
18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

1

VTU-Exam-Feb-2021-Software Testing

Question Paper Answers

1. What is Software Quality? Explain the same with respect to quality attributes

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

2

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

3

1b. Explain Errors , Faults, and Failures in the process of programming and testing with

the diagram.

➢ An error occurs in the process of writing a program.

➢ A fault is the manifestation of one or more errors

➢ A failure occurs when a faulty piece of code is executed leading to an incorrect state

that propagates to the program’s output.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

4

2a. Discuss different types of testing Matrices.

The term metric refers to a standard of measurement. In software testing there exist a

variety of metrics

2 d. Explain different steps of testing and debugging.

Test Metrics

Organizational Project Process Product

Static Dynamic

Organization

 Establishes test processes

Used in projects

To test products

Organization Metrics: Metrics at the level of an organization are useful in overall

 project planning and management

Project Metrics: Project Metrics relate to a specific project

Process Metrics: Every project uses some test process.

The goal of a process metric is to assess the goodness of the process.

Product Metrics: Product metrics relates to a specific product such

as a compiler for a programming language.

 Static: Computed without having to execute the product

 Dynamic metrics: Require code execution

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

5

1. Identify the Error: A bad identification of an error can lead to wasted developing time. It is
usual that production errors reported by users are hard to interpret and sometimes the
information we receive is misleading. It is import to identify the actual error.

2. Find the Error Location: After identifying the error correctly, you need to go through the
code to find the exact spot where the error is located. In this stage, you need to focus on
finding the error instead of understanding it.

3. Analyze the Error: In the third step, you need to use a bottom-up approach from the error
location and analyze the code. This helps you in understanding the error. Analyzing a bug has
two main goals, such as checking around the error for other errors to be found, and to make
sure about the risks of entering any collateral damage in the fix.

4. Prove the Analysis: Once you are done analyzing the original bug, you need to find a few
more errors that may appear on the application. This step is about writing automated tests
for these areas with the help of a test framework.

5. Cover Lateral Damage: In this stage, you need to create or gather all the unit tests for the
code where you are going to make changes. Now, if you run these unit tests, they all should
pass.

Debugging Strategies

• It is important to study the system in depth in order to understand the system. It
helps the debugger to construct different representations of systems that are to be
debugged.

• Backward analysis of the problem traces the program backward from the location of
failure message in order to identify the region of faulty code. You need to study the
region of defect thoroughly to find the cause of defects.

• Forward analysis of the program involves tracking the program forward using
breakpoints or print statements at different points in the program. It is important to
focus on the region where the wrong outputs are obtained.

• You must use the past experience of the software to check for similar problems. The
success of this approach depends on the expertise of the debugger.

3 a. Explain a typical testing life cycle with illustration.

Software testing is a process used to identify the correctness, completeness and
quality of developed computer software.

The developer of the software can then check that the results produced by the
software are in accord with his or her expectations.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

6

Putting Bugs IN

Development Phase

Finding Bugs

Testing Phase

Getting Bugs

OUT

Error

Error

Error

Error

Fix Spec

Design

Coding

Testing

Classify
Fault

Isolate
Fault

Fault
Resolution

https://www.edureka.co/software-testing-fundamentals-training
https://www.edureka.co/software-testing-fundamentals-training

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

7

3 b. Describe about SATM screen with problem statement.

Problem Statement

The SATM system communicates with bank customers via the 15 screens shown in Figure

Using a terminal with features as shown in Figure SATM customers can select any of three

transaction types: deposits, withdrawals, and balance inquiries. For simplicity, these

transactions can only be done on a checking account.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

8

4.a State and Explain Data Flow Diagram for the triangle problem

4.b. Explain Program behavior and tested behavior with Venn diagram

A Venn diagram is made up of two or more overlapping circles. It is often used in

mathematics to show relationships between sets. In software testing, Venn Diagrams are

used to represent input/output relationships for the system.

Problem Statement

Simple version: The triangle program accepts three integers, a, b, and c, as input. These are

taken to be sides of a triangle. The output of the program is the type of triangle determined

by the three sides: Equilateral, Isosceles, Scalene, or Not a Triangle.

Improved version: The triangle program accepts three integers a, b and c must satisfy the

following conditions:

c1. 1 ≤ a ≤ 200 c4. a < b + c

c2. 1 ≤ b ≤ 200 c5. b < a + c

c3. 1 ≤ c ≤ 200 c6. c < a + b

Input-

via Keyboard

Triangle

Program
Output-

to

Screen/disk

1.

