝑓 𝑛 𝑎𝑛𝑑 𝑔 𝑛 𝑎𝑣𝑒 𝑡𝑒 𝑠𝑎𝑚𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑔𝑟𝑜𝑤𝑡

∞, 𝑖𝑓 𝑓 𝑛 𝑎𝑠 𝑎 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑔𝑟𝑜𝑤𝑡 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡𝑎𝑛 𝑔(𝑛)

Finding the limit

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= lim

𝑛→ ∞

1

2

𝑛(𝑛−1)

𝑛2

We notice that

lim
𝑛→ ∞

1

2

𝑛(𝑛−1)

 = lim
𝑛→ ∞

0.5𝑛(𝑛−1)

Since 0.5 < 1, hence if we raise it to higher and higher powers it would keep getting smaller and smaller.

Hence
lim𝑛→ ∞ 0.5𝑛(𝑛−1) = 0

Similarly considering the denominator, lim𝑛→ ∞ 𝑛2 will be equal to ∞.

Hence lim𝑛→ ∞

1

2

𝑛(𝑛−1)

𝑛2
=

0

∞
= 0

Q2(a) Explain the mathematical analysis of recursive algorithms with an example of Towers of Hanoi

puzzle.

Sol :

A General Plan for Analyzing Efficiency of Recursive Algorithms :

1. Decide on a parameter (or parameters) indicating an input's size.

2. Identify the algorithm's basic operation.

3. Check whether the number of times the basic operation is executed can vary on different inputs of the

same size; if it can, the worst-case, average-case, and best-case efficiencies must be investigated separately.

4. Set up a recurrence relation, with an appropriate initial condition, for the number of times the basic

operation is executed.

5. Solve the recurrence or at least ascertain the order of growth of its solution.

For example: consider the recursive algorithm for Towers of Hanoi problem

In Towers of Hanoi problem We have n disks of different sizes that can slide onto any of three pegs.

Initially, all the disks are on the first peg in order of size, the largest on the bottom and the smallest on top. The

goal is to move all the disks to the third peg, using the second one as an auxiliary, if necessary. We can move

only one disk at a time, and it is forbidden to place a larger disk on top of asmaller one.

 To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), we first move recursively n − 1 disks

from peg 1 to peg 2 (with peg 3 as auxiliary), then move the largest disk directly from peg 1 to peg 3, and,

finally, move recursively n − 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary). Of course, if n = 1, we

simply move the single disk directly from the source peg to the destination peg.

Algorithm Towers(n,L,M,R)

//Input : No.of Disks n, three pegs L, M & R

//Output : the steps to move from L to R

Begin

 If(n=1)

 Print(― Move disk from L to R‖)

 Else

 Towers(n-1,L,R,M)

 Print(― Move nth disk from L to R‖)

 Towers(n-1,M,L,R)

End

Analysis

Let us apply the general plan outlined above to the Tower of Hanoi problem. The number of disks n is the

obvious choice for the input’s size indicator, and so is moving one disk as the algorithm’s basic operation.

Clearly, the number of moves M(n) depends on n only, and we get the following recurrence equation for it:

 M(n) = M(n − 1) + 1+ M(n − 1) for n > 1.

With the obvious initial condition M(1) = 1, we have the following recurrence relation for the number of moves

M(n):

 M(n) = 2M(n − 1) + 1 for n > 1, (2.3)

 M(1) = 1.

We solve this recurrence by the same method of backward substitutions:

 M(n) = 2M(n − 1) + 1 sub. M(n − 1) = 2M(n − 2) + 1

 = 2[2M(n − 2) + 1]+ 1= 22M(n − 2) + 2 + 1 sub. M(n − 2) = 2M(n − 3) + 1

 = 22[2M(n − 3) + 1]+ 2 + 1= 23M(n − 3) + 22 + 2 + 1.

The pattern of the first three sums on the left suggests that the next one will be

24M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get

M(n) = 2iM(n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM(n − i) + 2i − 1.

