18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

VTU-Exam-Feb-2021-Software Testing

Question Paper Answers

1. What is Software Quality? Explain the same with respect to quality attributes

1 a. SOFTWARE QUALITY
« Software quality is a multidimensional quantity and is measurable.

Quality Atiributes
s These can be divided to static and dynamic quality attributes.

Static quality attributes
o [t refers to the actual code and related documents.
Actual code and related documents
= Structured
Mainiainaklo L » Complete
Testable code Ba
[Correct documentation

Example: A poorly documented piece of code will be harder to understand and
hence difficult to modify. A poorly structured code might be harder to modify and

difficult to test.

Dvnamic quality Attributes:
« Reliability
» (Correctness

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

« Completeness
« Consistency
o Usability
e performance
Reliability:
o It refers to the probability of failure free operation.
Correctness:
« Refers to the correct operation and is always with reference to some artefact.
« For a Tester, correctness is w.r.t to the requirements
« For a user correctness is w.r.t the user manual
Completeness:
* Refers to the availability of all the features listed in the requirements or in the
user manual.
* An incomplete software is one that does not fuly implement all features required.
Consistency:
o Refers to adherence to a common set of conventions and assumptions.
e [Ex: All buttons in the user interface might follow a common-color coding
convention.
Usability:
« Refer to ease with which an application can be used. This is an area in itself
and there exist techniques for usability testing.
« Psychology plays an important role in the design of techniques for usability
testing.
Usability testing is a testing done by its potential users.
The development organization invites a selected set of potential users and asks
them to test the product.
e Users in turn test for ease of use, functionality as expected, performance, safety
and security.
e Users thus serve as an important source of tests that developers or testers within
the organization might not have conceived.
e Usability testing is sometimes referred to as user-centric testing.
Performance:
e Refers to the time the application takes to perform a requested task.
Performance is considered as a non-functional requirement.
Reliability:

(Software reliability is the probability of failure free operation of software over
a given time interval & under given conditions.)

Software reliability can vary from one operational profile to another. An
implication is that one might say “this program is lousy” while another might
sing praises for the same program.

Software reliability is the probability of failure free operation of software in its
intended environments.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

1b. Explain Errors , Faults, and Failures in the process of programming and testing with
the diagram.

» An error occurs in the process of writing a program.
» Afault is the manifestation of one or more errors

» Afailure occurs when a faulty piece of code is executed leading to an incorrect state
that propagates to the program’s output.

are used by
Programmer | _, @

writes possibility of
is input io ¥
Tegt might contain
data [t Program ==
determines

T' b

Observed Desired

behavior behaviar

are these _
. the same? \l
Yes. PFrogram behaves as Mo.Program does not behave
desired. as desired, A failure
has oecuned.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

2a. Discuss different types of testing Matrices.

The term metric refers to a standard of measurement. In software testing there exist a

Test Metrics
1

l

variety of metrics

Organization
Establishes test processes
Used in projects

To test products

Organization Metrics: Metrics at the level of an organization are useful in overall
project planning and management

Project Metrics: Project Metrics relate to a specific project

Process Metrics: Every project uses some test process.
The goal of a process metric is to assess the goodness of the process.

Product Metrics: Product metrics relates to a specific product such
as a compiler for a programming language.

Static: Computed without having to execute the product

Dynamic metrics: Require code execution

2d. Explain different steps of testing and debugging.

Find the Error Location

Identify the Error - Analyze the Error
—E 3
Fix & Validate * ‘ Prove the Analysis

Cover Lateral Damage

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

1. Identify the Error: A bad identification of an error can lead to wasted developing time. It is
usual that production errors reported by users are hard to interpret and sometimes the
information we receive is misleading. It is import to identify the actual error.

2. Find the Error Location: After identifying the error correctly, you need to go through the
code to find the exact spot where the error is located. In this stage, you need to focus on
finding the error instead of understanding it.

3. Analyze the Error: In the third step, you need to use a bottom-up approach from the error
location and analyze the code. This helps you in understanding the error. Analyzing a bug has
two main goals, such as checking around the error for other errors to be found, and to make
sure about the risks of entering any collateral damage in the fix.

4. Prove the Analysis: Once you are done analyzing the original bug, you need to find a few
more errors that may appear on the application. This step is about writing automated tests
for these areas with the help of a test framework.

5. Cover Lateral Damage: In this stage, you need to create or gather all the unit tests for the
code where you are going to make changes. Now, if you run these unit tests, they all should
pass.

