

1a. Module 1

Components of .NET Framework 4.0:

The .NET Framework provides all the necessary components to develop and run an application. The

components of .NET Framework 4.0 architecture are as follows:

 Common Language Runtime (CLR)

 Common Type System (CTS)

 Metadata and Assemblies

 .NET Framework class library

 Windows Forms

 ASP.NET and ASP.NET AJAX

 ADO.NET

 Windows Workflow Foundation

 Windows Presentation Foundation

 Windows Communication Foundation

 Windows CardSpace

 LINQ

Let’s now discuss about each of them in detail.

CLR[Common Language Runtime]:

“CLR is an Execution Engine for .NET Framework applications”.

CLR is a heart of the.NET Framework. It provides a run-time environment to run the code and various services

to develop the application easily.

The services provided by CLR are –

 Memory Management

 Exception Handling

 Debugging

 Security

 Thread execution

 Code execution

 Language Integration

 Code safety

 Verification

 Compilation

The following figure shows the process of compilation and execution of the code by the JIT Compiler:

i. After verifying, a JIT [Just-In-Time] compiler extracts the metadata from the file to translate that verified

IL code into CPU-specific code or native code. These type of IL Code is called as managed code.

ii. The source code which is directly compiles to the machine code and runs on the machine where it has been

compiled such a code called as unmanaged code. It does not have any services of CLR.

iii. Automatic garbage collection, exception handling, and memory management are also the responsibility of

the CLR.

Managed Code: Managed code is the code that is executed directly by the CLR. The application that are created

using managed code automatically have CLR services, such as type checking, security, and automatic garbage

collection.

The process of executing a piece of managed code is as follows:

 Selecting a language compiler

 Compiling the code to IL[This intermediate language is called managed code]

 Compiling IL to native code Executing the code

Unmanaged Code: Unmanaged Code directly compiles to the machine code and runs on the machine where it

has been compiled. It does not have services, such as security or memory management, which are provided by

the runtime. If your code is not security-prone, it can be directly interpreted by any user, which can prove

harmful.

Automatic Memory Management: CLR calls various predefined functions of .NET framework to allocate and

de-allocate memory of .NET objects. So that, developers need not to write code to explicitly allocate and de-

allocate memory.

CTS [Common Type Specifications]:

The CTS defines the rules for declaring, using, and managing types at runtime. It is an integral part of the

runtime for supporting cross-language communication.

The common type system performs the following functions:

 Enables cross-language integration, type safety, and high-performance code execution.

 Provides an object-oriented model for implementation of many programming languages.

 Defines rules that every language must follow which runs under .NET framework like C#, VB.NET, F#

etc. can interact with each other.

The CTS can be classified into two data types, are

iv. Value Types

v. Reference Type

1b. C# DataTypes

Types Data Types

Value Data Type short, int, char, float, double etc

Reference Data Type String, Class, Object and Interface

Pointer Data Type Pointers

Value Data Type

The value data types are integer-based and floating-point based. C#

language supports both signed and unsigned literals.

There are 2 types of value data type in C# language.

1) Predefined Data Types - such as Integer, Boolean, Float, etc.

2) User defined Data Types - such as Structure, Enumerations, etc.

The memory size of data types may change according to 32 or 64 bit

operating system.

Let's see the value data types. It size is given according to 32 bit OS.

Data Types Memory

Size

Range

char 2 byte -128 to 127

signed char 2 byte -128 to 127

unsigned

char

2 byte 0 to 127

short 2 byte -32,768 to 32,767

signed

short

2 byte -32,768 to 32,767

unsigned

short

2 byte 0 to 65,535

int 4 byte -2,147,483,648 to -2,147,483,647

signed int 4 byte -2,147,483,648 to -2,147,483,647

unsigned

int

4 byte 0 to 4,294,967,295

long 8 byte ?9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

signed long 8 byte ?9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

unsigned

long

8 byte 0 - 18,446,744,073,709,551,615

float 4 byte 1.5 * 10-45 - 3.4 * 1038, 7-digit precision

double 8 byte 5.0 * 10-324 - 1.7 * 10308, 15-digit precision

decimal 16 byte at least -7.9 * 10?28 - 7.9 * 1028, with at

Reference Data Type

The reference data types do not contain the actual data stored in a variable, but

they contain a reference to the variables. In other words they refer to the memory

location.

If the data is changed by one of the variables, the other variable automatically

reflects this change in value.

There are 2 types of reference data type in C# language.

1) Predefined Types - such as Objects, String.

2) User defined Types - such as Classes, Interface.

Object Type: The Object Type is the ultimate base class for all data types

in C# Common Type System (CTS). Object is an alias for System.Object class.

The object types can be assigned values of any other types, value types,

reference types, predefined or user-defined types. However, before

assigning values, it needs type conversion.

When a value type is converted to object type, it is called boxing and on

the other hand, when an object type is converted to a value type, it is

called unboxing.

Object ob1;

ob1 = 100; // This is boxing

Dynamic Type : You can store any type of value in the dynamic data type

variable. Type checking for these types of variables takes place at run-

time.

dynamic variablename = value;

dynamic d = 10;

Dynamic types are similar to object types except that type checking for

object type variables takes place at compile time, whereas that for the

dynamic type variables takes place at run time.

Pointer Data Type

The pointer in C# language is a variable, it is also known as locator or indicator

that points to an address of a value.

least 28-digit precision

Symbols used in pointer

Symbol Name Description

& (ampersand

sign)

Address operator Determine the address of a

variable.

* (asterisk

sign)

Indirection

operator

Access the value of an

address.

Example:

int *a;

char *b;

2a.