Since the initial condition is specified for n = 1, which is achieved for i = n − 1, we get the following formula

for the solution to recurrence (2.3):

M(n) = 2n−1M(n − (n − 1)) + 2n−1 − 1

= 2n−1M(1) + 2n−1 − 1= 2n−1 + 2n−1 − 1= 2n − 1.

Q3(a) Explain bubble sort with its efficiency .

 Sol :

Bubble sort compares the value of first element with the immediate next element and swaps

according to the requirement and goes till the last element. This iteration repeates for (N - 1)

times/steps where N is the number of elements in the list.

Compare and swapping two elements like small soap bubbles and hence the name given as bubble

sort.

The algorithm for bubble sort is as follows:

 Efficiency :

Bubble sort of N elements can take (N - 1) steps and (N -1) iterations in each steps. Thus resultant is
(N - 1)*(N - 1). This sorting algorithm is not however the best in performance when count of the
elements are large. Time complexities of bubble sort is O(N^2) [Square of N]. This sorting is well
suited for small number of elements and it is easy the implement in C or any other programming
languages

The no of key comparisons is the same for all arrays of size n, it is obtained by a sum which is similar
to selection sort.

The no.of key swaps depends on the input. The worst case is same as the no.of key comparisons.

Q2(b) If t1(n) 𝒕𝟏 𝒏 ∈ 𝑶 𝒈𝟏 𝒏 𝒂𝒏𝒅 𝒕𝟐 𝒏 ∈ 𝑶 𝒈𝟐 𝒏 𝒕𝒉𝒆𝒏 𝒕𝟏 𝒏 + 𝒕𝟐 𝒏 ∈ 𝑶(𝐦𝐚𝐱(𝒈𝟏 𝒏 ,𝒈𝟐 𝒏)

if t1(n) 𝑡1 𝑛 ∈ 𝑂 𝑔1 𝑛 𝑎𝑛𝑑 𝑡2 𝑛 ∈ 𝑂 𝑔2 𝑛 𝑡𝑒𝑛 𝑡1 𝑛 + 𝑡2 𝑛 ∈ 𝑂(max(𝑔1 𝑛 ,𝑔2 𝑛)
PROOF We use the following simple fact about four arbitrary real numbers
a1 , b1 , a2, and b2: if a1 < b1 and a2 < b2 then a1 + a2 < 2 max{ b1, b2}.)
This can be proved as follows: adding the two inequalities we get:
 a1+a2< b1+b2. - (1)
Without loss of generality, let b1 >= b2. In such a case max(b1,b2) = b1. The inequality (1) becomes
 A1+a2 < b1+ b2<= b1+b1 = 2*b1 = 2max(b1,b2).
This proved the above fact.

To prove the main theorem:

Since t1(n) Є O(g1(n)) , there exist some constant c and some nonnegative integer n 1 such that

t1(n) < c1g1 (n) for all n > n1 (According to the definition of O)
Since t2(n) Є O(g2(n)),

t2(n) < c2g2(n) for all n > n2. (According to the definition of O)

Let us denote c3 = max(c1, c2} and consider n > max{ n1 , n2} so that we can use both inequalities. Adding the
two inequalities above yields the following:

t1(n) + t2(n) < c1g1 (n) + c2g2(n)
< c3g1(n) + c3g2(n) = c3 [g1(n) + g2(n)]
< c32max{g1 (n),g2(n)}. (According to the fact proved above).

Hence, t1 (n) + t2(n) Є O(max {g1(n),g2(n)}) (Definition of O)

Graphs Representations

In graph theory, a graph representation is a technique to store graph into the memory of computer.

A graph is informally thought of a collection of points in a plane called vertices or nodes, some of them connected by line

segments called edges or arcs.

Formally, a graph G=<V, E > is defined by a pair of two sets: a finite set V of items called vertices and a set E of pairs of

these items called edges.