Debugging Strategies

e It is important to study the system in depth in order to understand the system. It
helps the debugger to construct different representations of systems that are to be
debugged.

o Backward analysis of the problem traces the program backward from the location of
failure message in order to identify the region of faulty code. You need to study the
region of defect thoroughly to find the cause of defects.

e Forward analysis of the program involves tracking the program forward using
breakpoints or print statements at different points in the program. It is important to
focus on the region where the wrong outputs are obtained.

¢ You must use the past experience of the software to check for similar problems. The
success of this approach depends on the expertise of the debugger.

3 a. Explain a typical testing life cycle with illustration.

Software testing is a process used to identify the correctness, completeness and
quality of developed computer software.

The developer of the software can then check that the results produced by the
software are in accord with his or her expectations.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

l Error Error
|

Fb[Fault

Classify

Fault Incident

Putting Bugs IN Getting Bugs

Development Phase ouT

Finding Bugs
Testing Phase

Requirement
Analysis
Phase

Understanding

R Lire Requirement collection and analysis

- Work Breakdown Struciure
Estimation - Te=st Point Analysis

Phase - Function Point Anahysis

- Use-Case Analysis

Test T - Test strategy development and planning
Planming Es_t - Selection and adaptation testing technigues
Phase Planning - Entry and Exit Criteria definitons

Types - Peer, Supervisorny, Technical, Audits

Work Products - Reguirement, Design, Code, Test Plan,
Test Specification, Test Scenarios, Test Cases, RTM,
User guides, Web pages

- Test Plans - Test Scripts
- Test Cases - Test Specifications
- Test Scenarios - Requirement Tracealkrility Matrix

Ve ensure that testing environment is properly created

Build Test using a proper combination of testing equipments,
Environment hardware, and software ensuring reduced efforts in testing
configurations deployment.

- Linit Testing - BlackBox Testing
Test Case - Code Inspection - Functional/Ul'validation Testing
execution - Systemn Testing - Test Automation
Phase - Integration Testing - Performance Testing

- WhiteBox Testing - Alpha/Beta Tests

Defects

investigation Bug Reporting
and Test Log and Tracking
submission Phase

We use the industrny-recognized bug tracking tools like
Mantis. Online mode allows all the stakeholders to work
as a single team arnd ensures the complete control.

This report provides an insight into the complete defecis
analysis and relevant recommendations regarding
mprovement of the tested sofftware and the software
development process in whole.

https://www.edureka.co/software-testing-fundamentals-training
https://www.edureka.co/software-testing-fundamentals-training

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

3 b. Describe about SATM screen with problem statement.

Problem Statement

The SATM system communicates with bank customers via the 15 screens shown in Figure
Using a terminal with features as shown in Figure SATM customers can select any of three
transaction types: deposits, withdrawals, and balance inquiries. For simplicity, these

transactions can only be done on a checking account.

/

OO0

N

Welcome to

Rock Solid Federal Credit Union

Please insert your ATM card

OO

I Printed receipt

_/
Illlzllg‘ | Card slot |
L+ [5] [e] —
EANERREN ear

[o]

Cash dispenser

Cancel

| I

- Screen 1 ™
Welcome
please insert your
N ATM card /
e Screen 4 ™

Invalid ATM card. It will

_ be retained. S
- Screen 7 Y
Enter amount.
Withdrawals must
___ be multiples of $10 /
'z Screen 10 N

Temporarily unable to
process withdrawals.
_Another transaction? /

Deposit slot

o Screen 2 ™
Please enter your PIN

AN /

e Screen 5 N
Select transaction:
balance >
deposit >

_ withdrawal >

e Screen 8 N
Insufficient Funds!
Please enter a new

N amount S

g Screen 11 ™

Your balance is being
updated. Please take
cash from dispenser. /

4 Screen 13)
Please insert deposit
into deposit slot.

_ P _/

e

Screen 14 N
Your new balance is
being printed. Another
transaction? /

Screen 3

Your PIN is incorrect.
Please try again.

Screen 6

Balance is

$dddd.dd
'z Screen 9 ™
Machine can only
__ dispense $10 notes _/
'z Screen 12 ™

Temporarily unable to
process deposits.
_Another transaction? /

'z Screen 15 ™
Please take your
receipt and ATM card.
N Thank you. /

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

4.a State and Explain Data Flow Diagram for the triangle problem

Problem Statement

Simple version: The triangle program accepts three integers, a, b, and ¢, as input. These are
taken to be sides of a triangle. The output of the program is the type of triangle determined
by the three sides: Equilateral, Isosceles, Scalene, or Not a Triangle.