Get

Input

3.

Trian

gle

2.

Is_A_

Trian

Prompts(if true)

or

Triangle type(= Equilateral)

a,b,c

a,b,c

True/False

Triangle Sides

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

9

▪ Testing is basically concerned with behavior. Behavior is orthogonal to structural

view. Structural view focuses on what it is and behavioral view considers what it

does.

▪ One difficulty for testers is that documents are written for developers, so emphasis

is on structural view instead of behavioral information. Simple Venn diagrams clarify

several issues.

U

S P

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

10

4.c. Discuss Fault Taxonomy and give two example.

Input/Output Fault Logic Fault

Computation Fault Interface Fault

Data Fault

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

11

5.a. Explain Boundary Value Analysis with example.

Boundary testing is the process of testing between extreme ends or boundaries between

partitions of the input values. So these extreme ends like

• Start- End,

• Lower- Upper,

• Maximum-Minimum,

• Just Inside-Just Outside values

 are called boundary values and the testing is called "boundary testing".

The basic idea in boundary value testing is to select input variable values at their:

1. Minimum

2. Just above the minimum

3. A nominal value

4. Just below the maximum

5. Maximum

Robustness testing

. Robustness testing is a simple extension of boundary

value Analysis. Here we add min- and max+ values as

additions.

• The boundary value analysis applies directly to

robustness testing, especially the generalizations and

limitations. The most interesting part of the robustness

testing is not with the inputs, but with the expected

outputs. • The main value of robustness testing is that it

forces attention on exception handling.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

12

The NextDate function illustrates very well the craft of choosing the underlying equivalence

relation. NextDate is a function of three variables month, day, and year and these have

intervals of valid classes defined as follows:

M1 = {month: 1≤ month ≤ 12}

D1 = {day: 1≤day≤31}

Y1 = {year: 1812≤year≤2012}

The invalid equivalence classes are:

M2 = {month : month < 1

M3 = {month : month > 12}

D2 = {day : day < 1}

Worst case testing

Boundary value analysis makes a single fault assumption

of reliability theory.

• Rejecting single fault assumption, we are interested in

what happens when more than one variable has an

extreme value. This is called worst case analysis.

• For each variable, we start with the five elements set

that contain the min, min+, nom, max-, and max values.

• We then take the Cartesian product of the sets to

generate test cases. Worst – case testing for a function of

n variables generates 5n test cases.

• In this case 5
2

= 5*5= 25 test cases

Robust Worst-case Testing

Worst-case testing follows the generalization pattern of

boundary value analysis.

• It also has the same limitations, particularly those related to

independence.

• The best application for worst-case testing is where physical

variables have numerous interactions and where failure of the

function is extremely costly.

• For really paranoid testing, we do robust worst- case testing.

This involves Cartesian product of the seven - elements sets

we used in robustness testing resulting in 7n test cases. Min,

min+, min-, max, max+, max-, nom

Here we have 7
2

=7*7=49 test cases

5.b. Equivalence Class Test Cases for the NextDate Function

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

13

D3 = {day : day > 31}

Y2 = {year : year < 1812}

Y3 = {year : year > 2012}

The number of valid classes equals the number of independent variables, only one weak

normal equivalence class test case occurs, and it is identical to the strong normal

equivalence class test case.

Weak /Strong normal equivalence

Weak Robust Test Cases

Strong robust equivalence

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

14

6.a. What is the equivalence class test? What are different form equivalence class test?

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

15

6.b. BVA for Next date function

6.c. Decision table testing

Decision table testing is a software testing technique used to test system behavior for

different input combinations. This is a systematic approach where the different input

combinations and their corresponding system behavior (Output) are captured in a tabular

form. That is why it is also called as a Cause-Effect table where Cause and effects are captured

for better test coverage

7.a. DD path for triangle problem.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

16

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

17

7.b. Waterfall and spin-off

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

18

8a.Slice based testing and metric based testing

8.b. Guideline for data flow testing

Data Flow Testing is a specific strategy of software testing that focuses on data variables and
their values. It makes use of the control flow graph. When it comes to categorization Data
flow testing will can be considered as a type of white box testing and structural types of
testing. It keeps a check at the data receiving points by the variables and its usage points. It is
done to cover the path testing and branch testing gap.
The process is conducted to detect the bugs because of the incorrect usage of data variables
or data values. For e.g. Initialization of data variables in programming code, etc.

https://www.testbytes.net/blog/how-to-find-bugs-in-your-app/
https://en.wikipedia.org/wiki/Initialization_(programming)

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

19

What is Data flow Testing?
• The programmer can perform numerous tests on data values and

variables. This type of testing is referred to as data flow testing.
• It is performed at two abstract levels: static data flow testing and

dynamic data flow testing.