If these pairs of vertices are unordered, i.e. a pair of vertices (u, v) is same as (v, u) then G is undirected; otherwise, the

edge (u, v), is directed from vertex u to vertex v, the graph G is directed. Directed graphs are also called digraphs.

There are different ways to represent a graph in memory

1. Adjacency Matrix

 Adjacency matrix is a sequential representation.

 It is used to represent which nodes are adjacent to each other. i.e. is there any edge connecting nodes

to a graph.

 In this representation, we have to construct a nXn matrix A. If there is any edge from a vertex i to

vertex j, then the corresponding element of A, ai,j = 1, otherwise ai,j= 0.

 If there is any weighted graph then instead of 1s and 0s, we can store the weight of the edge.

Example: Consider the following undirected graph representation:

2. Adjacency List

o Adjacency list is a linked representation.

o In this representation, for each vertex in the graph, we maintain the list of its neighbors. It means, every

vertex of the graph contains list of its adjacent vertices.

o We have an array of vertices which is indexed by the vertex number and for each vertex v, the

corresponding array element points to a singly linked list of neighbors of v.

Example : Let's see the following directed graph representation implemented using linked list:

Q3(b) Discuss divide and conquer strategy for designing the algorithms. Apply it for multiply two large

integers

Sol:

Divide-and-conquer algorithms work according to the following general plan:

1. A problem is divided into several subproblems of the same type, ideally of about equal size.

2. The subproblems are solved (typically recursively, though sometimes a different algorithm is employed,

especially when subproblems become small enough).

3. If necessary, the solutions to the subproblems are combined to get a solution to the original problem.

The general method is shown diagrammatically as below:

Multiplication of Two long Integers:

The conventional algorithm for multiplying two n-digit integers, each of the n digits of the first
number is multiplied by each of the n digits of the second number for the total of n2 digit
multiplications. (If one of the numbers has fewer digits than the other, we can pad the shorter
number with leading zeros to equalize their lengths.)
By using divide-and-conquer method , it would be possible to design an algorithm with fewer than
n2 digit multiplications,

To demonstrate the basic idea of the algorithm, let us start with a case of
Four-digit integers – 3421 and 6032 . These numbers can be represented as follows:

X= 3421 = 34 * 102 + 21 Let A = 34 ; B = 21

Y=6032 = 60 * 102 + 32 Let C = 60; D = 32

Now let us multiply them:
X* Y = AC * 104 + [AC + (A – B)* (D – C) + BD] * 102 + BD
 = 34 * 60 * 104 +[(34 * 60) +(34 – 21) * (32 -60) * 102 + (21 * 32)
 = 2040 * 10000 + [2040- 364 + 672] * 100 + 672
 = 20400000 + 234800 +672
 = 20635472

Q3(c) Write Pseudo code for Merge Sort

Sol:

Mergesort is a perfect example of a successful application of the divide-and conquer technique. It sorts a given

array A[0..n − 1] by dividing it into two halves A[0.._n/2_ − 1] and A[_n/2_..n − 1], sorting each of them

recursively, and then merging the two smaller sorted arrays into a single sorted one. The pseudocode for Merge

sort is as follows:

Algorithm merge(arr,l,mid, u)

Create a temporary array C[0..u]

i<-- l

j <-- mid+1

k <-- l // index into temporary array

while i <=mid and j <=u

if arr[i] <= arr[j]

C[k] <-- arr[i]

i <-- i+1

else

C[k] <-- arr[j]

j <-- j+1

k <-- k+1

//copying rest of elements from first subarray

 while i<=mid

C[k] <-- arr[i]

i <-- i+1

k <-- k+1

//copying rest of elements from second subarray

while j<=u

C[k] <-- arr[j]

j <-- j+1

k <-- k+1

for i in l to u // copying all elements from temp array to original array

arr[i] <-- C[i]

Algorithm mergesort(arr,l,u)

// only do it if the array contains atleast 2 elements

 if (l < u)

 mid = (l+u)/2

mergesort(A,l,mid)

mergesort(A,mid+1,u)

Merge(A,l,mid,u)

Analysis

We first analyze the merge function used for mergesort. We notice that to merge an array with n elements at

every step(in the first three loops) an element is always copied to the temporary array C. Since there are n

elements to be copied the number of operations in the first three loops is n. Similarly in the last loop when the

elements are copied from temporary array to the original array (arr) there are again ―n‖ copies. Thus the total

number of copy operations in the algorithm merge is O(n).