Windows Workflow Foundation (WF)

Windows Workflow Foundation is the programming model, engine, and tools for quickly building workflow-enabled

applications on Windows. It consists of a namespace, an in-process workflow engine, and designers for Visual Studio

2005. Windows Workflow Foundation can be developed and run on Windows Vista, Windows XP, and the Windows

Server 2003 family. Windows Workflow Foundation includes support for both system workflow and human workflow

across a variety of scenarios, including workflow within line-of-business applications, user interface page-flow, document-

centric workflow, human workflow, composite workflow for service-oriented applications, business rule-driven workflow,

and workflow for systems management.

Windows Workflow Foundation provides a consistent and familiar development experience with other .NET Framework

3.0 technologies, such as Windows Communication Foundation and Windows Presentation Foundation. It provides full

support for Visual Basic .NET and C#, debugging, a graphical workflow designer, and developing your workflow completely

in code or in markup. Windows Workflow Foundation also provides an extensible model and designer to build custom

activities that encapsulate workflow functionality for end users or for reuse across multiple projects.

Windows CardSpace

The Internet continues to be increasingly valuable, and yet also faces significant challenges. Online identity
theft, fraud, and privacy concerns are rising. Users must track a growing number of accounts and passwords.
This burden results in "password fatigue," and that results in insecure practices, such as reusing the same
account names and passwords at many sites. Many of these problems are rooted in the lack of a widely
adopted identity solution for the Internet.
CardSpace is Microsoft's implementation of an Identity Metasystem that enables users to choose from a
portfolio of identities that belong to them and use them in contexts where they are accepted, independent of
the underlying identity systems where the identities originate and are used.
It is the code name for an identity management component in Microsoft's upcoming WinFX product suite. With InfoCard,

end users create a digital file on their own computer that includes user-specific information, like a work phone number, e-

mail address or snail mail address. Users are able to save several different profiles and use whichever profile is

appropriate for a certain situation. CardSpace is a potential successor to the Microsoft Passport information management

system, which stores user information on a database instead of individual machines.

Customer security is becoming an increasingly important part of Web application development. One key to security,

particularly in credit-card and other financial transactions, is safer customer identity management.

There are two types of CardSpace information cards -- personal cards, which users create themselves, and
managed cards, which are issued by identity providers. The card itself does not actually contain any personal
data. Rather, the card indicates which identity provider must be contacted to obtain the claims to this data. An
application requests these claims by issuing a security token; once this happens, the entire transaction is locked
down, and no code at all will run.

2b

1. Value types:

Value types directly contain their data, and instances of value types are either allocated on the stack or

allocated inline in a structure. Value types can be built-in (implemented by the runtime), user-defined, or

enumerations.

2. Reference types

Reference types store a reference to the value's memory address, and are allocated on the heap. Reference

types can be self-describing types, pointer types, or interface types. The type of a reference type can be

determined from values of self-describing types. Self-describing types are further split into arrays and class

types. The class types are user-defined classes, boxed value types, and delegates.

Differences between value type and Reference type:

 Value types are stored in stack, Reference types are stored in heap

 When we assign one value type to another value type, it is cloned and the two instances operate independently.

For eg, a=b; A new memory location is allocated for a & it is hold the value individually. Changing the value of b

does not affect a.

 When reference type is assigned to another reference type, the two references share the same instance and change made

by the one instance affects the other.

For eg, a=b; a reference (pointer) is created for a and both a and b now points to same address. Any alteration

made to b will affect a.

 Value types cannot be set to null, Reference types can be set to null

 Converting value type to reference type is called boxing, converting reference type to value type to called

unboxing/undoing.

 Value types are by default passed by value to other methods, Reference types are by default passed by reference to

other methods.

The stack holds value type variables and heap hold reference type variables

When a value type is converted to object type, it is called boxing and on

the other hand, when an object type is converted to a value type, it is

called unboxing.

Object ob1;

ob1 = 100; // This is boxing

dynamic variablename = value;

dynamic d = 10;

Dynamic types are similar to object types except that type checking for

object type variables takes place at compile time, whereas that for the

dynamic type variables takes place at run time.

Boxing

using System;
class GFG {

 // Main Method
 static public void Main()
 {

 // assigned int value
 // 2020 to num
 int num = 2020;

 // boxing
 object obj = num;

 // value of num to be change
 num = 100;

 System.Console.WriteLine
 ("Value - type value of num is : {0}", num);
 System.Console.WriteLine
 ("Object - type value of obj is : {0}", obj);
 }
}

Unboxing

using System;
class GFG {

 // Main Method
 static public void Main()
 {

 // assigned int value
 // 23 to num
 int num = 23;

 // boxing
 object obj = num;

 // unboxing
 int i = (int)obj;

 // Display result
 Console.WriteLine("Value of ob object is : " + obj);
 Console.WriteLine("Value of i is : " + i);
 }
}

Module 2

3a.

Generics allow you to define the specification of the data type of programming elements in a class or a method, until it is

actually used in the program. In other words, generics allow you to write a class or method that can work with any data

type.

Generic Methods

we can declare a generic method with a type parameter.

using System;

using System.Collections.Generic;

namespace GenericMethodAppl {

 class Program {

 static void Swap<T>(ref T lhs, ref T rhs) {

 T temp;

 temp = lhs;

 lhs = rhs;

 rhs = temp;

 }

 static void Main(string[] args) {

 int a, b;

 char c, d;

 a = 10;

 b = 20;

 c = 'I';

 d = 'V';

 //display values before swap:

 Console.WriteLine("Int values before calling swap:");

 Console.WriteLine("a = {0}, b = {1}", a, b);

 Console.WriteLine("Char values before calling swap:");

 Console.WriteLine("c = {0}, d = {1}", c, d);

 //call swap

 Swap<int>(ref a, ref b);

 Swap<char>(ref c, ref d);

 //display values after swap:

 Console.WriteLine("Int values after calling swap:");

