
 



 

 

 

 

 

 

 

 

 

1.a  Well-Posed Learning Definition: A computer program is said to learn from experience E with respect to some class of tasks 

T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. 

Examples: 

Checkers Game: A computer program that learns to play checkers might improve its performance as measured by its ability to 

win at the class of tasks involving playing checkers game, through experience obtained by playing games against itself: 



 

checkers learning problem: 
 

 Task T: playing checkers  
 Performance measure P: percent of games won against opponents  
 Training experience E: playing practice games against itself 

A handwriting recognition learning problem: 
 

 Task T: recognizing and classifying handwritten words within images  
 Performance measure P: percent of words correctly classified 

 
 Training experience E: a database of handwritten words with given classifications  

A robot driving learning problem: 
 

 Task T: driving on public four-lane highways using vision sensors 
 

 Performance measure P: average distance travelled before an error (as judged by human overseer) 
 

 Training experience E: a sequence of images and steering commands recorded while observing a human driver. 

 

1.b. The basic design issues and approaches to machine learning are illustrated by designing a program to learn to play 

checkers, with the goal of entering it in the world checkers tournament  
1. Choosing the Training Experience  
2. Choosing the Target Function   
3. Choosing a Function Approximation Algorithm  

1. Estimating training values  
2. Adjusting the weights  
 

1. Choosing the Training Experience 
 

 The first design choice is to choose the type of training experience from which the system will learn. 
 

 The type of training experience available can have a significant impact on success or failure of the learner. 

 

There are three attributes which impact on success or failure of the learner 

 
 

1. Whether the training experience provides direct or indirect feedback regarding the choices made by the performance 

system. 

 

For example, in checkers game: 
 

In learning to play checkers, the system might learn from direct training examples consisting of individual checkers 

board states and the correct move for each. 

 

Indirect training examples consisting of the move sequences and final outcomes of various games played. The 

information about the correctness of specific moves early in the game must be inferred indirectly from the fact that 

the game was eventually won or lost. 

 

Here the learner faces an additional problem of credit assignment, or determining the degree to which each move in 

the sequence deserves credit or blame for the final outcome.  

2. The degree to which the learner controls the sequence of training examples 

 

For example, in checkers game: 
 

The learner might depends on the teacher to select informative board states and to provide the correct move for 

each. 

 



Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the teacher for 

the correct move. 

 

The learner may have complete control over both the board states and (indirect) training classifications, as it does 

when it learns by playing against itself with no teacher present. 

 

3. How well it represents the distribution of examples over which the final system performance P must be measured 

 

For example, in checkers game: 
 

In checkers learning scenario, the performance metric P is the percent of games the system wins in the world 

tournament. 

 

If its training experience E consists only of games played against itself, there is a danger that this training experience 

might not be fully representative of the distribution of situations over which it will later be tested.  
It is necessary to learn from a distribution of examples that is different from those on which the final system will be 

evaluated. 

2. Choosing the Target Function 

 

The next design choice is to determine exactly what type of knowledge will be learned and how this will be used by the 

performance program. 

 

Let’s consider a checkers-playing program that can generate the legal moves from any board state. 
 
The program needs only to learn how to choose the best move from among these legal moves. We must learn to choose among 

the legal moves, the most obvious choice for the type of information to be learned is a program, or function, that chooses the 

best move for any given board state. 

 

1. Let ChooseMove be the target function and the notation  is 

 

ChooseMove : B→ M 
 

which indicate that this function accepts as input any board from the set of legal board states B and produces as 

output some move from the set of legal moves M. 

ChooseMove is a choice for the target function in checkers example, but this function will turn out to be very difficult 

to learn given the kind of indirect training experience available to our system 

 

2. An alternative target function is an evaluation function that assigns a numerical score to any given board state  
Let the target function V and the notation 

 
V:B →R 

 

which denote that V maps any legal board state from the set B to some real value. Intend for this target function V to 

assign higher scores to better board states. If the system can successfully learn such a target function V, then it can 

easily use it to select the best move from any current board position. 