Analyzing the mergesort algorithm we find that each call involves two recursive calls to mergesort with the

problem size half and a call to merge which takes O(n) time . Thus the recurrence can be wtitten as:

T(n) = 2 T(n/2)+cn.

Applying the master’s method,

 a=2, b=2 and d=1.

 Thus a=bd and thus case 2 of Master’s method applies.

Thus T(n) = O(nlgn).

Q4(a) Explain the Quick sort algorithm with its efficiency. Trace the algorithm for the following Input

: 5, 3, 1, 9, 8, 2, 4, 7

QuickSort is a highly efficient sorting algorithm and it uses Divide and Conquer algorithm. It picks an element

as pivot and partitions the given array around the pivot. Usually, pick first element as pivot. It partitions the

large array of data into smaller arrays , one of which holds values smaller than the pivot value and the other

holds values greater than the pivot value.

Example : 5, 3, 1, 9, 8, 2, 4, 7

Algorithm Quicksort(A, l,u)

// sort only if there are more than two elements in the array

// Input: Array A[0..n-1] , l lower bound, u Upper bound

//Output : Sorted Array A

Begin

 If (l < u)

 p<-- partition(A,l,u)

 Quicksort(A,l,p-1)

 Quicksort(A,p+1,u)

End

Algorithm partition(A,l,u)

Begin

 piv <-- A[l]

 i <-- l

 j <-- u +1

 // keep moving i and j till they meet

 repeat

 repeat i <-- i +1; until (A[i] >= piv)

 repeat j <-- j-1 ; until (A[j] <= piv)

 if (i < j) swap(A[i],A[j])

 until (i>=j)

 swap(A[l],A[j])

 return j

End

Analysis:

Analyzing partition we notice that I and j start from the two ends of the array and for each iteration in the

algorithm either I moves or j moves. For each move we can have maximum of one swap. Therefore the total

number of operations in partition is O(n).

If we consider Quicksort on n elements, then after the partition if one partition has I elements then the other

partition has n-i-1 elements(excluding the pivot element). The time taken for quicksort is therefore :

1. The time taken to partition (cn)

2. The time taken for doing quicksort of the first partition

3. The time taken for doing quicksort of the second partition

Thus if T(n) is the time taken by quicksort to sort n elements then

T(n) = T(i) + T(n-i) + cn

Best Case:

The best case for quicksort occurs when both the partitions are always equal . This happens mostly when the

input array is random. In such a case the recurrence becomes

T(n) = T(n/2)+T(n/2)+cn = 2T(n/2)+cn

Applying master’s method we find that T(n) = θ(nlgn).

Worst case:

In the worst case, all the splits will be skewed to the extreme: one of the two subarrays will be empty, and the

size of the other will be just 1 less than the size of the subarray being partitioned. This unfortunate situation will

happen for arrays sorted in increasing order. In such a case the recurrence would be

T(n) = T(n-1)+T(0)+n

Assuming T(0) = 0

T(n) = T(n-1)+n.

Using back substitution we find that T(n) = T(n-1)+n = T(n-2)+n-1+n =

T(n-3)+n-2+n-1+n

Expanding till ith step we find

T(n- i) + n- i+1 +….+n

The expansion ends when T(0) is reached. Assigning n-I = 0 => I = n. Substituting in the equation above:

T(n) = T(0) + n-n+1+….n = 1+2…n = n(n+1)/2 = θ(n2) .

Thus the worst case performance of quicksort is θ(n2)

Q4(b) Design an algorithm for string matching problem using brute force technique. Apply it to search a

pattern ABABC in the BAABABABCCA .