Improved version: The triangle program accepts three integers a, b and ¢ must satisfy the
following conditions:

cl.1 <a<200 cd.a<b+c
c2.1 <b <200 c5.b<a-+c
c3.1 <c¢< 200 c6.c<a+tb

Triangle
Program

Output-
to
Screen/disk

Input-
via Keyboard

Triangle Sides

True/False

Triangle type(= Equilateral)

4.b. Explain Program behavior and tested behavior with Venn diagram

A Venn diagram is made up of two or more overlapping circles. It is often used in
mathematics to show relationships between sets. In software testing, Venn Diagrams are
used to represent input/output relationships for the system.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

= Testing is basically concerned with behavior. Behavior is orthogonal to structural
view. Structural view focuses on what it is and behavioral view considers what it
does.

= One difficulty for testers is that documents are written for developers, so emphasis
is on structural view instead of behavioral information. Simple Venn diagrams clarify
several issues.

» Program Behaviors
Specification Program
(expected) (observed)
Missing Functionality Extra Functionality
(Sins of omission) (Sins of commission)
"Correct”
Portion
o s o S TN
Specification - 5 /7N PN Program
(expected) / s /2 N\ 6 \ (observed)
D J e '
.\ : 7/(7.\ l / \ -,\ /
" s \ f \ p
e \ & '/ 3 \ J
I 4 LR J 7
\\-" \,XI |/
b o S0 ST TR 1
! /
N\ 7 &
o
t & /./’
Test Cases
(verified)

Structure and Functional
View (Cont.)

. e 2,5 Spec. but do not
Specification Program be tested

(expected) (observed)
« 1,4 Spec. and Test

» 3,7 Test does not
meet Spec.

+ 2,6 Program is not
tested

< 1,3 Program is under
test

Test cases + 4,7 Test case do not

(verifisd) have program.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

4.c. Discuss Fault Taxonomy and give two example.

Input /Output Fault

Computation Fault

Logic Fault

Interface Fault

Data Fault

Missing case(s)

Duplicate case(s)

Extreme condition neglected

Type Instances
Input Correct input not accepted
Incorrect input accepted
Description wrong or missing
Parameters wrong or missing
Output | Wrong format

Misinterpretation

Wrong result

Missing condition

Correct result at wrong time (too early, too late)

Extraneous condition(s)

Incomplete or missing result

Spurious result

Test of wrong variable

Spelling/grammar

Incorrect loop iteration

Cosmetic

Wrong operator (e.g., < instead of <)

10

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

5.a. Explain Boundary Value Analysis with example.

Boundary testing is the process of testing between extreme ends or boundaries between
partitions of the input values. So these extreme ends like
e Start- End,
* Lower- Upper,
* Maximum-Minimum,
* Just Inside-Just Outside values
are called boundary values and the testing is called "boundary testing".
The basic idea in boundary value testing is to select input variable values at their:
1. Minimum

2. Just above the minimum
3. A nominal value
4. Just below the maximum
5. Maximum
) ' [
| 0 i 2 max
y 0 | 2 max
{ | '
T [} [[:] 7 Z n
| | .
\ o ! (Z min+

Robustness testing

. Robustness testing is a simple extension of boundary
4 value Analysis. Here we add min- and max+ values as
additions.

———————— == * The boundary value analysis applies directly to
robustness testing, especially the generalizations and
limitations. The most interesting part of the robustness
testing is not with the inputs, but with the expected
outputs. * The main value of robustness testing is that it
forces attention on exception handling.

a
|
|
+——
|
|
|
|
.

;____

B h——————————

(1]

11

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR
Worst case testing

Worst case Testing (2 Variables)
\ Boundary value analysis makes a single fault assumption
of reliability theory.

d L T -_—
Tk T * Rejecting single fault assumption, we are interested in
| |
.. . J what happens when more than one variable has an
| | . . .
! . il extreme value. This is called worst case analysis.

c F-$¥——-———— -

«, * For each variable, we start with the five elements set

that contain the min, min+, nom, max-, and max values.

* We then take the Cartesian product of the sets to
generate test cases. Worst — case testing for a function of
n variables generates 5n test cases.

2
* In this case 5 = 5*5= 25 test cases

Robust Worst-case Testing

Robust Worst-case Testing (2 Variables) Worst-case testing follows the generalization pattern of
. boundary value analysis.