 

Let us define the target value V(b) for an arbitrary board state b in B, as follows: 
 

 If b is a final board state that is won, then V(b) = 100  
 If b is a final board state that is lost, then V(b) = -100  
 If b is a final board state that is drawn, then V(b) = 0  
 If b is a not a final state in the game, then V(b) = V(b' ), 

 
 
Where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game 



 

Q2.a 

learning system can be described by four distinct program modules that represent the central 

components in many learning systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. The Performance System is the module that must solve the given performance task by 

using the learned target function(s). It takes an instance of a new problem (new game) as 

input and produces a trace of its solution (game history) as output. 

 

2. The Critic takes as input the history or trace of the game and produces as output a set of 

training examples of the target function 

 

3. The Generalizer takes as input the training examples and produces an output hypothesis 

that is its estimate of the target function. It generalizes from the specific training examples, 

hypothesizing a general function that covers these examples and other cases beyond the 

training examples. 

 

4. The Experiment Generator takes as input the current hypothesis and outputs a new 

problem (i.e., initial board state) for the Performance System to explore. Its role is to pick 

new practice problems that will maximize the learning rate of the overall system. 

 

The sequence of design choices made for the checkers program is summarized in below figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Q2.b 

General-to-Specific Ordering of Hypotheses 

Consider the two hypotheses 

h1 = (Sunny, ?, ?, Strong, ?, ?) 

h2 = (Sunny, ?, ?, ?, ?, ?) 

 Consider the sets of instances that are classified positive by hl and by h2.


 h2 imposes fewer constraints on the instance, it classifies more instances as positive. So, 

any instance classified positive by hl will also be classified positive by h2. Therefore, h2 is 

more general than hl.

 

Given hypotheses hj and hk, hj is more-general-than or- equal do hk if and only if any instance that 

satisfies hk also satisfies hi 

 

Definition: Let hj and hk be Boolean-valued functions defined over X. Then hj is more general-

than-or-equal-to hk (written hj ≥ hk) if and only if 

( xX ) [(hk (x) = 1) → (hj (x) = 1)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q2.c 

CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of all hypotheses in H; 

 

Initializing the G boundary set to contain the most general hypothesis in H G0 ?, ?, ?, ?, ?, ?  



 

Initializing the S boundary set to contain the most specific (least general) hypothesis S0 , , , , ,  

 

 When the second training example is observed, it has a similar effect of generalizing S further to S2, leaving G again 

unchanged i.e., G2 = G1 = G0 

 
 

Consider the third training example. 

 
 

Consider the fourth training example 



 
 

After processing these four examples, the boundary sets S4 and G4 delimit the version space of all hypotheses consistent with 

the set of incrementally observed training examples. 

 

Q3.a APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING 

 

Decision tree learning is generally best suited to problems with the following characteristics: 

1. Instances are represented by attribute-value pairs – Instances are described by a fixed 

set of attributes and their values 

 

2. The target function has discrete output values – The decision tree assigns a Boolean 

classification (e.g., yes or no) to each example. Decision tree methods easily extend to 

learning functions with more than two possible output values. 

 

3. Disjunctive descriptions may be required 

 



4. The training data may contain errors – Decision tree learning methods are robust to 

errors, both errors in classifications of the training examples and errors in the attribute 

values that describe these examples. 

 

5. The training data may contain missing attribute values – Decision tree methods can be 

used even when some training examples have unknown values 

 

Q3.b ID3(Examples, Target_attribute, Attributes) 

Examples are the training examples. Target_attribute is the attribute whose value is to be 

predicted by the tree. Attributes is a list of other attributes that may be tested by the learned 

decision tree. Returns a decision tree that correctly classifies the given Examples. 