Sol:

B A A B A B A B C C A

A B A B C

 A B A B C

 A B A B C

 A B A B C

 A B A B C

The time complexity would be analyzed by finding the number of times the basic operation j=j+1 is executed.

The inner loop will be executed a maximum of m times (j=0 to m-1).

 Therefore

T(n)= = (n-m)*m = θ(mn).

Where m is the length of pattern and n is the length of text.

Q4(c) Apply exhaustive search for Travelling Salesman Problem to the given graph in fig Q4(a).

Sol:

Travelling Salesman Problem (TSP): Given a set of cities and distance between every pair of cities, the problem
is to find the shortest possible route that visits every city exactly once and returns to the starting point.

Travelling Salesman Problem (TSP) is viewed as interesting connections to other combinatorial problems. In

layman’s terms, the problem asks to find the shortest tour through a given set of n cities that visits each city

exactly once before returning to the city where it started. The problem can be conveniently modeled by a

weighted graph, with the graph’s vertices representing the cities and the edge weights specifying the distances.

Then the problem can be stated as the problem of finding the shortest Hamiltonian circuit of the graph. (A
Hamiltonian circuit is defined as a cycle that passes through all the vertices of the graph exactly once

Q5(a) Find the minimum cost spanning tree for the given graph below by applying Prim’s algorithm.

Write the algorithm and compute minimum cost .

Sol:

Q5(b) . Write Johnson Trotter algorithm . Apply to generate all permutations for n= 3.

Johnson trotter's algorithm works by associating a direction with each element k in a permutation. We indicate

such a direction by a small arrow written above the element in question, e.g., The element k is said to
be mobile in such an arrow-marked permutation if its arrow points to a smaller number adjacent to it. Using the

notion of a mobile
element, we can give the following description of the Johnson-Trotter algorithm
for generating permutations.

We start with permutations. we assume that the underlying set whose elements need to be permuted is simply

the set of integers from 1 to n; more generally, they can be interpreted as indices of elements in an n-element set

{a1, . . . , an }.What would the decrease-by-one technique suggest for the problem of generating all n!

permutations . The smaller-by-one problem is to generate all (n − 1)! permutations. Assuming that the smaller

problem is solved,

we can get a solution to the larger one by inserting n in each of the n possible positions among elements of

every permutation of n − 1 elements. All the permutations obtained in this fashion will be distinct (why?), and

their total number will be n(n − 1)!= n!. Hence, we will obtain all the permutations of {1, . . . , n}.

We can insert n in the previously generated permutations either left to right or right to left. It turns out that it is

beneficial to start with inserting n into 12 . . . (n − 1) by moving right to left and then switch direction every

time a new permutation of {1, . . . , n − 1} needs to be processed.

 An example of applying this approach bottom up for n = 3

 (For the method being discussed, these two elements are always adjacent to each other.

Start 1

insert 2 into 1 right to left 12 21

insert 3 into 12 right to left 123 132 312

insert 3 into 21 left to right 321 231 213

The advantage of this order of generating permutations stems from the fact that it satisfies the minimal-change

requirement: each permutation can be obtained from its immediate predecessor by exchanging just two elements

in it.

This algorithm is one of the most efficient for generating permutations; it can be implemented to run in time

proportional to the number of permutations, i.e.,

in O(n!).

Q5(c) Explain Decrease-and-Conquer algorithm Design Technique

The decrease-and-conquer technique is based on exploiting the relationship between a solution to a

given instance of a problem and a solution to its smaller instance. Once such a relationship is
established, it can be exploited to give a recursive or iteratively implementation also called
incremental approach.
In other words, decrease and conquer can be considered a special case of divide and conquer where
the number of subproblems generated is one. There are three major variations of decrease-and-
conquer:
Decrease by a constant: In the decrease-by-a-constant variation, the size of an instance is reduced by