. ’%’ . ' * It also has the same limitations, particularly those related to

1 : i independence.

| |

| |

i . ohe * The best application for worst-case testing is where physical
. ,i, : ,'*, variables have numerous interactions and where failure of the

} } function is extremely costly.

| L > X

a b

* For really paranoid testing, we do robust worst- case testing.
This involves Cartesian product of the seven - elements sets
we used in robustness testing resulting in 7n test cases. Min,
min+, min-, max, max+, max-, nom

2
Here we have 7 =7*7=49 test cases

5.b. Equivalence Class Test Cases for the NextDate Function

The NextDate function illustrates very well the craft of choosing the underlying equivalence
relation. NextDate is a function of three variables month, day, and year and these have
intervals of valid classes defined as follows:

M1 = {month: 1< month < 12}

D1 = {day: 1<day<31}

Y1 ={year: 1812<year<2012}

The invalid equivalence classes are:

M2 = {month : month< 1

M3 = {month : month > 12}

D2 ={day : day < 1}

12

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

D3 = {day : day > 31}

Y2 = {year : year < 1812}

Y3 = {year : year > 2012}

The number of valid classes equals the number of independent variables, only one weak
normal equivalence class test case occurs, and it is identical to the strong normal
equivalence class test case.

Weak /Strong normal equivalence

Case ID Month Day Year Expected Output

WN1T, SNT 6 15 1912 6/16/1912

Weak Robust Test Cases

Case ID | Month | Day Year Expected Output

WRT 6 15 1912 | 6/16/1912

WR2 —1 15 1912 | Value of month notin the range 1 ... 12

WR3 13 15 1912 | Value of month not in the range 1... 12

WR4 6 -1 1912 | Value of day not in the range 1 ... 31

WR5 6 32 1912 | Value of day not in the range 1 ... 31

WR6 6 15 1811 | Value of year not in the range 1812 ... 2012

WR7 6 15 2013 | Value of year not in the range 1812 ... 2012
Strong robust equivalence

Case ID Month Day Year Expected Output

SR1 -1 15 1912 Value of month not in the range 1... 12

SR2 6 -1 1912 Value of day not in the range 1 ... 31

SR3 6 15 1811 Value of year not in the range 1812 ... 2012

SR4 -1 -1 1912 Value of month not in the range 1 ... 12

Value of day not in the range 1 ... 31

SR5 6 -1 1811 Value of day not in the range 1 ... 31
Value of year not in the range 1812 ... 2012

SR6 —1 15 1811 Value of month not in the range 1... 12
Value of year not in the range 1812 ... 2012

SR7 -1 -1 1811 Value of month not in the range 1 ... 12
Value of day not in the range 1 ... 31

Value of year not in the range 1812 ... 2012

13

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

6.a. What is the equivalence class test? What are different form equivalence class test?

01

Defining Equivalence
Class Testing

Equivalence Class Testing is an important
software testing technique, used by the testers
for grouping and partitioning the test input data,
that is further used for the purpose of testing the
software product, into a number of different
classes.

Equivalence Partitions analysis

Example: Requirement for ‘Password’ field from “Add users modal
window” of Admins actions menu: password field can not be shorter than 4
and longer than 28 (including) characters (numeric and alphabetic)

Equivalance classes

2 15 35
v v v
<4 between 4 and 28 =28
mvahd valid mvalid

Define and execute the test cases:

1. Password field contain 2 characters — Fail;
2. Password field contain 15 characters — Pass;
3. Password field contain 35 characters — Fail.

Types of Equivalence 1z

Class Testing

The equivalence class testing can be categorized into
four different types, which are integral part of testing

\ and cater to different data set.

Weak Normal Equivalence Class Testing
Strong Normal Equivalence Class Testing
Weak Robust Equivalence Class Testing
Strong Robust Equivalence Class Testing

14

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

6.b. BVA for Next date function

All 125 worst-case test cases for NextDate are listed in Table. Take some time to examine it for gaps
of untested functionality and for redundant testing. For example, would anyone actually want to test
January 1 in five different years? Is the end of February tested sufficiently?

5n=53=125
Year Month

1813 1912 201 2012 1 2] 1 12 1 2 15 30 3
Mia-1 M ‘hun] Viddle M- 1 M Maxtl

Test Case=
Day

Min-1 Min \1||n] Middle Max-1 Mar Mst¢l M-l Min \1||n] Middle Ma-1

Mar Man+l

This Raage should be accepled This Raage shoul b acepied TES Kge Mol e e

Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis

This Range should nat be accepted Tiis Renge shoald nof he accepted This Renge should mat e accepted