 Console.WriteLine("a = {0}, b = {1}", a, b);

 Console.WriteLine("Char values after calling swap:");

 Console.WriteLine("c = {0}, d = {1}", c, d);

 Console.ReadKey();

 }

 }

}

Class Properties

Properties are named members of classes, structures, and interfaces. Member variables or methods in a class or

structures are called Fields. Properties are an extension of fields and are accessed using the same syntax. They

use accessors through which the values of the private fields can be read, written or manipulated.

using System;

namespace tutorialspoint {

 class Student {

 private string code = "N.A";

 private string name = "not known";

 private int age = 0;

 // Declare a Code property of type string:

 public string Code {

 get {

 return code;

 }

 set {

 code = value;

 }

 }

 // Declare a Name property of type string:

 public string Name {

 get {

 return name;

 }

 set {

 name = value;

 }

 }

 // Declare a Age property of type int:

 public int Age {

 get {

 return age;

 }

 set {

 age = value;

 }

 }

 public override string ToString() {

 return "Code = " + Code +", Name = " + Name + ", Age = " + Age;

 }

 }

 class ExampleDemo {

 public static void Main() {

 // Create a new Student object:

 Student s = new Student();

 // Setting code, name and the age of the student

 s.Code = "001";

 s.Name = "Zara";

 s.Age = 9;

 Console.WriteLine("Student Info: {0}", s);

 //let us increase age

 s.Age += 1;

 Console.WriteLine("Student Info: {0}", s);

 Console.ReadKey();

 }

 }

}

3b.

Polymorphism can be static or dynamic. In static polymorphism, the response to a function is determined at the compile
time. In dynamic polymorphism, it is decided at run-time.

The linking of a function with an object during compile time is called early binding. It is also called static binding. C#
provides two techniques to implement static polymorphism. They are Function overloading and Operator overloading.

In function overloading you can have multiple definitions for the same function name in the same scope. The definition of
the function must differ from each other by the types and/or the number of arguments in the argument list.

using System;

namespace PolymorphismApplication {

 class Printdata {

 void print(int i) {

 Console.WriteLine("Printing int: {0}", i);

 }

 void print(double f) {

 Console.WriteLine("Printing float: {0}" , f);

 }

 void print(string s) {

 Console.WriteLine("Printing string: {0}", s);

 }

 static void Main(string[] args) {

 Printdata p = new Printdata();

 // Call print to print integer

 p.print(5);

 // Call print to print float

 p.print(500.263);

 // Call print to print string

 p.print("Hello C#");

 Console.ReadKey();

 }

 }

}

 Runtime polymorphism in achieved by method overriding which is also known as dynamic binding or late binding.

using System;

public class Shape{

 public virtual void draw(){

 Console.WriteLine("drawing...");

 }

}

public class Rectangle: Shape

{

 public override void draw()

 {

 Console.WriteLine("drawing rectangle...");

 }

}

public class Circle : Shape {

 public override void draw()

 {

 Console.WriteLine("drawing circle...");

 }

}

public class TestPolymorphism

{

 public static void Main()

 {

 Shape s;

 s = new Shape();

 s.draw();

 s = new Rectangle();

 s.draw();

 s = new Circle();

 s.draw();

 }

}

4a.

Static Class

The C# static class is like the normal class but it cannot be instantiated. It can have only static members. The

advantage of static class is that it provides you guarantee that instance of static class cannot be created.

o C# static class contains only static members.

o C# static class cannot be instantiated.

o C# static class is sealed.

o C# static class cannot contain instance constructors.

using System;

 public static class MyMath

 {

 public static float PI=3.14f;

 public static int cube(int n){return n*n*n;}

 }

 class TestMyMath{

 public static void Main(string[] args)

 {

 Console.WriteLine("Value of PI is: "+MyMath.PI);

 Console.WriteLine("Cube of 3 is: " + MyMath.cube(3));

 }

 }

Static Members

A non-static class can contain static methods, fields, properties, or events. The static member is callable on a class even

when no instance of the class has been created. The static member is always accessed by the class name, not the instance

name. Only one copy of a static member exists, regardless of how many instances of the class are created. Static methods

and properties cannot access non-static fields and events in their containing type, and they cannot access an instance

variable of any object unless it's explicitly passed in a method parameter.

It is more typical to declare a non-static class with some static members, than to declare an entire class as static. Two

common uses of static fields are to keep a count of the number of objects that have been instantiated, or to store a value

that must be shared among all instances.

Static methods can be overloaded but not overridden, because they belong to the class, and not to any instance of the

class.

Although a field cannot be declared as static const, a const field is essentially static in its behavior. It belongs to the type,

not to instances of the type. Therefore, const fields can be accessed by using the same ClassName.MemberName notation that's

used for static fields. No object instance is required.

C# does not support static local variables (that is, variables that are declared in method scope).

public class Automobile
{
 public static int NumberOfWheels = 4;

 public static int SizeOfGasTank
 {
 get
 {
 return 15;
 }
 }

 public static void Drive() { }

 public static event EventType RunOutOfGas;

 // Other non-static fields and properties...
}

4.

C# Abstract class

In C#, abstract class is a class which is declared abstract. It can have abstract and non-abstract methods. It cannot be

instantiated. Its implementation must be provided by derived classes. Here, derived class is forced to provide the
implementation of all the abstract methods.

using System;

public abstract class Shape

{

public abstract void draw();

}

public class Rectangle : Shape

{

public override void draw()

{

Console.WriteLine("drawing rectangle...");

}

}

public class Circle : Shape

{

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/const

public override void draw()

{

Console.WriteLine("drawing circle...");

}

}

public class TestAbstract

{

public static void Main()

{

Shape s;

s = new Rectangle();

s.draw();

s = new Circle();

s.draw();

}

}

4b. Interface Inheritance

C# allows the user to inherit one interface into another interface. When a class implements the inherited interface
then it must provide the implementation of all the members that are defined within the interface inheritance chain.
Important Points:
 If a class implements an interface, then it is necessary to implement all the method that defined by that interface

including the base interface methods. Otherwise, the compiler throws an error.
 If both derived interface and base interface declares the same member then the base interface member name

is hidden by the derived interface member name.

