
Q6 a) Derive characteristic impedance of microstrip line with diagram.     

Characteristic impedance 

 
Characteristic impedance Z0 of microstrip is also a function of the ratio of the height to the width W/H 
(and ratio of width to height H/W) of the transmission line, and also has separate solutions depending 
on the value of W/H. The characteristic impedance Z0 of microstrip is calculated by: 
 
 

 

 

https://www.microwaves101.com/encyclopedias/characteristic-impedance
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6c)  

 

 

 



 

 



 

 



7a 

 



7b 

 

 



 

• The double integral equals 
8𝜋

3
 and (7) becomes 

• 𝑃 = √
𝜇

𝜀

𝛽2𝐼0
2𝐿2

12𝜋
        (8) 

• This is the average power or rate at which energy is streaming out of a sphere surrounding the 

dipole. Hence it is equal to the power radiated. 

• Assuming no losses this is also equal to the power delivered to the dipole. 

• Therefore, P must be equal to the square of the rms current I flowing on the dipole times a 

resistance 𝑅𝑟 called the radiation resistance of the dipole. 

• √
𝜇

𝜀

𝛽2𝐼0
2𝐿2

12𝜋
= (

𝐼0

√2
)2𝑅𝑟      (9) 

• Solving for 𝑅𝑟, 

• 𝑅𝑟 = √
𝜇

𝜀
 
𝛽2𝐿2

6𝜋
       (10) 

• For air or vacuum √
𝜇

𝜀
 =√

𝜇0

𝜀0
= 377 = 120𝜋𝛺,  so that (10) becomes 

• Dipole with uniform current : 

• 𝑅𝑟 = 80𝜋2(
𝐿

𝜆
)2       (11) 

 

 

 

 

 



7c 

 

 

 



8a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8b 

• The retarded value of the current at any point z on the antenna referred to a point at a distance 

s is 

• 𝐼 = 𝐼0 sin [
2𝜋

𝜆
(
𝐿

2
± 𝑧)] 𝑒𝑗𝜔(𝑡−(𝑟 𝑐⁄ ))     (1) 

• In (1), the function sin [
2𝜋

𝜆
(
𝐿

2
± 𝑧)] is the form factor for the current on the antenna. 

• The expression (
𝐿

2
+ 𝑧) is used when z < 0 and (

𝐿

2
− 𝑧) is used when z > 0. 

• By regarding the antenna as made up of a series of infinitesimal dipoles of length dz, the field of 

the entire antenna may then be obtained by integrating the fields from all of the dipoles making 

up the antenna with the result 

• 𝐻𝜑 =
𝑗[𝐼0]

2𝜋𝑟
[
cos[

𝛽𝐿𝑐𝑜𝑠𝜃

2
]−cos⁡(

𝛽𝐿

2
)

𝑠𝑖𝑛𝜃
]        

• 𝐸𝜃 =
𝑗60[𝐼0]

𝑟
[
cos[

𝛽𝐿𝑐𝑜𝑠𝜃

2
]−cos⁡(

𝛽𝐿

2
)

𝑠𝑖𝑛𝜃
] 

• Where [𝐼0] = 𝐼0𝑒
𝑗𝜔[𝑡−(𝑟 𝑐⁄ )] and 𝐸𝜃=120𝜋𝐻𝜑. 
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10a) 

 



 

 

 

 

 

 

 



 

 

10b) 

 

• It is assumed that the loop dimensions are small compared to the wavelength. 

• It will be shown that the far-field patterns of circular and square loops of the same area are the 

same when the loops are small but different when they are large in terms of the wavelength. 



• Let us consider the orientation of the loop as in Fig2 and the far-field is found to have only the 

𝐸𝜑 component. 

• To find the far-field pattern in the yz plane, it is only necessary to consider two of the four small 

linear dipoles (2 and 4). 

 

• A cross section through the loop in the yz plane is presented in Fig 3. 

• Since the individual small dipoles 2 and 4 are non-directional in the yz plane, the field pattern of 

the loop in this plane is the same as that for two isotropic point sources as treated earlier. 

• 𝐸𝜑 = −𝐸𝜑0𝑒
𝑗𝜓 2⁄ + 𝐸𝜑0𝑒

−𝑗𝜓 2⁄      (2) 

• Where 𝐸𝜑0 is electric field from individual dipole and 

• 𝜓 = 𝑑𝑟𝑠𝑖𝑛𝜃 =
2𝜋𝑑

𝜆
𝑠𝑖𝑛𝜃      (3) 

• It follows that 

• 𝐸𝜙 = −2𝑗𝐸𝜙0sin⁡(
𝑑𝑟
2
𝑠𝑖𝑛𝜃)      (4) 

• The factor j in (4) indicates that the total field 𝐸𝜙 is in phase quadrature with the field 𝐸𝜙0 of the 

individual dipole. 

• Now if 𝑑 ≪ 𝜆, (4) can be written  

• 𝐸𝜙 = −𝑗𝐸𝜙0𝑑𝑟𝑠𝑖𝑛𝜃       (5) 

• In developing the fields of dipole, the z direction was considered where as in the present case it 

is in the x-direction (Fig 2 and 3). 

• The angle 𝜃 in the dipole formula is measured from the dipole axis and is 900 in the present 

case. 

• The angle 𝜃 in (5) is a different angle with respect to the dipole, being as shown in Figs 2 and 3. 



• Therefore, we have for far field 𝐸𝜙0 of the dipole  

• 𝐸𝜙0 =
𝑗60𝜋[𝐼]𝐿

𝑟𝜆
       (6) 

• Where [I] is the retarded current on the dipole and r is the distance from the dipole. 

• Substituting (6) in (5) then gives 

• 𝐸𝜙 =
60𝜋[𝐼]𝐿𝑑𝑟𝑠𝑖𝑛𝜃

𝑟𝜆
       (7) 

• However, the length L of the short dipole is the same as d, that is, L=d. 

• Noting also that 𝑑𝑟 =
2𝜋𝑑

𝜆
 and that the area A of the loop is 𝑑2, (7) becomes 

• 𝐸𝜙 =
120𝜋2[𝐼]𝑠𝑖𝑛𝜃

𝑟
 
𝐴

𝜆2
       (8) 

• This is the instantaneous value of the 𝐸𝜙 component of the field of a small loop of area A. 

• The peak value of the field is obtained by replacing [I] by 𝐼0, where 𝐼0 is the peak current in time 

on the loop. 

• The other component of the far field of the loop is 𝐻𝜃, which is obtained by the intrinsic 

impedance of the medium, in this case, free space. 

• 𝐻𝜃 =
𝐸𝜙

120𝜋
=

𝜋[𝐼] 𝑠𝑖𝑛𝜃

𝑟
 
𝐴

𝜆2
      (9) 



 