Upper Limit + Lower Limit

Upper Limit + Lower Limit Upper Limit + Lower Limit Nominal Vu\ua/Naulml

Nominal Value/Neutral Value (NV) = 2

Value (NV) = 2

Nominal Value /Neutral
Value (NV) = 2

NV=30+1/2=31/2=15

NV=2012+1812/2=3824/2=1912 NV=12+1/2=13/2=6

6.c. Decision table testing

Decision table testing is a software testing technique used to test system behavior for
different input combinations. This is a systematic approach where the different input
combinations and their corresponding system behavior (Output) are captured in a tabular
form. That is why it is also called as a Cause-Effect table where Cause and effects are captured

for better test coverage

= t
‘ | Caseld l Description . I anau - Expected Output Actual Output ‘ Status
[[n(rv the value of a, b and ¢ such that a is Message should be displayed
1 _ a4 | 1 2 k .
| less than sum of two sides can't form a triangle

Enter the value of a,b and c such that b is
less than sum of two sides and a is less 1 4 2
| than sum of other two sides

ro

Message should be displayed
can't form a triangle

Enter the value of a, b and ¢ such that cis
3 less than sum of two sides and a and bis 1 2 4
| less than sum of other two sides

Message should be displayed
can't form a triangle

Should display the message

|
| Enter the value a, b and ¢ satisfying S c N ‘
‘ ‘ peecondition and a=b, b=c and c=a Fquilateral triangle
\ S Enter the value a b and ¢ satisfying 2 2 3 Should display the message
| precondition and asband b 7 ¢ Isosceles triangle }
Enter the value a b and ¢ satisfying 3 2 2 Should display the message ‘
peecondition andbocandc 2 a lsosceles triangle 1
5 | Enter the value a,b and ¢ satisfying 2 3 2 Should display the message ‘
‘ precondition and craanda #b Isosceles triangle |
Enter the value a, b and ¢ satisfying 3 4 S Should display the message ‘
| peeconditionand a #b,bscandc7a Scalene triangle

7.a. DD path for triangle problem.

15

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

Program triangle2

Dim a,b,c As Integer

Dim IsATrinagle As Boolean
Output(“Enter 3 integers which are sides of a triangle”)
Input(a,b,c)

Output(“Side A is”, a)

Output(“Side B is”, b)

Output(“Side C is”, ¢)
If(a<b+c)AND (b <a+c)AND (c<a+Db)
10 Then IsATriangle = True

11 Else IsATriangle = False

12 EndIf

13 If IsATriangle

14 Then If (a=b) AND (b =c¢)

COoONAOB WN -

15 Then Output (“Equilateral”)

16 Else If (a=b) AND (azc) AND (bzc) (18)
17 Then Output (“Scalene”)

18 Else Output (“Isosceles”)

19 EndIf

20 EndIf

21 Else Output(“Nota a Triangle”)

22 EndIf

23 End triangle2

Program | DD-Path | Case of This is a complex definition, so we will apply it to

Graph Nodes | Name | Definition the program graph.
4 First 1
5-8 A 5 — Node 4 is a case 1 DD-Path; we will call it first.
9 B 3 — Similarly, node 23 is a case 2 DD-Path; we will call it
10 ¢ 4 lesst.
11 D f — Nodes 5 through 8 are case 5 DD-Paths. We know
1% E : that node 8 is the last node in this DD-Path because it is
I3 F : the last node that preserves the 2-connectedness
:;1 Iil ; property of the chain.
6] 3 — If we stop at node 7, we violate the “maximal”
17 K 4 criterion.
18 L n — Nodes 10, 11, 15, 17, 18, and 21 are case 4 DD-
19 M 3 Paths.
20 N 3 — Nodes 9, 12, 13, 14, 16, 19, 20, and 22 are case 3
21 G 4 DD-Paths.
2 8] 3
23 Last 2

16

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

7.b. Waterfall and spin-off

= Development in stages
= Level use of staff across all types
= Testing now entails both
= Regression
= Progression

= Main variations involve constructing a sequence of systems
= Incremental
= Evolutionary
= Spiral

= Waterfall model is applied to each build
= Smaller problem than original
= System functionality does not change

Incremental
= Have high-level design at the beginning
= Low-level design results in a series of builds
= Incremental testing is useful
= System testing is not affected
= Level off staffing problems

Evolutionary
= First build is defined
= Priorities and customer define next build
= Difficult to have initial high-level design
= Incremental testing is difficult
= System testing is not affected

Spiral
= Combination of incremental and evolutionary
= After each build assess benefits and risks
= Use to decide go/no-go and direction
= Difficult to have initial high-level design
= Incremental testing is difficult
= System testing is not affected

Advantage of spiral models
= Earlier synthesis and deliverables
= More customer feedback
= Risk/benefit analysis is rigorous

17

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

8a.Slice based testing and metric based testing
*Program slice is a set of program statements that contributes to, or affects the value of, a
variable at some pointin a program.
*We continue with the notation we used for define/use paths: a program P that has a
program graph G(P) and a set of program variables V.