 Create a Root node for the tree

 If all Examples are positive, Return the single-node tree Root, with label = +

 If all Examples are negative, Return the single-node tree Root, with label = -


 If Attributes is empty, Return the single-node tree Root, with label = most common value of 

Target_attribute in Examples

 Otherwise Begin

 A ← the attribute from Attributes that best* classifies Examples

 The decision attribute for Root ← A

 For each possible value, vi, of A,

 Add a new tree branch below Root, corresponding to the test A = vi

 Let Examples vi, be the subset of Examples that have value vi for A

 If Examples vi , is empty


 Then below this new branch add a leaf node with label = most common value 

of Target_attribute in Examples

 Else below this new branch add the subtree
 

ID3(Examples vi, Targe_tattribute, Attributes – {A})) 

 End

 Return Root
 

Q4: 



 

Q4.b 

 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify 

the training examples but it can lead to difficulties when there is noise in the data, or when 

the number of training examples is too small to produce a representative sample of the 

true target function. This algorithm can produce trees that overfit the training examples.



Definition - Overfit: Given a hypothesis space H, a hypothesis h ∈ H is said to overfit the training data if there exists some alternative hypothesis h' ∈ H, such that h has 

smaller error than h' over the training examples, but h' has a smaller error than h over the entire distribution of instances 

Approaches to avoiding overfitting in decision tree learning 

 

 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where it 

perfectly classifies the training data

 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree

Reduced-Error Pruning 

 Reduced-error pruning, is to consider each of the decision nodes in the tree to be 

candidates for pruning


 Pruning a decision node consists of removing the subtree rooted at that node, making it a 

leaf node, and assigning it the most common classification of the training examples 

affiliated with that node


 Nodes are removed only if the resulting pruned tree performs no worse than-the original 

over the validation set.

 

 Reduced error pruning has the effect that any leaf node added due to coincidental 

regularities in the training set is likely to be pruned because these same coincidences are 

unlikely to occur in the validation set.





Rule Post-Pruning 

 

Rule post-pruning is successful method for finding high accuracy hypotheses 

 

 Rule post-pruning involves the following steps:


 Infer the decision tree from the training set, growing the tree until the training data is fit as 

well as possible and allowing overfitting to occur.


 Convert the learned tree into an equivalent set of rules by creating one rule for each path 

from the root node to a leaf node.


 Prune (generalize) each rule by removing any preconditions that result in improving its 

estimated accuracy.

 

 Sort the pruned rules by their estimated accuracy, and consider them in this sequence 

when classifying subsequent instances







a. APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING 

 
ANN learning is well-suited to problems in which the training data corresponds to noisy, 

complex sensor data, such as inputs from cameras and microphones. 

 
ANN is appropriate for problems with the following characteristics: 

 

1. Instances are represented by many attribute-value pairs. 

2. The target function output may be discrete-valued, real-valued, or a vector of several 

real- or discrete-valued attributes. 

3. The training examples may contain errors. 

4. Long training times are acceptable. 

5. Fast evaluation of the learned target function may be required 

6. The ability of humans to understand the learned target function is not important. 

Q5.b 

The Perceptron Training Rule 

 
The learning problem is to determine a weight vector that causes the perceptron to produce the 

correct + 1 or - 1 output for each of the given training examples. 



 
To learn an acceptable weight vector 

 Begin with random weights, then iteratively apply the perceptron to each training 

example, modifying the perceptron weights whenever it misclassifies an example.

 This process is repeated, iterating through the training examples as many times as 

needed until the perceptron classifies all training examples correctly.

 Weights are modified at each step according to the perceptron training rule, which 

revises the weight wi associated with input xi according to the rule.
 

 

 
 

 The role of the learning rate is to moderate the degree to which weights are changed 

at each step. It is usually set to some small value (e.g., 0.1) and is sometimes made to 

decay as the number of weight-tuning iterations increases.

Gradient Descent and the Delta Rule 

 
 If the training examples are not linearly separable, the delta rule converges toward a 

best-fit approximation to the target concept.

 The key idea behind the delta rule is to use gradient descent to search the hypothesis 

space of possible weight vectors to find the weights that best fit the training 

examples.

 
To understand the delta training rule, consider the task of training an unthresholded perceptron. 