// C# program to illustrate the concept

// of inheritance in interface

using System;

// declaring an interface

public interface A {

 // method of interface

 void mymethod1();

 void mymethod2();

}

https://www.geeksforgeeks.org/c-interface/
https://www.geeksforgeeks.org/c-class-and-object/

// The methods of interface A

// is inherited into interface B

public interface B : A {

 // method of interface B

 void mymethod3();

}

// Below class is inherting

// only interface B

// This class must

// implement both interfaces

class Geeks : B

{

 // implementing the method

 // of interface A

 public void mymethod1()

 {

 Console.WriteLine("Implement method 1");

 }

 // Implement the method

 // of interface A

 public void mymethod2()

 {

 Console.WriteLine("Implement method 2");

 }

 // Implement the method

 // of interface B

 public void mymethod3()

 {

 Console.WriteLine("Implement method 3");

 }

}

// Driver Class

class GFG {

 // Main method

 static void Main(String []args)

 {

 // creating the object

 // class of Geeks

 Geeks obj = new Geeks();

 // calling the method

 // using object 'obj'

 obj.mymethod1();

 obj.mymethod2();

 obj.mymethod3();

 }

}

5a.

Delegates

A delegate is an object which refers to a method or you can say it is a reference

type variable that can hold a reference to the methods. Delegates in C# are

similar to the function pointer in C/C++. It provides a way which tells which

method is to be called when an event is triggered.

For example, if you click an Button on a form (Windows Form application), the

program would call a specific method. In simple words, it is a type that

represents references to methods with a particular parameter list and return type

and then calls the method in a program for execution when it is needed.

A Delegate can be defined as a delegate type. Its definition must be similar to

the function signature. A delegate can be defined in a namespace and within a

class.

A delegate cannot be used as a data member of a class or local variable within a

method.

Delegate declarations look almost exactly like abstract method declarations, you

just replace the abstract keyword with the delegate keyword.

Delegates are especially used for implementing events and the call-back methods.

All delegates are implicitly derived from the System. Delegate class.

In C#, delegate is a reference to the method. It works like function pointer in C

and C++. But it is objected-oriented, secured and type-safe than function pointer.

For static method, delegate encapsulates method only. But for instance method, it

encapsulates method and instance both.

The best use of delegate is to use as event.

Internally a delegate declaration defines a class which is the derived class

of System.Delegate.

Declaring Delegates

Delegate declaration determines the methods that can be referenced by the

delegate. A delegate can refer to a method, which has the same signature as that

of the delegate.

delegate <return type> <delegate-name> <parameter list>

Instantiating Delegates

Once a delegate type is declared, a delegate object must be created with

the new keyword and be associated with a particular method. When creating a

delegate, the argument passed to the new expression is written similar to a

method call, but without the arguments to the method

Delegate Program 1

using System;

https://www.geeksforgeeks.org/function-pointer-in-c/

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace delegatesex

{

 // Declaring the delegate named delefunc which returns an integer

 public delegate int delefunc(int x, int y);

 class Program

 {

 // function add is passed as argument to the delegate delefunc

 static int add(int a, int b)

 {

 return a + b;

 }

 static void Main(string[] args)

 {

 // create an instance of delegate

 delefunc d1 = new delefunc(add);

 // pass the values and print output

 Console.WriteLine("Addition of numbers = {0}", d1(20, 30));

 Console.ReadKey();

 }

 }

}

Delegates can be of two categories mainly

1. Singlecast Delegate
2. Multicast Delegates
3. Generic Delegates

Singlecast Delegate

This is a kind of delegate that can refer to single method at one time.

SingleCast Delegates refer to a single method with matching signature. SingleCast

Delegates derive from the System.Delegate class.

Single cast delegate program

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace delegatefunction

{

 // Delegate definition

 public delegate int delefunc(int x, int y);

 class Program

 {

 static int add(int a, int b)

 {

 return a + b;

 }

 public static void Main(string[] s)

 {

 // instantiate the delegate

 // delegatename obj = new delegatename(classname.methodname)

 delefunc d1 = new delefunc(Program.add);

 // pass the values and print output

 Console.WriteLine("Addition of numbers = {0}", d1(20, 30));

 Console.ReadKey();

 }

 }

}

Multicast Delegate

A delegate that holds a reference to more than one method is called multicasting

delegate. A Multicast Delegate is a delegate that holds the references of more

than one function. When we invoke the multicast delegate, then all the functions

which are referenced by the delegate are going to be invoked. If you want to call

multiple methods using a delegate then all the method signature should be the

same.

Multicast Delegate Program 1

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace multicastedelexamole

{

 // declaring the delegate

 public delegate void MyDel(int num1, int num2);

 class Sample

 {

 // Method Add is the first method called by the delegate MyDel

 static void Add(int num1, int num2)

 {

 Console.WriteLine("\tAddition: " + (num1 + num2));

 }

 // Method Sub is the second method called by the delegate MyDel

 static void Sub(int num1, int num2)

 {

 Console.WriteLine("\tSubtraction: " + (num1 - num2));

 }

 // Method Mul is the third method called by the delegate MyDel

 static void Mul(int num1, int num2)

 {

 Console.WriteLine("\tMultiplication: " + (num1 * num2));

 }

 static void Main()

 {

 int num1 = 0;

 int num2 = 0;

 // instantiating the delegate with first method as parameter

 MyDel del = new MyDel(Add);

 // input the values to be passed as arguments

 Console.Write("Enter the value of num1: ");

 num1 = int.Parse(Console.ReadLine());

 Console.Write("Enter the value of num2: ");

 num2 = int.Parse(Console.ReadLine());

 // second method is appended to the delegate object

 del += new MyDel(Sub);

 // third method is appended to the delegate object

 del += new MyDel(Mul);

 Console.WriteLine("Call 1:");

// the methods will be executed one after the other and output will be displayed.

 del(num1, num2);

 Console.ReadKey();

 }

 }

}

5b.