Definition:

*Given a program P and a program graph G(P) in which statements and statement fragments
are numbered, and a setV of variables in P, the static, backward slice on the variable set V
at statement fragment n, written S(V, n), is the set of node numbers of all statement
fragments in P that contribute to the values of varigbles in V at statement fragment n

Programslices

1. Backward slice : Backward slices refer to statement fragments that contribute to the
value of vat statement n.

2. Forward slices: referto all the program statements that are affected by the value of v
and statementn

Metrics can be defined as “Standard of Measurement”.

Software Metrics are used to measures the quality of the software projects

Metricsis a unit used for Metricsis a scale for
describing an attribute measurement

Grams

Example:1 In general “ kilogram™ is a metrics for measuring the attribute “weight”
Milligrams

Example:2 |n general “ kilometer” is a metrics for measpring the attribute “speed”

Metrics

8.b. Guideline for data flow testing

Data Flow Testing is a specific strategy of software testing that focuses on data variables and
their values. It makes use of the control flow graph. When it comes to categorization Data
flow testing will can be considered as a type of white box testing and structural types of
testing. It keeps a check at the data receiving points by the variables and its usage points. It is
done to cover the path testing and branch testing gap.

The process is conducted to detect the bugs because of the incorrect usage of data variables
or data values. For e.g. Initialization of data variables in programming code, etc.

18

https://www.testbytes.net/blog/how-to-find-bugs-in-your-app/
https://en.wikipedia.org/wiki/Initialization_(programming)

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

What is Data flow Testing?

e The programmer can perform numerous tests on data values and
variables. This type of testing is referred to as data flow testing.

e ltis performed at two abstract levels: static data flow testing and
dynamic data flow testing.

o The static data flow testing process involves analyzing the source code
without executing it.

o Static data flow testing exposes possible defects known as data flow
anomaly.

e Dynamic data flow identifies program paths from source code.

Let us understand this with the help of an example.

1. read x;

2. If(x>0) (1,(2, 1), x), (1, (2, 1), x)
3. a=x+l (1, 3, x)

4, if (x<=0) { (1, (4, 1), x), (1, (4, T), x)
5. if (x<1) (1, (5, 1), x), (1, (5, f), x)
6. x=x+1; (go to 5) (1, 6, X)

else

7. a=x+1 (1,7, %)

8. print a; (6,(5, f)x), (6,(5,t)x)

(6, 6, x)
{3! 8." a]I.l E?I 8.‘ a]'

There are 8 statements in this code. In this code we cannot cover all 8 statements
in a single path as if 2 is valid then 4, 5, 6, 7 are not traversed, and if 4 is valid then
statement 2 and 3 will not be traversed.

Hence we will consider two paths so that we can cover all the statements.

x=1
Path-1,2,3,8
Output =2
If we consider x =1, in step 1; x is assigned a value of 1 then we move to step 2
(since, x>0 we will move to statement 3 (a= x+1) and at end, it will go to
statement 8 and print x =2.

For the second path, we assign x as 1

Set x=-1
Path=1,2,4,5,6,5,6,5,7,8

19

https://www.testbytes.net/blog/software-testing-process/

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

Output =2
x is set as 1 then it goes to step 1 to assign x as 1 and then moves to step 2 which
is false as x is smaller than 0 (x>0 and here x=-1). It will then move to step 3 and
then jump to step 4; as 4 is true (x<=0 and their x is less than 0) it will jump on 5
(x<1) which is true and it will move to step 6 (x=x+1) and here x is increased by 1.

So,
x=-1+1
x=0
x become 0 and it goes to step 5(x<1),as it is true it will jump to step
6 (x=x+1)
X=x+1
x=0+1

x=1

x isnow 1 and jump to step 5 (x<1) and now the condition is false and it will
jump to step 7 (a=x+1) and set a=2 as x is 1. At the end the value of a is 2. And

on step 8 we get the output as 2.

Steps of Data Flow Testing
e creation of a data flow graph.
e Selecting the testing criteria.
e Classifying paths that satisfy the selection criteria in the data flow graph.
e Develop path predicate expressions to derive test input.

The life cycle of data in programming code

e Definition: it includes defining, creation and initialization of data variables
and the allocation of the memory to its data object.

e Usage: It refers to the user of the data variable in the code. Data can be used
in two types as a predicate(P) or in the computational form(C).

e Deletion: Deletion of the Memory allocated to the variables.