That is, a linear unit for which the output O is given by 
 
 

To derive a weight learning rule for linear units, specify a measure for the training error of a 

hypothesis (weight vector), relative to the training examples. 



 

 
Where, 

 D is the set of training examples,

 td is the target output for training example d,

 od is the output of the linear unit for training example d
E ( w     ) is simply half the squared difference between the target output td  and the linear unit 

output od, summed over all training examples. 

 

Q6.a. 

Visualizing the Hypothesis Space 

 
 To understand the gradient descent algorithm, it is helpful to visualize the entire 

hypothesis space of possible weight vectors and their associated E values as shown in 

below figure.

 Here the axes w0 and wl represent possible values for the two weights of a simple 

linear unit. The w0, wl plane therefore represents the entire hypothesis space.

 The vertical axis indicates the error E relative to some fixed set of training examples.

 The arrow shows the negated gradient at one particular point, indicating the direction 

in the w0, wl plane producing steepest descent along the error surface.

 The error surface shown in the figure thus summarizes the desirability of every 

weight vector in the hypothesis space



 Given the way in which we chose to define E, for linear units this error surface 

must always be parabolic with a single global minimum.

 
Gradient descent search determines a weight vector that minimizes E by starting with an 



arbitrary initial weight vector, then repeatedly modifying it in small steps. 

At each step, the weight vector is altered in the direction that produces the steepest descent 

along the error surface depicted in above figure. This process continues until the global 

minimum error is reached. 





BACKPROPAGATION (training_example, ƞ, nin, nout, nhidden ) 

 

Each training example is a pair of the form (𝑥   ,  𝑡  ), where (𝑥  ) is the vector of network 

input values, (𝑡 ) and is the vector of target network output values. 

ƞ is the learning rate (e.g., .05). ni, is the number of network inputs, nhidden the number 

of units in the hidden layer, and nout the number of output units. 

The input from unit i into unit j is denoted xji, and the weight from unit i to unit j is 

denoted wji 

 

 Create a feed-forward network with ni inputs, nhidden hidden units, and nout 
output units.

 Initialize all network weights to small random numbers
 Until the termination condition is met, Do

 For each (𝑥   ,  ), in training examples, Do 



Propagate the input forward through the network: 

1. Input the instance 𝑥   , to the network and compute the 
output ou of every unit u in the network. 

Propagate the errors backward through the network: 





 Each observed training example can incrementally decrease or increase the 

estimated probability that a hypothesis is correct. This provides a more flexible 

approach to learning than algorithms that completely eliminate a hypothesis if it is 

found to be inconsistent with any single example


 Prior knowledge can be combined with observed data to determine the final 

probability of a hypothesis. In Bayesian learning, prior knowledge is provided by 

asserting (1) a prior probability for each candidate hypothesis, and (2) a 

probability distribution over observed data for each possible hypothesis.

 Bayesian methods can accommodate hypotheses that make probabilistic 

predictions


 New instances can be classified by combining the predictions of multiple 

hypotheses, weighted by their probabilities.




 Even in cases where Bayesian methods prove computationally intractable, they 

can provide a standard of optimal decision making against which other practical 

methods can be measured.



8.a 
Consider the problem of learning a continuous-valued target function such as neural 

network learning, linear regression, and polynomial curve fitting 

 

A straightforward Bayesian analysis will show that under certain assumptions any 

learning algorithm that minimizes the squared error between the output hypothesis 

predictions and the training data will output a maximum likelihood (ML) hypothesis 

 

 Learner L considers an instance space X and a hypothesis space H consisting of some class of real-valued 
functions defined over X, i.e., (∀ h ∈ H)[ h : X → R] and training examples of the form <xi,di>

 The problem faced by L is to learn an unknown target function f : X → R


 A set of m training examples is provided, where the target value of each example 

is corrupted by random noise drawn according to a Normal probability 

distribution with zero mean (di = f(xi) + ei)

 Each training example is a pair of the form (xi ,di ) where di = f (xi ) + ei .