ADO.NET uses a multilayer architecture that has components such as the Connection, Reader,

Command, Adapter and DataSet objects. ADO.NET introduced data providers that are a set of special

classes to access a specific database, execute SQL commands and retrieve data. Data providers are

extensible; developers can create their own providers for proprietary data source Some examples of data

providers include SQL server providers, OLE DB and Oracle providers.

The ADO.NET Framework comes with the following providers:

 OLEDB: The OLEDB provider, expressed through the System.Data.OleDb namespace. You can use

this provider to access SQL Server 6.5 and earlier, SyBase, DB2/400, and Microsoft Access.

 ODBC: The ODBC provider, expressed through the System.Data.Odbc namespace. This provider is

typically used when no newer provider is available.

 SQL Server: The Microsoft SQL Server provider, expressed through

the System.Data.SqlClient namespace. It Contains classes that provide functionality similar to the

generic OleDb provider. The difference is that these classes are tuned for SQL Server 7 and later
data access.

6a.

using System;

namespace CSharpProgram

{

 class Program

 {

 static void Main(string[] args)

 {

 checked

 {

 int val = int.MaxValue;

 Console.WriteLine(val + 2);

 }

 }

 }

}

using System;

namespace CSharpProgram

{

class Program

{

static void Main(string[] args)

{

unchecked

{

int val = int.MaxValue;

Console.WriteLine(val + 2);

}

}

}

}

6b.

Simple Steps:

//To establish a connection:

Using System.Data.OLEDB;
 string cs = "Provider=Microsoft.ACE.OLEDB.12.0;Data
 Source=C:/Users/MCA/Desktop/samp1.accdb";
 OleDbConnection con = new OleDbConnection(cs);
 con.Open();
 MessageBox.Show("Database connected");
 con.Close();

//To insert values into DB:

Using System.Data.OLEDB;
 string cs = "Provider=Microsoft.ACE.OLEDB.12.0;Data
 Source=C:/Users/MCA/Desktop/samp1.accdb";
 OleDbConnection con = new OleDbConnection(cs);
 con.Open();
 OleDbCommand cmd = new OleDbCommand();
 cmd.Connection = con;
 cmd.CommandText = "insert into t1 values(" + textBox1.Text + ",'" +
 textBox2.Text + "')";
 cmd.ExecuteNonQuery();
 MessageBox.Show("Value Inserted");
 con.Close();

//To Retrieve all values and place in datagrid;

//using Datagrid/ Data Adapter/ Datatable
 string cs = "Provider=Microsoft.ACE.OLEDB.12.0;Data
 Source=C:/Users/MCA/Desktop/Samp1.accdb";
 OleDbConnection con = new OleDbConnection(cs);
 con.Open();
 OleDbCommand cmd = new OleDbCommand();
 cmd.Connection = con;
 cmd.CommandText = "select *from t1";
 OleDbDataAdapter da = new OleDbDataAdapter(cmd);
 DataTable dt = new DataTable();
 da.Fill(dt);
 dataGridView1.DataSource = dt;
 con.Close();

//To Retrieve values and place in datagrid for a particular condition;

 private void button1_Click(object sender, EventArgs e)
 {
 string cs = "Provider=Microsoft.ACE.OLEDB.12.0;Data
 Source=C:/Users/MCA/Desktop/Samp1.accdb";
 OleDbConnection con = new OleDbConnection(cs);
 con.Open();
 OleDbCommand cmd = new OleDbCommand();
 cmd.Connection = con;
 cmd.CommandText = "select *from t1 where ID=" + textBox1.Text;
 OleDbDataAdapter da = new OleDbDataAdapter(cmd);
 DataTable dt = new DataTable();
 da.Fill(dt);
 dataGridView1.DataSource = dt;
 con.Close();

 }

// How to populate ListBox using Dataset, Datatable, Data Adapter

 string cs = "Provider=Microsoft.ACE.OLEDB.12.0;Data
 Source=C:/Users/MCA/Desktop/samp1.accdb";
 OleDbConnection con = new OleDbConnection(cs);
 con.Open();
 OleDbCommand cmd = new OleDbCommand();
 cmd.Connection = con;
 cmd.CommandText = "select ID from t1";
 OleDbDataAdapter da = new OleDbDataAdapter(cmd);
 DataSet ds = new DataSet();
 da.Fill(ds);
 DataTable dt = new DataTable();
 dt = ds.Tables[0];
 listBox1.DataSource = dt;
 listBox1.DisplayMember = "ID";
 con.Close();

// How to populate Text using Data Reader

 string cs = "Provider=Microsoft.ACE.OLEDB.12.0;Data
 Source=C:/Users/MCA/Desktop/samp1.accdb";
 OleDbConnection con = new OleDbConnection(cs);
 con.Open();
 OleDbCommand cmd = new OleDbCommand();
 cmd.CommandText = "select *from t1 where ID= 2";
 cmd.Connection = con;
 OleDbDataReader dr = cmd.ExecuteReader();
 while (dr.Read())
 {
 textBox1.Text = dr.GetValue(0).ToString();
 textBox2.Text = dr.GetValue(1).ToString();

 }
 con.Close();