Types of Data Flow Testing
e Static Data Flow Testing

20

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

No actual execution of the code is carried out in Static Data Flow testing. Generally, the
definition, usage and kill pattern of the data variables is scrutinized through a control flow
graph.

e Dynamic Data Flow Testing

The code is executed to observe the transitional results. Dynamic data flow testing includes:

o Identification of definition and usage of data variables.
o Identifying viable paths between definition and usage pairs of data variables.
e Designing & crafting test cases for these paths.

Advantages of Data Flow Testing
e Variables used but never defined,
e Variables defined but never used,
e Variables defined multiple times before actually used,
e DE allocating variables before using.

Data Flow Testing Limitations
e Testers require good knowledge of programming.
e Time-consuming
e Costly process.

Data Flow Testing Coverage

e All definition coverage: Covers “sub-paths” from each definition to some of
their respective use.

o All definition-C use coverage: “sub-paths” from each definition to all their
respective C use.

e All definition-P use coverage: “sub-paths” from each definition to all their
respective P use.

e All use coverage: Coverage of “sub-paths” from each definition to every
respective use irrespective of types.

e All definition use coverage: Coverage of “simple sub-paths” from each
definition to every respective use.

Data Flow Testing Strategies

21

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

ADPU

Following are the test selection criteria
1. All-defs: For every variable x and node i in a way that x has a global declaration in node |,
pick a comprehensive path including the def-clear path from node i to

e Edge (j,k) having a p-use of x or

e Node j having a global c-use of x
2. All c-uses: For every variable x and node i in a way that x has a global declaration in node i,
pick a comprehensive path including the def-clear path from node i to all nodes j having a
global c-use of x in j.
3. All p-uses: For every variable x and node i in a way that x has a global declaration in node i,
pick a comprehensive path including the def-clear path from node i to all edges (j,k) having p-
use of x on edge (j,k).
4. All p-uses/Some c-uses: it is similar to all p-uses criterion except when variable x has no
global p-use, it reduces to some c-uses criterion as given below
5. Some c-uses: For every variable x and node i in a way that x has a global declaration in node
i, pick a comprehensive path including the def-clear path from node i to some nodes j having
a global c-use of x in node j.
6. All c-uses/Some p-uses:it is similar to all c-uses criterion except when variable x has no
global c-use, it reduces to some p-uses criterion as given below:
7.Some p-uses: For every variable x and node i in a way that x has a global declaration in node
i, pick a comprehensive path including def-clear paths from node i to some edges (j,k) having
a p-use of x on edge (j,k).
8. All uses:it is a combination of all p-uses criterion and all c-uses criterion.
9. All du-paths:For every variable x and node i in a way that x has a global declaration in node
i, pick a comprehensive path including all du-paths from node i

e Toall nodes j having a global c-use of xin j and

e To all edges (j,k) having a p-use of x on (j,k).
Data Flow Testing Applications
As per studies defects identified by executing 90% “data coverage” is twice as compared to
bugs detected by 90% branch coverage.
The process flow testing is found effective, even when it is not supported by automation.
It requires extra record keeping; tracking the variables status. The computers help easy
tracking of these variables and hence reducing the testing efforts considerably. Data flow
testing tools can also be integrated into compilers.

22

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

9.a. Explain Mutation analysis and fault-based adequacy criteria.

Mutation analysis is the most common form of software fault-based testing. A fault model is
used to produce hypothetical faulty programs by creating variants of the program under test.
Variants are created by “seeding” faults, that is, by making a small change to the program
under test following a pattern in the fault model. The patterns for changing program text are
called mutation operators, and each variant program is called a mutant.

Mutation Analysis: Terminology

Original program under test: The program or procedure (function) to be tested.

Mutant: A program that differs from the original program for one syntactic element
(e.g., a statement, a condition, a variable, a label).

Distinguished mutant: A mutant that can be distinguished for the original program
by executing at least one test case.

Equivalent mutant: A mutant that cannot be distinguished from the original program.

Mutation operator: A rule for producing a mutant program by syntactically modify-
ing the original program.

Given a program and a test suite 7, mutation analysis consists of the following steps:

Select mutation operators: If we are interested in specific classes of faults, we may select a set of
mutation operators relevant to those faults.

Generate mutants: Mutants are generated mechanically by applying mutation operators to the original
program.

Distinguish mutants: Execute the original program and each generated mutant with the test cases in T .
A mutant is killed when it can be distinguished from the original program.