• The static data flow testing process involves analyzing the source code
without executing it.

• Static data flow testing exposes possible defects known as data flow
anomaly.

• Dynamic data flow identifies program paths from source code.

Let us understand this with the help of an example.

There are 8 statements in this code. In this code we cannot cover all 8 statements
in a single path as if 2 is valid then 4, 5, 6, 7 are not traversed, and if 4 is valid then
statement 2 and 3 will not be traversed.

Hence we will consider two paths so that we can cover all the statements.

x= 1
Path – 1, 2, 3, 8

Output = 2
If we consider x = 1, in step 1; x is assigned a value of 1 then we move to step 2
(since, x>0 we will move to statement 3 (a= x+1) and at end, it will go to
statement 8 and print x =2.

For the second path, we assign x as 1

Set x= -1
Path = 1, 2, 4, 5, 6, 5, 6, 5, 7, 8

https://www.testbytes.net/blog/software-testing-process/

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

20

Output = 2
x is set as 1 then it goes to step 1 to assign x as 1 and then moves to step 2 which
is false as x is smaller than 0 (x>0 and here x=-1). It will then move to step 3 and
then jump to step 4; as 4 is true (x<=0 and their x is less than 0) it will jump on 5
(x<1) which is true and it will move to step 6 (x=x+1) and here x is increased by 1.

So,

x=-1+1

x=0

x become 0 and it goes to step 5(x<1),as it is true it will jump to step

6 (x=x+1)

x=x+1

x= 0+1

x=1

x is now 1 and jump to step 5 (x<1) and now the condition is false and it will

jump to step 7 (a=x+1) and set a=2 as x is 1. At the end the value of a is 2. And

on step 8 we get the output as 2.

Steps of Data Flow Testing
• creation of a data flow graph.
• Selecting the testing criteria.
• Classifying paths that satisfy the selection criteria in the data flow graph.
• Develop path predicate expressions to derive test input.

The life cycle of data in programming code

• Definition: it includes defining, creation and initialization of data variables
and the allocation of the memory to its data object.

• Usage: It refers to the user of the data variable in the code. Data can be used
in two types as a predicate(P) or in the computational form(C).

• Deletion: Deletion of the Memory allocated to the variables.

Types of Data Flow Testing
• Static Data Flow Testing

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

21

No actual execution of the code is carried out in Static Data Flow testing. Generally, the

definition, usage and kill pattern of the data variables is scrutinized through a control flow

graph.

• Dynamic Data Flow Testing

The code is executed to observe the transitional results. Dynamic data flow testing includes:

• Identification of definition and usage of data variables.
• Identifying viable paths between definition and usage pairs of data variables.
• Designing & crafting test cases for these paths.

Advantages of Data Flow Testing
• Variables used but never defined,
• Variables defined but never used,
• Variables defined multiple times before actually used,
• DE allocating variables before using.

Data Flow Testing Limitations
• Testers require good knowledge of programming.
• Time-consuming
• Costly process.

Data Flow Testing Coverage
• All definition coverage: Covers “sub-paths” from each definition to some of

their respective use.
• All definition-C use coverage: “sub-paths” from each definition to all their

respective C use.
• All definition-P use coverage: “sub-paths” from each definition to all their

respective P use.
• All use coverage: Coverage of “sub-paths” from each definition to every

respective use irrespective of types.
• All definition use coverage: Coverage of “simple sub-paths” from each

definition to every respective use.

Data Flow Testing Strategies

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

22

Following are the test selection criteria
1. All-defs: For every variable x and node i in a way that x has a global declaration in node I,
pick a comprehensive path including the def-clear path from node i to