// Adding multiple table to a dataset
 string cs = "Provider=Microsoft.ACE.OLEDB.12.0;Data
 Source=C:/Users/MCA/Desktop/samp1.accdb";
 OleDbConnection con = new OleDbConnection(cs);
 con.Open();

 OleDbDataAdapter d1 = new OleDbDataAdapter("select *from t1",con);
 DataSet ds = new DataSet();
 d1.Fill(ds,"[t1]");
 dataGridView1.DataSource = ds.Tables["[t1]"];

 OleDbDataAdapter d2 = new OleDbDataAdapter("select *from t2",con);
 d2.Fill(ds,"[t2]");
 dataGridView2.DataSource = ds.Tables["[t2]"];

 con.Close();

// DataView

 string cs = "Provider=Microsoft.ACE.OLEDB.12.0;Data
 Source=C:/Users/MCA/Desktop/samp1.accdb";
 OleDbConnection con = new OleDbConnection(cs);
 con.Open();
 OleDbDataAdapter d1 = new OleDbDataAdapter("select *from t2", con);
 DataSet ds = new DataSet();
 d1.Fill(ds, "[t2]");
 DataView dv = new DataView(ds.Tables[0]);
 dv.Sort = " phone desc";
 dataGridView1.DataSource = dv;
 con.Close();

Module 4

7a.

WPF stands for Windows Presentation Foundation. It is a powerful framework for building Windows applications. This
tutorial explains the features that you need to understand to build WPF applications and how it brings a fundamental
change in Windows applications.

WPF was first introduces in .NET framework 3.0 version, and then so many other features were added in the subsequent
.NET framework versions.

WPF Architecture

Before WPF, the other user interface frameworks offered by Microsoft such as MFC and Windows forms, were just
wrappers around User32 and GDI32 DLLs, but WPF makes only minimal use of User32. So,

 WPF is more than just a wrapper.

 It is a part of the .NET framework.

 It contains a mixture of managed and unmanaged code.

The major components of WPF architecture are as shown in the figure below. The most important code part of WPF are −

 Presentation Framework

 Presentation Core

 Milcore

The presentation framework and the presentation core have been written in managed code. Milcore is a part of
unmanaged code which allows tight integration with DirectX (responsible for display and rendering). CLR makes the
development process more productive by offering many features such as memory management, error handling, etc.

7b.

Event Driven GUI

Event-driven programming is the dominant paradigm used in graphical user interfaces and other applications (e.g.,

JavaScript web applications) that are centered on performing certain actions in response to user input. Event-driven
programming: A style of coding where a program's overall flow of execution is dictated by events. • The program loads,
then waits for user input events. • As each event occurs, the program runs particular code to respond. • The overall flow
of what code is executed is determined by the series of events that occur • Contrast with application- or algorithm-driven
control where program expects input data in a pre-determined order and timing – Typical of large non-GUI applications
like web crawling, payroll, batch simulation
• event: An object that represents a user's interaction with a GUI component; can be "handled" to create interactive
components.
 • listener: An object that waits for events and responds to them. – To handle an event, attach a listener to a component.
– The listener will be notified when the event occurs (e.g. button click).

Mouse move/drag/click, mouse button press/release
• Keyboard: key press/release, sometimes with modifiers like shift/control/alt/meta/cokebottle
• Touchscreen finger tap/drag
• Joystick, drawing tablet, other device inputs
 • Window resize/minimize/restore/close
 • Network activity or file I/O (start, done, error)
 • Timer interrupt (including animations)

MDI windows

A multiple-document interface (MDI) is a graphical user interface in which multiple windows reside under a single parent

window. Such systems often allow child windows to embed other windows inside them as well, creating complex nested

hierarchies. This contrasts with single-document interfaces (SDI) where all windows are independent of each other. MDI can

be confusing if it has a lack of information about the currently opened windows. In MDI applications, the application

developer must provide a way to switch between documents or view a list of open windows, and the user might have to use

an application-specific menu ("window list" or something similar) to switch between open documents. This is different from

SDI applications where the window manager's task bar or task manager displays the currently opened windows. In recent

years it has become increasingly common for MDI applications to use "tabs" to display the currently opened windows. An

interface in which tabs are used to manage open documents is referred to as a "tabbed document interface" (TDI). Another

option is "tiled" panes or windows, which make it easier to prevent content from overlapping.

8b.

XAML is a new descriptive programming language developed by Microsoft to write user interfaces for next-generation
managed applications. XAML is the language to build user interfaces for Windows and Mobile applications that use
Windows Presentation Foundation (WPF), UWP, and Xamarin Forms.

The purpose of XAML is simple, to create user interfaces using a markup language that looks like XML. Most of the time,
you will be using a designer to create your XAML but you’re free to directly manipulate XAML by hand.

XAML uses the XML format for elements and attributes. Each element in XAML represents an object which is an instance
of a type. The scope of a type (class, enumeration etc.) is defined as a namespace that physically resides in an assembly
(DLL) of the .NET Framework library.

Similar to XML, a XAML element syntax always starts with an open angle bracket (<) and ends with a close angle bracket

(>). Each element tag also has a start tag and an end tag. For example, a Button object is represented by the <Button>

object element. The following code snippet represents a Button object element.

<Button></Button>

Alternatively, you can use a self-closing format to close the bracket.

<Button />

An object element in XAML represents a type. A type can be a control, a class or other objects defined in the framework

library.