the same constant on each iteration of the algorithm. Example for finding factorial of a number f(n) =
f(n-1)*n. Here the problem size is reduced by a constant(here 1) everytime.
Decrease by a constant factor: The decrease-by-a-constant-factor technique suggests reducing a

problem instance by the same constant factor on each iteration of the algorithm. For example in
binary search the problem size is reduced everytime by a factor of 2.
Variable size decrease: in the variable-size-decrease variety of decrease-and- conquer, the

size-reduction pattern varies from one iteration of an algorithm to another. Euclid’s
algorithm for computing the greatest common divisor provides a good example
of such a situation. This algorithm is based on the formula

gcd(m, n) = gcd(n, m mod n).
Though the value of the second argument is always smaller on the right-hand side
than on the left-hand side, it decreases neither by a constant nor by a constant factor.

The general algorithm for decrease and conquer is

Algorithm DecreaseAndConquer(P,S) // P is a problem of size n

 Generate a problem P1 of size n1(n1<n)

 Solve the Problem P1 and let the solution be S1.

 Use S1 to generate the solution S for the problem P.

The time complexity T(n) to solve the problem P would be described by the recurrence: T(n) = T(n1)+f(n)

where f(n) is the time required to create solution for P from the solution to problem P1.

For example: consider the problem of generating permutation of numbers 1,2,…n. This problem can be solved

using decrease and conquer in the following manner.

Step 1: Generate all permutations of numbers 1,2,…n-1 using the same approach

Step 2: For each permutation generated in the previous step create new permutations by inserting the number n

at different positions.(There are n ways of doing this.

The recurrence for the above method would be T(n) = T(n-1) +N(n-1)* n.

Where N(n-1) would be the number of permutations of the numbers 1,2,… n-1

Q6(b) Construct Huffman Tree for the following data . Encode DAD and Decode 100110111110

Huffman’s algorithm

Step 1 Initialize n one-node trees and label them with the symbols of the alphabet given. Record the frequency

of each symbol in its tree’s root to indicate the tree’s weight. (More generally, the weight of a tree will be equal

to the sum of the frequencies in the tree’s leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the smallest weight

(ties can be broken arbitrarily, but see Problem 2 in this section’s exercises). Make them the left and right

subtree of a new tree and record the sum of their weights in the root of the new tree as its weight.

A tree constructed by the above algorithm is called a Huffman tree. It

defines—in the manner described above—a Huffman code.

Encode String - DAD : 011101

 D A D

 01 11 01

Decode String – 100 11 01 101 1101

100 11 01 101 11 01

 B A D - A D

Q6(c) Differentiate DFS & BFS

Sol:

Sr. No. Key BFS DFS

1 Definition BFS, stands for Breadth First Search. DFS, stands for Depth First Search.

2
Data structure BFS uses Queue to find the shortest

path.
DFS uses Stack to find the shortest
path.

3
Source BFS is better when target is closer to

Source.
DFS is better when target is far from
source.

4

Suitablity for
decision tree

As BFS considers all neighbour so it is
not suitable for decision tree used in
puzzle games.

DFS is more suitable for decision tree.
As with one decision, we need to
traverse further to augment the
decision. If we reach the conclusion,
we won.

5
Speed BFS is slower than DFS. DFS is faster than BFS.

6
Time
Complexity

Time Complexity of BFS = O(V+E)
where V is vertices and E is edges.

Time Complexity of DFS is also
O(V+E) where V is vertices and E is
edges.

Q7(a) Write Horspool’s string matching algorithm. Apply it to search pattern BARBER in the given text.

 Sol:

Horspool's algorithm is used for string matching and performs better than the brute force string matching by

attempting the largest possible shift after every mismatch. this however, is done at the cost of extra storage
which is a shift table maintained. While matching a string with the pattern the following four cases occur

Q7(b) . Explain Warshall’s algorithm for the finding the transitive closure of a graph.

Sol:

Adjacency Matrix for the given graph

 0 1 0 0
 0 0 0 1
 0 0 0 0
 1 0 1 0

Q8(a) Explain the comparison counting algorithm with its efficiency . Sort the elements 13,11,12,13,12,12 by

using distribution counting method.