• Edge (j,k) having a p-use of x or
• Node j having a global c-use of x

2. All c-uses: For every variable x and node i in a way that x has a global declaration in node i,
pick a comprehensive path including the def-clear path from node i to all nodes j having a
global c-use of x in j.
3. All p-uses: For every variable x and node i in a way that x has a global declaration in node i,
pick a comprehensive path including the def-clear path from node i to all edges (j,k) having p-
use of x on edge (j,k).
4. All p-uses/Some c-uses: it is similar to all p-uses criterion except when variable x has no
global p-use, it reduces to some c-uses criterion as given below
5. Some c-uses: For every variable x and node i in a way that x has a global declaration in node
i, pick a comprehensive path including the def-clear path from node i to some nodes j having
a global c-use of x in node j.
6. All c-uses/Some p-uses:it is similar to all c-uses criterion except when variable x has no
global c-use, it reduces to some p-uses criterion as given below:
7. Some p-uses: For every variable x and node i in a way that x has a global declaration in node
i, pick a comprehensive path including def-clear paths from node i to some edges (j,k) having
a p-use of x on edge (j,k).
8. All uses:it is a combination of all p-uses criterion and all c-uses criterion.
9. All du-paths:For every variable x and node i in a way that x has a global declaration in node
i, pick a comprehensive path including all du-paths from node i

• To all nodes j having a global c-use of x in j and
• To all edges (j,k) having a p-use of x on (j,k).

Data Flow Testing Applications
As per studies defects identified by executing 90% “data coverage” is twice as compared to
bugs detected by 90% branch coverage.
The process flow testing is found effective, even when it is not supported by automation.
It requires extra record keeping; tracking the variables status. The computers help easy
tracking of these variables and hence reducing the testing efforts considerably. Data flow
testing tools can also be integrated into compilers.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

23

9.a. Explain Mutation analysis and fault-based adequacy criteria.

Mutation analysis is the most common form of software fault-based testing. A fault model is

used to produce hypothetical faulty programs by creating variants of the program under test.

Variants are created by “seeding” faults, that is, by making a small change to the program

under test following a pattern in the fault model. The patterns for changing program text are

called mutation operators, and each variant program is called a mutant.

9.b. Analysis and Test Plan

structure of an analysis and test plan is more standardized. A typical structure of a test and analysis

plan includes information about items to be verified, features to be tested, the testing approach, pass

and fail criteria, test deliverables, tasks, responsibilities and resources, and environment constraints.

Basic elements are described in the sidebar on

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

24

10.a. Scaffolding

To do Unit tests, we have to provide replacements for parts of the program that we will omit

from the test.

• Scaffolding is any code that we write, not as part of the application, but simply

to support the process of Unit and Integration testing.

• Scaffolding comes in two forms

• Drivers

• Stubs

• The purposes of scaffolding are to provide controllability to execute test cases and

observability to judge the outcome of test execution. Sometimes scaffolding is

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

25

required to simply make a module executable, but even in incremental development

with immediate integration of each module.

• Generic versus Specific Scaffolding

• The simplest form of scaffolding is a driver program that runs a single,

specific test case. If, for example, a test case specification calls for executing

method calls in a particular sequence, this is easy to accomplish by writing

the code to make the method calls in that sequence.

• Fully generic scaffolding may be sufficient for small numbers of hand-written

test cases. For larger test suites and particularly for those that are generated

systematically, writing each test case by hand is impractical.

10.b. Test Oracles

Software that applies a pass/fail criterion to a program execution is called a test oracle.

▪ A test oracle would classify every execution of a correct program as passing and would detect

every program failure. In practice, the pass/fail criterion is usually imperfect.

▪ A test oracle may apply a pass/fail criterion that reflects only part of the actual program

specification, and therefore passes some program executions, it has to fail.

▪ A test oracle may also give false alarms, failing an execution that it has to pass.

▪ False alarms in test execution are highly undesirable because of the direct expense of

manually checking them and real failures will be overlooked.

▪ The best we can obtain is an oracle that detects deviations from expectation that may or may

not be actual failures.

Support for comparison-based test oracles is often included in a test harness program or testing

framework as in figure. A harness typically takes two inputs:

(1) the input to the program under test and

(2) (2) the predicted output. Frameworks for writing test cases as program code likewise

provide support for comparison-based oracles.

A test harness with a comparison-based test oracle processes test cases consisting of (program

input, predicted output) pairs.

18MCA351- SOFTWAER TESTING -UNIVERSITY QUESTION PAPER ANSWER-FEBURARY 2021 MCA-CMRIT-BLR

26

A program or module specification describes all correct program behaviors, so an oracle

based on a specification need not be paired with a particular test case. Instead, the oracle can

be incorporated into the program under test. In general these self-check are in the form of

assertions, similar to assertions used in symbolic execution and program verification but

designed to be checked during execution.

When self-checks are embedded in the program, test cases need not include predicted

outputs.

-