The Root Elements

Each XAML document must have a root element. The root element usually works as a container and defines the

namespaces and basic properties of the element. Three most common root elements are <Windows />, <Page />, and

<UserControl >. The <ResourceDirectory /> and <Application /> are other two root elements that can be used in a XAML

file. The Window element represents a Window container. The following code snippet shows a Window element with its

Height, Width, Title and x:Name attributes. The x:Name attribute of an element represents the ID of an element used to

https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Hierarchy#Nested_hierarchy
https://en.wikipedia.org/wiki/Hierarchy#Nested_hierarchy
https://en.wikipedia.org/wiki/Task_bar
https://en.wikipedia.org/wiki/Task_manager
https://en.wikipedia.org/wiki/Tabbed_document_interface
https://en.wikipedia.org/wiki/Paned_window_(computing)

access the element in the code-behind. The code snippet also sets xmlns and xmlns:x attributes that represent the

namespaces used in the code. The x:Class attribute represents the code-behind class name.

1. <Window x:Class="HelloXAML.MainWindow"
2. xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
3. xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
4. Title="MainWindow" Height="350" Width="525">
5. </Window>

The Page element represents a page container. The following code snippet creates a page container. The code also sets

the FlowDirection attribute that represents the flow direct of the contents of the page.

1. <Page
2. xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
3. xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
4. x:Class="WPFApp.Page1"
5. x:Name="Page"
6. WindowTitle="Page"
7. FlowDirection="LeftToRight"
8. Width="640" Height="480"
9. WindowWidth="640" WindowHeight="480">
10. </Page>

XAML Namespaces

The part of the root element of each XAML are two or more attributes pre-fixed with xmlns and xmlns:x.

The xmlns attribute indicates the default XAML namespace so the object elements in used in XAML can be specified

without a prefix. Additionally, the x: prefix is used with more than just the namespace. Here are some common x:prefix

syntaxes that are used in XAML.

1. x:Key: Sets a unique key for each resource in a ResourceDictionary.
2. x:Class: Class name provides code-behind for a XAML page.
3. x:Name: Unique run-time object name for the instance that exists in run-time code after an object element is

processed.
4. x:Static: Enables a reference that returns a static value that is not otherwise a XAML-compatible property.
5. x:Type: Constructs a Type reference based on a type name.

Elements and Attributes

A type in WPF or Windows RT is represented by an XAML element. The <Page> and <Button> elements represent a page

and a button control respectively. The XAML Button element listed in the following code represents a button control.

<Button />

Each of the elements such as <Page> or <Button> have attributes that can be set within the element itself. An attribute of

an element represents a property of the type. For example, a Button has Height, Width, Background and Foreground

properties that represent the height, width, foreground color and background color of the button respectively. The Content

property of the Button represents the text of a button control. The x:Name property represents the unique ID of a control

that may be used to access a control in the code behind.

Content Property

Each XAML object element is capable of displaying different content types. XAML provides a special property called

Content that works to display the content of the element depending on the element capabilities. For example, a Content

property of a Button can be a set to a string, an object, a UIElement, or even and container. However, the Content property

of a ListBox is set using the Items property.

Note: Some XAML object elements may not have the Content property available directly. It must be set through a property.

1. <Button Height="50" Margin="10,10,350,310" Content="Hello XAML" />
2. Here is an alternative way to set the Content property of a Button.
3. <Button Height="50" Margin="10,10,350,310">Hello XAML</Button>

ii)

In XAML applications, markup extensions are a method/technique to gain a value that is neither a specific XAML object
nor a primitive type. Markup extensions can be defined by opening and closing curly braces and inside that curly braces,
the scope of the markup extension is defined.

Data binding and static resources are markup extensions. There are some predefined XAML markup extensions
in System.xaml which can be used.

<Window x:Class = "XAMLMarkupExtension.MainWindow"

 xmlns = "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:my = "clr-namespace:XAMLMarkupExtension"

 Title = "MainWindow" Height = "350" Width = "525">

 <Grid>

 <Button Content = "{my:MyMarkupExtension FirstStr = Markup, SecondStr = Extension}"

 Width = "200" Height = "20" />

 </Grid>

</Window>

In the above XAML code, a button is created with some properties and for the content value, a custom markup
extension (my:MyMarkupExtension) has been used with two values “Markup” and “Extension” which are assigned to
FirstStr and SecondStr respectively.

Actually, MyMarkupExtension is a class which is derived from MarkupExtension as shown below in the C#

implementation. This class contains two string variables, FirstStr and SecondStr, which are concatenated and return that
string from the ProvideValue method to the Content of a button.

Module 5

9a. A multi-tier application is any application developed and distributed among more than one layer. It logically

separates the different application-specific, operational layers. The number of layers varies by business

and application requirements, but three-tier is the most commonly used architecture. Any application that depends on

or uses a middleware application is known as a multi-tier application. A multi-tier application is also known as a multitiered

application or n-tier application. A multi-tier application is used to divide an enterprise application into two or more

components that may be separately developed and executed. In general, the tiers in a multi-tier application include the

following: Presentation tier: Provides basic user interface and application access services Application processing

tier: Possesses the core business or application logic Data access tier: Provides the mechanism used to access

and process data Data tier: Holds and manages data that is at rest This division allows each component/tier to be

separately developed, tested, executed and reused.

9b. ASP.NET validation controls validate the user input data to ensure that useless, unauthenticated, or contradictory data
don't get stored.

ASP.NET provides the following validation controls:

 RequiredFieldValidator

 RangeValidator

 CompareValidator

 RegularExpressionValidator

 CustomValidator

 ValidationSummary

BaseValidator Class

The validation control classes are inherited from the BaseValidator class hence they inherit its properties and methods.
Therefore, it would help to take a look at the properties and the methods of this base class, which are common for all the
validation controls:

Members Description

ControlToValidate Indicates the input control to validate.

Display Indicates how the error message is shown.

EnableClientScript Indicates whether client side validation will take.

Enabled Enables or disables the validator.

ErrorMessage Indicates error string.

Text Error text to be shown if validation fails.

IsValid Indicates whether the value of the control is valid.