Note that the distribution values indicate the proper positions for the last occurrences of their elements in the

final sorted array. If we index array positions from 0 to n − 1, the distribution values must be reduced by 1 to
get corresponding element positions.
It is more convenient to process the input array right to left. For the example, the last element is 12, and, since

its distribution value is 4, we place this 12 in position 4 − 1= 3 of the array S that will hold the sorted list. Then
we decrease the 12’s distribution value by 1 and proceed to the next (from the right) element in the given array.

Assuming that the range of array values is fixed, this is obviously a linear algorithm because it makes just two
consecutive passes through its input array A. This is a better time-efficiency class than that of the most efficient sorting

algorithms—mergesort, quicksort, and heapsort.

9.(a) What is Decision Tree ? Obtain the decision tree to find minimum of 3 numbers.

Decision tree of an algorithm for finding a minimum of three numbers. Each internal node of a binary decision tree
represents a key comparison indicated in the node, e.g., k < k'.The node’s left subtree contains the information about
subsequent comparisons made if , k < k', and its right subtree does the same for the case of k > k'. (For the sake of
simplicity, we assume throughout this section that all input items are distinct.) Each leaf represents a possible outcome of
the algorithm’s run on some input of size n. Note that the number of leaves can be greater than the number of outcomes
because, for some algorithms, the same outcome can be arrived at through a different chain of comparisons.

The algorithm’s work on a particular input of size n can be traced by a path from the root to a leaf in its

decision tree, and the number of comparisons made by the algorithm on such a run is equal to the length of
this path. Hence, the number of comparisons in the worst case is equal to the height of the algorithm’s

decision tree. The central idea behind this model lies in the observation that a tree with a given number of
leaves, which is dictated by the number of possible outcomes, hasto be tall enough to have that many leaves.
We use the lemma that for any binary tree with l leaves and height h, h ≥ log2 l. Indeed, a binary tree of

height h with the largest number of leaves has all its leaves on the last level. Hence, the largest number of
leaves in such a tree is 2h. In other words, 2h ≥ l, which immediately implies, h ≥ log2 l.

Q9(b) Apply back tracking to solve the Sum of subsets problem for the given instance

S = { 5, 7, 8, 10} and M = 15

 S1 S2

 Solutions:

 S1 = (1,0,0,1) = { 5,10}

 S2 = (0,1,1,0) = { 7,8}

Q10(a) Explain how Back Tracking can be used to solve N-Queens problem. Find the solution of 4-

Queens using border Symmetry.

N Queen's problem:
The n-queens problem. is to place n queens on an n × n chessboard so that no two
queens attack each other by being in the same row or in the same column or on the
same diagonal.
To solve this using backtracing we use the following strategy. Consider the 4
Queens problem:
We start with the empty board and then place queen 1 in the first possible position
of its row, which is in column 1 of row 1. Then we place queen 2, after trying
unsuccessfully columns 1 and 2, in the first acceptable position for it, which is
square (2, 3), the square in row 2 and column 3. This proves to be a dead end
because there is no acceptable position for queen 3. So, the algorithm backtracks
and puts queen 2 in the next possible position at (2, 4). Then queen 3 is placed at
(3, 2), which proves to be another dead end. The algorithm then backtracks all the
way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3 to (3, 1),
and queen 4 to (4, 3), which is a solution to the problem.
The state space tree is shown below:

 Q10 (b) Explain Brach and Bound technique. Solve the following assignment problem which is

Sol:
 Problem Statement : There are n people who need to be assigned to execute n jobs, one person per

job. (That is, each person is assigned to exactly one job and each job is assigned to exactly one

person.) The cost that would accrue if the ith person is assigned to the jth job is a known quantity C[i,

j] for each pair i, j = 1, 2, . . . , n. The problem is to find an assignment with the minimum total cost.

Best solution : a->2, b->1 c->3,d->4 Min Cost = 13