Figure 3 shows a sample of mutants for program Transduce, obtained by applying the mutant operators
in Figure 2. Test suite TS

TS ={1U, ID, 2U, 2D, 2M, End, Long, Mixed)

kills M}, which can be distinguished from the original program by test cases 10, 2U, 2D, and 2M. Mutants
Mi, Mk, and M; are not distinguished from the original program by any test in 7S. We say that mutants not
killed by a test suite are live.

9.b. Analysis and Test Plan

structure of an analysis and test plan is more standardized. A typical structure of a test and analysis
plan includes information about items to be verified, features to be tested, the testing approach, pass
and fail criteria, test deliverables, tasks, responsibilities and resources, and environment constraints.
Basic elements are described in the sidebar on

23

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

A Standard Organization of an Analysis and Test Plan
Analysis and test items:
The items 1o be tested or analyzed. The description of each item indicates version and instal-
lation procedures that may be required.
Features to be tested:
The features considered in the plan.

Features not to be tested:
Features not considered in the current plan.

Approach:
The overall analysis and test approach, sufficiently detailed to permit identification of the major
test and analysis tasks and estimation of time and resources.

Pass/Fail criteria:
Rules that determine the status of an artifact subjected to analysis and test.

Suspension and resumption criteria:
Conditions to trigger suspension of test and analysis activities (e.g., an excessive failure rate)
and conditions for restarting or resuming an activity.

Risks and contingencies:

Risks foreseen whan designing the plan and a contingency plan for each of the identified
nsks.
Deliverables:

A list all AAT artifacts and documents that must be produced.

Task and schedule:

A complete description of analysis and test tasks, relations among them, and relations be-
tween A&T and development tasks, with resource allocation and constraints. A task schedule
usually includes GANTT and PERT diagrams.

Staff and responsibilities:

Staff required for performing analysis and test activities, the required skills, and the allocation
of responsiilites among groups and individuals. Allocation of resources to tasks is described in
the schedule.

Environmental needs:
Hardware and software required to perform analysis or testing activities.

10.a. Scaffolding

To do Unit tests, we have to provide replacements for parts of the program that we will omit
from the test.
* Scaffolding is any code that we write, not as part of the application, but simply
to support the process of Unit and Integration testing.
* Scaffolding comes in two forms
* Drivers
* Stubs
* The purposes of scaffolding are to provide controllability to execute test cases and
observability to judge the outcome of test execution. Sometimes scaffolding is

24

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

required to simply make a module executable, but even in incremental development
with immediate integration of each module.

Generic versus Specific Scaffolding

* The simplest form of scaffolding is a driver program that runs a single,
specific test case. If, for example, a test case specification calls for executing
method calls in a particular sequence, this is easy to accomplish by writing
the code to make the method calls in that sequence.

* Fully generic scaffolding may be sufficient for small numbers of hand-written
test cases. For larger test suites and particularly for those that are generated
systematically, writing each test case by hand is impractical.

10.b. Test Oracles

Software that applies a pass/fail criterion to a program execution is called a test oracle.

A test oracle would classify every execution of a correct program as passing and would detect
every program failure. In practice, the pass/fail criterion is usually imperfect.

A test oracle may apply a pass/fail criterion that reflects only part of the actual program
specification, and therefore passes some program executions, it has to fail.

A test oracle may also give false alarms, failing an execution that it has to pass.

False alarms in test execution are highly undesirable because of the direct expense of
manually checking them and real failures will be overlooked.

The best we can obtain is an oracle that detects deviations from expectation that may or may
not be actual failures.

Support for comparison-based test oracles is often included in a test harness program or testing
framework as in figure. A harness typically takes two inputs:

(1) the input to the program under test and

(2) (2) the predicted output. Frameworks for writing test cases as program code likewise
provide support for comparison-based oracles.

A test harness with a comparison-based test oracle processes test cases consisting of (program
input, predicted output) pairs.

Test Case

Test Harness
with Comparison Based
Oracle

Test Input

Expocted Output |- < —(Compare } | —~iPaserail
| Pl

Program
Under Test

25

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

A program or module specification describes all correct program behaviors, so an oracle
based on a specification need not be paired with a particular test case. Instead, the oracle can
be incorporated into the program under test. In general these self-check are in the form of
assertions, similar to assertions used in symbolic execution and program verification but
designed to be checked during execution.
When self-checks are embedded in the program, test cases need not include predicted

outputs.

Test Case

Test Harness

Program
Under Test

Test Input

.
-

[Self-checks

.....................

- Failure
. Notification

26