SetFocusOnError It indicates whether in case of an invalid control, the focus should switch to the related
input control.

ValidationGroup The logical group of multiple validators, where this control belongs.

Validate() This method revalidates the control and updates the IsValid property.

RequiredFieldValidator Control

The RequiredFieldValidator control ensures that the required field is not empty. It is generally tied to a text box to force
input into the text box.

The syntax of the control is as given:

<asp:RequiredFieldValidator ID="rfvcandidate"

 runat="server" ControlToValidate ="ddlcandidate"

 ErrorMessage="Please choose a candidate"

 InitialValue="Please choose a candidate">

</asp:RequiredFieldValidator>

RangeValidator Control

The RangeValidator control verifies that the input value falls within a predetermined range.

It has three specific properties:

Properties Description

Type It defines the type of the data. The available values are: Currency, Date, Double, Integer, and

String.

MinimumValue It specifies the minimum value of the range.

MaximumValue It specifies the maximum value of the range.

The syntax of the control is as given:

<asp:RangeValidator ID="rvclass" runat="server" ControlToValidate="txtclass"

 ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"

 MinimumValue="6" Type="Integer">

</asp:RangeValidator>

CompareValidator Control

The CompareValidator control compares a value in one control with a fixed value or a value in another control.

It has the following specific properties:

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to compare with.

ValueToCompare It specifies the constant value to compare with.

Operator It specifies the comparison operator, the available values are: Equal, NotEqual, GreaterThan,

GreaterThanEqual, LessThan, LessThanEqual, and DataTypeCheck.

The basic syntax of the control is as follows:

<asp:CompareValidator ID="CompareValidator1" runat="server"

 ErrorMessage="CompareValidator">

</asp:CompareValidator>

RegularExpressionValidator

The RegularExpressionValidator allows validating the input text by matching against a pattern of a regular expression.
The regular expression is set in the ValidationExpression property.

10a.

ASP.NET Cookie is a small bit of text that is used to store user-specific information. This information can be read by the
web application whenever user visits the site.

When a user requests for a web page, web server sends not just a page, but also a cookie containing the date and
time. This cookie stores in a folder on the user's hard disk.

When the user requests for the web page again, browser looks on the hard drive for the cookie associated with the web
page. Browser stores separate cookie for each different sites user visited.

There are two ways to store cookies in ASP.NET application.

o Cookies collection

o HttpCookie

We can add Cookie either to Cookies collection or by creating instance of HttpCookie class. both work same except that
HttpCookie require Cookie name as part of the constructor.

With the Session object, you can create only an in-memory cookie. For the Session object to work correctly, you need to

determine when a user's visit to the site begins and ends. IIS does this by using a cookie that stores an ASP Session ID,

which is used to maintain a set of information about a user. If an ASP Session ID is not present, the server considers the

current request to be the start of a visit. The visit ends when there have been no user requests for ASP files for the default

time period of 20 minutes.

In this lesson, you will create the following:

 Global.asa: Global.asa is a file that allows you to perform generic actions at the beginning of the application and at

the beginning of each user's session. An application starts the first time the first user ever requests a page and ends

when the application is unloaded or when the server is taken offline. A unique session starts once for each user and

ends 20 minutes after that user has requested their last page. Generic actions you can perform in Global.asa include

setting application or session variables, authenticating a user, logging the date and time that a user connected,

instantiating COM objects that remain active for an entire application or session, and so forth.

 VisitCount.asp: This ASP script uses the Session object to create an in-memory cookie.

When an application or session begins or ends, it is considered an event. Using the Global.asa file, you can use the

predefined event procedures that run in response to the event.

10b.

Script manager control

The ScriptManager Control:

The ScriptManager control is the most important control and must be

present on the page for other controls to work.

Syntax:

If you create an 'Ajax Enabled site' or add an 'AJAX Web Form' from the 'Add Item' dialog box, the web form

automatically contains the script manager control.

The ScriptManager control takes care of the client-side script for all the server side controls.

The UpdatePanel Control:

The UpdatePanel control is a container control and derives from the Control class. It acts as a container for the

child controls within it and does not have its own interface.

When a control inside it triggers a post back, the UpdatePanel interferes to initiate the post asynchronously and

update just that portion of the page.

Example:

Properties of the UpdatePanel Control

The following table shows the properties of the update panel control:

Properties Description

ChildrenAsTriggers
This property indicates whether the post backs are coming from the child

controls, which cause the update panel to refresh.

ContentTemplate
It is the content template and defines what appears in the update panel

when it is rendered.

UpdateMode Gets or sets the rendering mode by determining some conditions.

Triggers
Defines the collection trigger objects each corresponding to an event

causing the panel to refresh automatically.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<asp:Button ID="btnpartial" runat="server"

onclick="btnpartial_Click" Text="Partial PostBack"/>

<asp:Label ID="lblpartial" runat="server"></asp:Label>

</ContentTemplate>

</asp:UpdatePanel>

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

37

Methods of the UpdatePanel Control

The following table shows the methods of the update panel control:

Methods Description

CreateContentTemplateContainer
Creates a Control object that acts as a container for child

controls that define the UpdatePanel control's content.

CreateControlCollection
Returns the collection of all controls that are contained in the

UpdatePanel control.

Initialize
Initializes the UpdatePanel control trigger collection if partial-

page rendering is enabled.

Update Causes an update of the content of an UpdatePanel control.

The behavior of the update panel depends upon the values of the UpdateMode property and

ChildrenAsTriggers property.

UpdateMode ChildrenAsTriggers Effect

Conditional False
UpdatePanel refreshes if whole page refreshes or a

triggering control outside it initiates a refresh.

Conditional

True

UpdatePanel refreshes if whole page refreshes or a

child control on it posts back or a triggering control

outside it initiates a refresh.