– Here f(xi) is the noise-free value of the target function and ei is a random 

variable representing the noise. 



– It is assumed that the values of the ei are drawn independently and that they 

are distributed according to a Normal distribution with zero mean. 



 The task of the learner is to output a maximum likelihood hypothesis or a MAP 

hypothesis assuming all hypotheses are equally probable a priori.

 

Using the definition of hML we have 
 

 

 



 

 

 

Assuming training examples are mutually independent given h, we can write P(D|h) as 

the product of the various (di|h) 

 

 

 

 

 

 

 

Given the noise ei obeys a Normal distribution with zero mean and unknown variance σ
2
 

, each di must also obey a Normal distribution around the true targetvalue f(xi). Because 

we are writing the expression for P(D|h), we assume h is the correct description of f. 

 

Hence, µ = f(xi) = h(xi) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Maximize the less complicated logarithm, which is justified because of the monotonicity 

of function p 

 



 

 

 

 

 

 

The first term in this expression is a constant independent of h, and can 

therefore be discarded, yielding 

 

 

 

 

 

 

 

Maximizing this negative quantity is equivalent to minimizing the corresponding 

positive quantity 

 

 

 

 

 

 

 

Finally, discard constants that are independent of h. 
 

 

 

 

 

 

 



 

Thus, above equation shows that the maximum likelihood hypothesis hML is the one that 

minimizes the sum of the squared errors between the observed training values di and the 

hypothesis predictions h(xi) 

 

8.b 

EM algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.a 

Sample Error – 

 

The sample error of a hypothesis with respect to some sample S of instances drawn 

from X is the fraction of S that it misclassifies. 

 

Definition: The sample error (errors(h)) of hypothesis h with respect to target function f 

and data sample S is 

 

 

 

True Error – 

 

The true error of a hypothesis is the probability that it will misclassify a single randomly 

drawn instance from the distribution D. 

 

Definition: The true error (errorD(h)) of hypothesis h with respect to target function f 

and distribution D, is the probability that h will misclassify an instance drawn at random 

according to D. 

 

 

 

 

9.b 

Suppose we wish to estimate the true error for some discrete valued hypothesis h, 

based on its observed sample error over a sample S, where 

 

 The sample S contains n examples drawn independent of one another, and 

independent of h, according to the probability distribution D


 n ≥ 30



 Hypothesis h commits r errors over these n examples (i.e., errors (h) = r/n).

 

Under these conditions, statistical theory allows to make the following assertions: 

1. Given no other information, the most probable value of errorD (h) is errors(h) 

2. With approximately 95% probability, the true error errorD (h) lies in the interval 
 

 

 

 

 

 

 

Example: 

 

Suppose the data sample S contains n = 40 examples and that hypothesis h 

commits r = 12 errors over this data. 
 

 The sample error is errors(h) = r/n = 12/40 = 0.30

 Given no other information, true error is errorD (h) = errors(h), i.e., errorD (h) 

= 0.30

 With the 95% confidence interval estimate for errorD (h). 

 

 

 

= 0.30 ± (1.96 * 0.07) = 0.30 ± 0.14 

 

 

 

 



10 a. 

Hypothesis Testing 

• Evaluates 2 mutual exclusive statement on population using sample data. 
• Steps: 

 1. Make initial Assumptions 

 2. Collect Data 

 3. Gather Evidence to Reject or accept NULL hypothesis 

• What is the probability that  
             error D(h1)   > error D(h2) 

 

COMPARING LEARNING ALGORITHMS 

•  Comparing the performance of 2 learning algorithms LA and LB. 

• A reasonable way to define “on average” is to consider the relative performance of these 2 

algorithms averaged over all the training  sets of size n over Distribution D. 

 

 

Where , 

L(S) : Hypothesis output of learning method L when given  the sample  S of training data . 

Here S ϲ D : The expected value  is taken over  samples S drawn according to the underlying instance 
distribution D. 

 

10.b 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


